Struct im::chunk::Chunk[][src]

pub struct Chunk<A, N = U64> where
    N: ChunkLength<A>, 
{ /* fields omitted */ }

A fixed capacity smart array.

An inline array of items with a variable length but a fixed, preallocated capacity given by the N type, which must be an Unsigned type level numeral.

It's 'smart' because it's able to reorganise its contents based on expected behaviour. If you construct one using push_back, it will be laid out like a Vec with space at the end. If you push_front it will start filling in values from the back instead of the front, so that you still get linear time push as long as you don't reverse direction. If you do, and there's no room at the end you're pushing to, it'll shift its contents over to the other side, creating more space to push into. This technique is tuned for Chunk's expected use case: usually, chunks always see either push_front or push_back, but not both unless they move around inside the tree, in which case they're able to reorganise themselves with reasonable efficiency to suit their new usage patterns.

It maintains a left index and a right index instead of a simple length counter in order to accomplish this, much like a ring buffer would, except that the Chunk keeps all its items sequentially in memory so that you can always get a &[A] slice for them, at the price of the occasional reordering operation.

This technique also lets us choose to shift the shortest side to account for the inserted or removed element when performing insert and remove operations, unlike Vec where you always need to shift the right hand side.

Unlike a Vec, the Chunk has a fixed capacity and cannot grow beyond it. Being intended for low level use, it expects you to know or test whether you're pushing to a full array, and has an API more geared towards panics than returning Options, on the assumption that you know what you're doing.

Examples

// Construct a chunk with a 64 item capacity
let mut chunk = Chunk::<i32, U64>::new();
// Fill it with descending numbers
chunk.extend((0..64).rev());
// It derefs to a slice so we can use standard slice methods
chunk.sort();
// It's got all the amenities like `FromIterator` and `Eq`
let expected: Chunk<i32, U64> = (0..64).collect();
assert_eq!(expected, chunk);

Methods

impl<A, N> Chunk<A, N> where
    N: ChunkLength<A>, 
[src]

Construct a new empty chunk.

Construct a new chunk with one item.

Construct a new chunk with two items.

Construct a new chunk and move every item from other into the new chunk.

Time: O(n)

Construct a new chunk and populate it by taking count items from the iterator iter.

Panics if the iterator contains less than count items.

Time: O(n)

Construct a new chunk and populate it by taking count items from the front of other.

Time: O(n) for the number of items moved

Construct a new chunk and populate it by taking count items from the back of other.

Time: O(n) for the number of items moved

Get the length of the chunk.

Test if the chunk is empty.

Test if the chunk is at capacity.

Push an item to the front of the chunk.

Panics if the capacity of the chunk is exceeded.

Time: O(1) if there's room at the front, O(n) otherwise

Push an item to the back of the chunk.

Panics if the capacity of the chunk is exceeded.

Time: O(1) if there's room at the back, O(n) otherwise

Pop an item off the front of the chunk.

Panics if the chunk is empty.

Time: O(1)

Pop an item off the back of the chunk.

Panics if the chunk is empty.

Time: O(1)

Discard all items up to but not including index.

Panics if index is out of bounds.

Time: O(n) for the number of items dropped

Discard all items from index onward.

Panics if index is out of bounds.

Time: O(n) for the number of items dropped

Split a chunk into two, the original chunk containing everything up to index and the returned chunk containing everything from index onwards.

Panics if index is out of bounds.

Time: O(n) for the number of items in the new chunk

Remove all items from other and append them to the back of self.

Panics if the capacity of the chunk is exceeded.

Time: O(n) for the number of items moved

Remove count items from the front of other and append them to the back of self.

Panics if the capacity of the chunk is exceeded.

Time: O(n) for the number of items moved

Remove count items from the back of other and append them to the back of self.

Panics if the capacity of the chunk is exceeded.

Time: O(n) for the number of items moved

Update the value at index index, returning the old value.

Panics if index is out of bounds.

