1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
//! Decoding of AVIF images.
///
/// The [AVIF] specification defines an image derivative of the AV1 bitstream, an open video codec.
///
/// [AVIF]: https://aomediacodec.github.io/av1-avif/
use std::error::Error;
use std::io::Read;
use std::marker::PhantomData;

use crate::error::{DecodingError, ImageFormatHint, UnsupportedError, UnsupportedErrorKind};
use crate::{ColorType, ImageDecoder, ImageError, ImageFormat, ImageResult};

use dav1d::{PixelLayout, PlanarImageComponent};
use dcv_color_primitives as dcp;
use mp4parse::{read_avif, ParseStrictness};

fn error_map<E: Into<Box<dyn Error + Send + Sync>>>(err: E) -> ImageError {
    ImageError::Decoding(DecodingError::new(ImageFormat::Avif.into(), err))
}

/// AVIF Decoder.
///
/// Reads one image into the chosen input.
pub struct AvifDecoder<R> {
    inner: PhantomData<R>,
    picture: dav1d::Picture,
    alpha_picture: Option<dav1d::Picture>,
    icc_profile: Option<Vec<u8>>,
}

impl<R: Read> AvifDecoder<R> {
    /// Create a new decoder that reads its input from `r`.
    pub fn new(mut r: R) -> ImageResult<Self> {
        let ctx = read_avif(&mut r, ParseStrictness::Normal).map_err(error_map)?;
        let coded = ctx.primary_item_coded_data().unwrap_or_default();

        let mut primary_decoder = dav1d::Decoder::new().map_err(error_map)?;
        primary_decoder
            .send_data(coded.to_vec(), None, None, None)
            .map_err(error_map)?;
        let picture = read_until_ready(&mut primary_decoder)?;
        let alpha_item = ctx.alpha_item_coded_data().unwrap_or_default();
        let alpha_picture = if !alpha_item.is_empty() {
            let mut alpha_decoder = dav1d::Decoder::new().map_err(error_map)?;
            alpha_decoder
                .send_data(alpha_item.to_vec(), None, None, None)
                .map_err(error_map)?;
            Some(read_until_ready(&mut alpha_decoder)?)
        } else {
            None
        };
        let icc_profile = ctx
            .icc_colour_information()
            .map(|x| x.ok().unwrap_or_default())
            .map(|x| x.to_vec());

        match picture.bit_depth() {
            8 => (),
            10 | 12 => {
                return ImageResult::Err(ImageError::Unsupported(
                    UnsupportedError::from_format_and_kind(
                        ImageFormatHint::Exact(ImageFormat::Avif),
                        UnsupportedErrorKind::GenericFeature(format!(
                            "Only 8 bit depth is supported but was {}",
                            picture.bit_depth()
                        )),
                    ),
                ))
            }
            _ => {
                return ImageResult::Err(ImageError::Decoding(DecodingError::new(
                    ImageFormatHint::Exact(ImageFormat::Avif),
                    format!(
                        "Avif format does not support {} bit depth",
                        picture.bit_depth()
                    ),
                )))
            }
        };
        Ok(AvifDecoder {
            inner: PhantomData,
            picture,
            alpha_picture,
            icc_profile,
        })
    }
}

impl<R: Read> ImageDecoder for AvifDecoder<R> {
    fn dimensions(&self) -> (u32, u32) {
        (self.picture.width(), self.picture.height())
    }

    fn color_type(&self) -> ColorType {
        ColorType::Rgba8
    }

    fn icc_profile(&mut self) -> ImageResult<Option<Vec<u8>>> {
        Ok(self.icc_profile.clone())
    }

    fn read_image(self, buf: &mut [u8]) -> ImageResult<()> {
        assert_eq!(u64::try_from(buf.len()), Ok(self.total_bytes()));

        if self.picture.pixel_layout() != PixelLayout::I400 {
            let pixel_format = match self.picture.pixel_layout() {
                PixelLayout::I400 => todo!(),
                PixelLayout::I420 => dcp::PixelFormat::I420,
                PixelLayout::I422 => dcp::PixelFormat::I422,
                PixelLayout::I444 => dcp::PixelFormat::I444,
            };
            let src_format = dcp::ImageFormat {
                pixel_format,
                color_space: dcp::ColorSpace::Bt601,
                num_planes: 3,
            };
            let dst_format = dcp::ImageFormat {
                pixel_format: dcp::PixelFormat::Rgba,
                color_space: dcp::ColorSpace::Rgb,
                num_planes: 1,
            };
            let (width, height) = self.dimensions();
            let planes = &[
                self.picture.plane(PlanarImageComponent::Y),
                self.picture.plane(PlanarImageComponent::U),
                self.picture.plane(PlanarImageComponent::V),
            ];
            let src_buffers = planes.iter().map(AsRef::as_ref).collect::<Vec<_>>();
            let strides = &[
                self.picture.stride(PlanarImageComponent::Y) as usize,
                self.picture.stride(PlanarImageComponent::U) as usize,
                self.picture.stride(PlanarImageComponent::V) as usize,
            ];
            let dst_buffers = &mut [&mut buf[..]];
            dcp::convert_image(
                width,
                height,
                &src_format,
                Some(strides),
                &src_buffers,
                &dst_format,
                None,
                dst_buffers,
            )
            .map_err(error_map)?;
        } else {
            let plane = self.picture.plane(PlanarImageComponent::Y);
            buf.copy_from_slice(plane.as_ref());
        }

        if let Some(picture) = self.alpha_picture {
            if picture.pixel_layout() != PixelLayout::I400 {
                return Err(ImageError::Unsupported(
                    UnsupportedError::from_format_and_kind(
                        ImageFormat::Avif.into(),
                        UnsupportedErrorKind::GenericFeature(format!(
                            "Alpha must be PixelLayout::I400 but was: {:?}",
                            picture.pixel_layout() // PixelLayout does not implement display
                        )),
                    ),
                ));
            }
            let stride = picture.stride(PlanarImageComponent::Y) as usize;
            let plane = picture.plane(PlanarImageComponent::Y);
            let width = picture.width();
            for (buf, slice) in Iterator::zip(
                buf.chunks_exact_mut(width as usize * 4),
                plane.as_ref().chunks_exact(stride),
            ) {
                for i in 0..width as usize {
                    buf[3 + i * 4] = slice[i];
                }
            }
        }

        Ok(())
    }

    fn read_image_boxed(self: Box<Self>, buf: &mut [u8]) -> ImageResult<()> {
        (*self).read_image(buf)
    }
}

/// `get_picture` and `send_pending_data` yield `Again` as a non-fatal error requesting more data is sent to the decoder
/// This ensures that in the case of `Again` all pending data is submitted
/// This should be called after `send_data` (which does not yield `Again` when called the first time)
fn read_until_ready(decoder: &mut dav1d::Decoder) -> ImageResult<dav1d::Picture> {
    loop {
        match decoder.get_picture() {
            Err(dav1d::Error::Again) => match decoder.send_pending_data() {
                Ok(_) => {}
                Err(dav1d::Error::Again) => {}
                Err(e) => return Err(error_map(e)),
            },
            r => return r.map_err(error_map),
        }
    }
}