Time: O(1)

Insert a new value at index index, shifting all the following values to the right.

Panics if the index is out of bounds.

Time: O(n) for the number of items shifted

Remove the value at index index, shifting all the following values to the left.

Returns the removed value.

Panics if the index is out of bounds.

Time: O(n) for the number of items shifted

Important traits for Drain<'a, A, N>

Construct an iterator that drains values from the front of the chunk.

Discard the contents of the chunk.

Time: O(n)

Get a reference to the contents of the chunk as a slice.

Get a reference to the contents of the chunk as a mutable slice.

Methods from Deref<Target = [A]>

Returns the number of elements in the slice.

Examples

let a = [1, 2, 3];
assert_eq!(a.len(), 3);

Returns true if the slice has a length of 0.

Examples

let a = [1, 2, 3];
assert!(!a.is_empty());

Returns the first element of the slice, or None if it is empty.

Examples

let v = [10, 40, 30];
assert_eq!(Some(&10), v.first());

let w: &[i32] = &[];
assert_eq!(None, w.first());

Returns a mutable pointer to the first element of the slice, or None if it is empty.

Examples

let x = &mut [0, 1, 2];

if let Some(first) = x.first_mut() {
    *first = 5;
}
assert_eq!(x, &[5, 1, 2]);

Returns the first and all the rest of the elements of the slice, or None if it is empty.

Examples

let x = &[0, 1, 2];

if let Some((first, elements)) = x.split_first() {
    assert_eq!(first, &0);
    assert_eq!(elements, &[1, 2]);
}

Returns the first and all the rest of the elements of the slice, or None if it is empty.

Examples

let x = &mut [0, 1, 2];

if let Some((first, elements)) = x.split_first_mut() {
    *first = 3;
    elements[0] = 4;
    elements[1] = 5;
}
assert_eq!(x, &[3, 4, 5]);

Returns the last and all the rest of the elements of the slice, or None if it is empty.

Examples

let x = &[0, 1, 2];

if let Some((last, elements)) = x.split_last() {
    assert_eq!(last, &2);
    assert_eq!(elements, &[0, 1]);
}

Returns the last and all the rest of the elements of the slice, or None if it is empty.

Examples

let x = &mut [0, 1, 2];

if let Some((last, elements)) = x.split_last_mut() {
    *last = 3;
    elements[0] = 4;
    elements[1] = 5;
}
assert_eq!(x, &[4, 5, 3]);

Returns the last element of the slice, or None if it is empty.

Examples

let v = [10, 40, 30];
assert_eq!(Some(&30), v.last());

let w: &[i32] = &[];
assert_eq!(None, w.last());

Returns a mutable pointer to the last item in the slice.

Examples

let x = &mut [0, 1, 2];

if let Some(last) = x.last_mut() {
    *last = 10;
}
assert_eq!(x, &[0, 1, 10]);

Returns a reference to an element or subslice depending on the type of index.

  • If given a position, returns a reference to the element at that position or None if out of bounds.
  • If given a range, returns the subslice corresponding to that range, or None if out of bounds.

Examples

let v = [10, 40, 30];
assert_eq!(Some(&40), v.get(1));
assert_eq!(Some(&[10, 40][..]), v.get(0..2));
assert_eq!(None, v.get(3));
assert_eq!(None, v.get(0..4));

Returns a mutable reference to an element or subslice depending on the type of index (see get) or None if the index is out of bounds.

Examples

let x = &mut [0, 1, 2];

if let Some(elem) = x.get_mut(1) {
    *elem = 42;
}
assert_eq!(x, &[0, 42, 2]);

Returns a reference to an element or subslice, without doing bounds checking.

This is generally not recommended, use with caution! For a safe alternative see get.

Examples

let x = &[1, 2, 4];

unsafe {
    assert_eq!(x.get_unchecked(1), &2);
}

Returns a mutable reference to an element or subslice, without doing bounds checking.

This is generally not recommended, use with caution! For a safe alternative see get_mut.

Examples

let x = &mut [1, 2, 4];

unsafe {
    let elem = x.get_unchecked_mut(1);
    *elem = 13;
}
assert_eq!(x, &[1, 13, 4]);

Returns a raw pointer to the slice's buffer.

The caller must ensure that the slice outlives the pointer this function returns, or else it will end up pointing to garbage.

Modifying the container referenced by this slice may cause its buffer to be reallocated, which would also make any pointers to it invalid.

Examples

let x = &[1, 2, 4];
let x_ptr = x.as_ptr();

unsafe {
    for i in 0..x.len() {
        assert_eq!(x.get_unchecked(i), &*x_ptr.offset(i as isize));
    }
}

Returns an unsafe mutable pointer to the slice's buffer.

The caller must ensure that the slice outlives the pointer this function returns, or else it will end up pointing to garbage.

Modifying the container referenced by this slice may cause its buffer to be reallocated, which would also make any pointers to it invalid.

Examples

let x = &mut [1, 2, 4];
let x_ptr = x.as_mut_ptr();

unsafe {
    for i in 0..x.len() {
        *x_ptr.offset(i as isize) += 2;
    }
}
assert_eq!(x, &[3, 4, 6]);

Swaps two elements in the slice.

Arguments

  • a - The index of the first element
  • b - The index of the second element

Panics

Panics if a or b are out of bounds.

Examples

let mut v = ["a", "b", "c", "d"];
v.swap(1, 3);
assert!(v == ["a", "d", "c", "b"]);

Reverses the order of elements in the slice, in place.

Examples

let mut v = [1, 2, 3];
v.reverse();
assert!(v == [3, 2, 1]);

Returns an iterator over the slice.

Examples

let x = &[1, 2, 4];
let mut iterator = x.iter();

assert_eq!(iterator.next(), Some(&1));
assert_eq!(iterator.next(), Some(&2));
assert_eq!(iterator.next(), Some(&4));
assert_eq!(iterator.next(), None);

Returns an iterator that allows modifying each value.

Examples

let x = &mut [1, 2, 4];
for elem in x.iter_mut() {
    *elem += 2;
}
assert_eq!(x, &[3, 4, 6]);

Returns an iterator over all contiguous windows of length size. The windows overlap. If the slice is shorter than size, the iterator returns no values.

Panics

Panics if size is 0.

Examples

let slice = ['r', 'u', 's', 't'];
let mut iter = slice.windows(2);
assert_eq!(iter.next().unwrap(), &['r', 'u']);
assert_eq!(iter.next().unwrap(), &['u', 's']);
assert_eq!(iter.next().unwrap(), &['s', 't']);
assert!(iter.next().is_none());

If the slice is shorter than size:

let slice = ['f', 'o', 'o'];
let mut iter = slice.windows(4);
assert!(iter.next().is_none());

Returns an iterator over chunk_size elements of the slice at a time. The chunks are slices and do not overlap. If chunk_size does not divide the length of the slice, then the last chunk will not have length chunk_size.

See exact_chunks for a variant of this iterator that returns chunks of always exactly chunk_size elements.

Panics

Panics if chunk_size is 0.

Examples

let slice = ['l', 'o', 'r', 'e', 'm'];
let mut iter = slice.chunks(2);
assert_eq!(iter.next().unwrap(), &['l', 'o']);
assert_eq!(iter.next().unwrap(), &['r', 'e']);
assert_eq!(iter.next().unwrap(), &['m']);
assert!(iter.next().is_none());

🔬 This is a nightly-only experimental API. (exact_chunks)

Returns an iterator over chunk_size elements of the slice at a time. The chunks are slices and do not overlap. If chunk_size does not divide the length of the slice, then the last up to chunk_size-1 elements will be omitted.

Due to each chunk having exactly chunk_size elements, the compiler can often optimize the resulting code better than in the case of chunks.

Panics

Panics if chunk_size is 0.

Examples

#![feature(exact_chunks)]

let slice = ['l', 'o', 'r', 'e', 'm'];
let mut iter = slice.exact_chunks(2);
assert_eq!(iter.next().unwrap(), &['l', 'o']);
assert_eq!(iter.next().unwrap(), &['r', 'e']);
assert!(iter.next().is_none());

Returns an iterator over chunk_size elements of the slice at a time. The chunks are mutable slices, and do not overlap. If chunk_size does not divide the length of the slice, then the last chunk will not have length chunk_size.

See exact_chunks_mut for a variant of this iterator that returns chunks of always exactly chunk_size elements.

Panics

Panics if chunk_size is 0.

Examples

let v = &mut [0, 0, 0, 0, 0];
let mut count = 1;

for chunk in v.chunks_mut(2) {
    for elem in chunk.iter_mut() {
        *elem += count;
    }
    count += 1;
}
assert_eq!(v, &[1, 1, 2, 2, 3]);

🔬 This is a nightly-only experimental API. (exact_chunks)

Returns an iterator over chunk_size elements of the slice at a time. The chunks are mutable slices, and do not overlap. If chunk_size does not divide the length of the slice, then the last up to chunk_size-1 elements will be omitted.

Due to each chunk having exactly chunk_size elements, the compiler can often optimize the resulting code better than in the case of chunks_mut.

Panics

Panics if chunk_size is 0.

Examples

#![feature(exact_chunks)]

let v = &mut [0, 0, 0, 0, 0];
let mut count = 1;

for chunk in v.exact_chunks_mut(2) {
    for elem in chunk.iter_mut() {
        *elem += count;
    }
    count += 1;
}
assert_eq!(v, &[1, 1, 2, 2, 0]);

Divides one slice into two at an index.

The first will contain all indices from [0, mid) (excluding the index mid itself) and the second will contain all indices from [mid, len) (excluding the index len itself).

Panics

Panics if mid > len.

Examples

let v = [1, 2, 3, 4, 5, 6];

{
   let (left, right) = v.split_at(0);
   assert!(left == []);
   assert!(right == [1, 2, 3, 4, 5, 6]);
}

{
    let (left, right) = v.split_at(2);
    assert!(left == [1, 2]);
    assert!(right == [3, 4, 5, 6]);
}

{
    let (left, right) = v.split_at(6);
    assert!(left == [1, 2, 3, 4, 5, 6]);
    assert!(right == []);
}

Divides one mutable slice into two at an index.

The first will contain all indices from [0, mid) (excluding the index mid itself) and the second will contain all indices from [mid, len) (excluding the index len itself).

Panics

Panics if mid > len.

Examples

let mut v = [1, 0, 3, 0, 5, 6];
// scoped to restrict the lifetime of the borrows
{
    let (left, right) = v.split_at_mut(2);
    assert!(left == [1, 0]);
    assert!(right == [3, 0, 5, 6]);
    left[1] = 2;
    right[1] = 4;
}
assert!(v == [1, 2, 3, 4, 5, 6]);

Returns an iterator over subslices separated by elements that match pred. The matched element is not contained in the subslices.

Examples

let slice = [10, 40, 33, 20];
let mut iter = slice.split(|num| num % 3 == 0);

assert_eq!(iter.next().unwrap(), &[10, 40]);
assert_eq!(iter.next().unwrap(), &[20]);
assert!(iter.next().is_none());

If the first element is matched, an empty slice will be the first item returned by the iterator. Similarly, if the last element in the slice is matched, an empty slice will be the last item returned by the iterator:

let slice = [10, 40, 33];
let mut iter = slice.split(|num| num % 3 == 0);

assert_eq!(iter.next().unwrap(), &[10, 40]);
assert_eq!(iter.next().unwrap(), &[]);
assert!(iter.next().is_none());

If two matched elements are directly adjacent, an empty slice will be present between them:

let slice = [10, 6, 33, 20];
let mut iter = slice.split(|num| num % 3 == 0);

assert_eq!(iter.next().unwrap(), &[10]);
assert_eq!(iter.next().unwrap(), &[]);
assert_eq!(iter.next().unwrap(), &[20]);
assert!(iter.next().is_none());

Returns an iterator over mutable subslices separated by elements that match pred. The matched element is not contained in the subslices.

Examples

let mut v = [10, 40, 30, 20, 60, 50];

for group in v.split_mut(|num| *num % 3 == 0) {
    group[0] = 1;
}
assert_eq!(v, [1, 40, 30, 1, 60, 1]);

Returns an iterator over subslices separated by elements that match pred, starting at the end of the slice and working backwards. The matched element is not contained in the subslices.

Examples

let slice = [11, 22, 33, 0, 44, 55];
let mut iter = slice.rsplit(|num| *num == 0);

assert_eq!(iter.next().unwrap(), &[44, 55]);
assert_eq!(iter.next().unwrap(), &[11, 22, 33]);
assert_eq!(iter.next(), None);

As with split(), if the first or last element is matched, an empty slice will be the first (or last) item returned by the iterator.

let v = &[0, 1, 1, 2, 3, 5, 8];
let mut it = v.rsplit(|n| *n % 2 == 0);
assert_eq!(it.next().unwrap(), &[]);
assert_eq!(it.next().unwrap(), &[3, 5]);
assert_eq!(it.next().unwrap(), &[1, 1]);
assert_eq!(it.next().unwrap(), &[]);
assert_eq!(it.next(), None);

Returns an iterator over mutable subslices separated by elements that match pred, starting at the end of the slice and working backwards. The matched element is not contained in the subslices.

Examples

let mut v = [100, 400, 300, 200, 600, 500];

let mut count = 0;
for group in v.rsplit_mut(|num| *num % 3 == 0) {
    count += 1;
    group[0] = count;
}
assert_eq!(v, [3, 400, 300, 2, 600, 1]);

Returns an iterator over subslices separated by elements that match pred, limited to returning at most n items. The matched element is not contained in the subslices.

The last element returned, if any, will contain the remainder of the slice.

Examples

Print the slice split once by numbers divisible by 3 (i.e. [10, 40], [20, 60, 50]):

let v = [10, 40, 30, 20, 60, 50];

for group in v.splitn(2, |num| *num % 3 == 0) {
    println!("{:?}", group);
}

Returns an iterator over subslices separated by elements that match pred, limited to returning at most n items. The matched element is not contained in the subslices.

The last element returned, if any, will contain the remainder of the slice.

Examples

let mut v = [10, 40, 30, 20, 60, 50];

for group in v.splitn_mut(2, |num| *num % 3 == 0) {
    group[0] = 1;
}
assert_eq!(v, [1, 40, 30, 1, 60, 50]);

Returns an iterator over subslices separated by elements that match pred limited to returning at most n items. This starts at the end of the slice and works backwards. The matched element is not contained in the subslices.

The last element returned, if any, will contain the remainder of the slice.

Examples

Print the slice split once, starting from the end, by numbers divisible by 3 (i.e. [50], [10, 40, 30, 20]):

let v = [10, 40, 30, 20, 60, 50];

for group in v.rsplitn(2, |num| *num % 3 == 0) {
    println!("{:?}", group);
}

Returns an iterator over subslices separated by elements that match pred limited to returning at most n items. This starts at the end of the slice and works backwards. The matched element is not contained in the subslices.

The last element returned, if any, will contain the remainder of the slice.

Examples

let mut s = [10, 40, 30, 20, 60, 50];

for group in s.rsplitn_mut(2, |num| *num % 3 == 0) {
    group[0] = 1;
}
assert_eq!(s, [1, 40, 30, 20, 60, 1]);

Returns true if the slice contains an element with the given value.

Examples

let v = [10, 40, 30];
assert!(v.contains(&30));
assert!(!v.contains(&50));

Returns true if needle is a prefix of the slice.

Examples

let v = [10, 40, 30];
assert!(v.starts_with(&[10]));
assert!(v.starts_with(&[10, 40]));
assert!(!v.starts_with(&[50]));
assert!(!v.starts_with(&[10, 50]));

Always returns true if needle is an empty slice:

let v = &[10, 40, 30];
assert!(v.starts_with(&[]));
let v: &[u8] = &[];
assert!(v.starts_with(&[]));

Returns true if needle is a suffix of the slice.

Examples

let v = [10, 40, 30];
assert!(v.ends_with(&[30]));
assert!(v.ends_with(&[40, 30]));
assert!(!v.ends_with(&[50]));
assert!(!v.ends_with(&[50, 30]));

Always returns true if needle is an empty slice:

let v = &[10, 40, 30];
assert!(v.ends_with(&[]));
let v: &[u8] = &[];
assert!(v.ends_with(&[]));

Binary searches this sorted slice for a given element.

If the value is found then Ok is returned, containing the index of the matching element; if the value is not found then Err is returned, containing the index where a matching element could be inserted while maintaining sorted order.

Examples

Looks up a series of four elements. The first is found, with a uniquely determined position; the second and third are not found; the fourth could match any position in [1, 4].

let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];

assert_eq!(s.binary_search(&13),  Ok(9));
assert_eq!(s.binary_search(&4),   Err(7));
assert_eq!(s.binary_search(&100), Err(13));
let r = s.binary_search(&1);
assert!(match r { Ok(1...4) => true, _ => false, });

Binary searches this sorted slice with a comparator function.

The comparator function should implement an order consistent with the sort order of the underlying slice, returning an order code that indicates whether its argument is Less, Equal or Greater the desired target.

If a matching value is found then returns Ok, containing the index for the matched element; if no match is found then Err is returned, containing the index where a matching element could be inserted while maintaining sorted order.

Examples

Looks up a series of four elements. The first is found, with a uniquely determined position; the second and third are not found; the fourth could match any position in [1, 4].

let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];

let seek = 13;
assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Ok(9));
let seek = 4;
assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(7));
let seek = 100;
assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(13));
let seek = 1;
let r = s.binary_search_by(|probe| probe.cmp(&seek));
assert!(match r { Ok(1...4) => true, _ => false, });

Binary searches this sorted slice with a key extraction function.

Assumes that the slice is sorted by the key, for instance with sort_by_key using the same key extraction function.

If a matching value is found then returns Ok, containing the index for the matched element; if no match is found then Err is returned, containing the index where a matching element could be inserted while maintaining sorted order.

Examples

Looks up a series of four elements in a slice of pairs sorted by their second elements. The first is found, with a uniquely determined position; the second and third are not found; the fourth could match any position in [1, 4].

let s = [(0, 0), (2, 1), (4, 1), (5, 1), (3, 1),
         (1, 2), (2, 3), (4, 5), (5, 8), (3, 13),
         (1, 21), (2, 34), (4, 55)];

assert_eq!(s.binary_search_by_key(&13, |&(a,b)| b),  Ok(9));
assert_eq!(s.binary_search_by_key(&4, |&(a,b)| b),   Err(7));
assert_eq!(s.binary_search_by_key(&100, |&(a,b)| b), Err(13));
let r = s.binary_search_by_key(&1, |&(a,b)| b);
assert!(match r { Ok(1...4) => true, _ => false, });

Sorts the slice, but may not preserve the order of equal elements.

This sort is unstable (i.e. may reorder equal elements), in-place (i.e. does not allocate), and O(n log n) worst-case.

Current implementation

The current algorithm is based on pattern-defeating quicksort by Orson Peters, which combines the fast average case of randomized quicksort with the fast worst case of heapsort, while achieving linear time on slices with certain patterns. It uses some randomization to avoid degenerate cases, but with a fixed seed to always provide deterministic behavior.

It is typically faster than stable sorting, except in a few special cases, e.g. when the slice consists of several concatenated sorted sequences.

Examples

let mut v = [-5, 4, 1, -3, 2];

v.sort_unstable();
assert!(v == [-5, -3, 1, 2, 4]);

Sorts the slice with a comparator function, but may not preserve the order of equal elements.

This sort is unstable (i.e. may reorder equal elements), in-place (i.e. does not allocate), and O(n log n) worst-case.

Current implementation

The current algorithm is based on pattern-defeating quicksort by Orson Peters, which combines the fast average case of randomized quicksort with the fast worst case of heapsort, while achieving linear time on slices with certain patterns. It uses some randomization to avoid degenerate cases, but with a fixed seed to always provide deterministic behavior.

It is typically faster than stable sorting, except in a few special cases, e.g. when the slice consists of several concatenated sorted sequences.

Examples

let mut v = [5, 4, 1, 3, 2];
v.sort_unstable_by(|a, b| a.cmp(b));
assert!(v == [1, 2, 3, 4, 5]);

// reverse sorting
v.sort_unstable_by(|a, b| b.cmp(a));
assert!(v == [5, 4, 3, 2, 1]);

Sorts the slice with a key extraction function, but may not preserve the order of equal elements.

This sort is unstable (i.e. may reorder equal elements), in-place (i.e. does not allocate), and O(m n log(m n)) worst-case, where the key function is O(m).

Current implementation

The current algorithm is based on pattern-defeating quicksort by Orson Peters, which combines the fast average case of randomized quicksort with the fast worst case of heapsort, while achieving linear time on slices with certain patterns. It uses some randomization to avoid degenerate cases, but with a fixed seed to always provide deterministic behavior.

Examples

let mut v = [-5i32, 4, 1, -3, 2];

v.sort_unstable_by_key(|k| k.abs());
assert!(v == [1, 2, -3, 4, -5]);

Rotates the slice in-place such that the first mid elements of the slice move to the end while the last self.len() - mid elements move to the front. After calling rotate_left, the element previously at index mid will become the first element in the slice.

Panics

This function will panic if mid is greater than the length of the slice. Note that mid == self.len() does not panic and is a no-op rotation.

Complexity

Takes linear (in self.len()) time.

Examples

let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
a.rotate_left(2);
assert_eq!(a, ['c', 'd', 'e', 'f', 'a', 'b']);

Rotating a subslice:

let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
a[1..5].rotate_left(1);
assert_eq!(a, ['a', 'c', 'd', 'e', 'b', 'f']);

Rotates the slice in-place such that the first self.len() - k elements of the slice move to the end while the last k elements move to the front. After calling rotate_right, the element previously at index self.len() - k will become the first element in the slice.

Panics

This function will panic if k is greater than the length of the slice. Note that k == self.len() does not panic and is a no-op rotation.

Complexity

Takes linear (in self.len()) time.

Examples

let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
a.rotate_right(2);
assert_eq!(a, ['e', 'f', 'a', 'b', 'c', 'd']);

Rotate a subslice:

let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
a[1..5].rotate_right(1);
assert_eq!(a, ['a', 'e', 'b', 'c', 'd', 'f']);

Copies the elements from src into self.

The length of src must be the same as self.

If src implements Copy, it can be more performant to use copy_from_slice.

Panics

This function will panic if the two slices have different lengths.

Examples

Cloning two elements from a slice into another:

let src = [1, 2, 3, 4];
let mut dst = [0, 0];

dst.clone_from_slice(&src[2..]);

assert_eq!(src, [1, 2, 3, 4]);
assert_eq!(dst, [3, 4]);

Rust enforces that there can only be one mutable reference with no immutable references to a particular piece of data in a particular scope. Because of this, attempting to use clone_from_slice on a single slice will result in a compile failure:

This example deliberately fails to compile
let mut slice = [1, 2, 3, 4, 5];

slice[..2].clone_from_slice(&slice[3..]); // compile fail!

To work around this, we can use split_at_mut to create two distinct sub-slices from a slice:

let mut slice = [1, 2, 3, 4, 5];

{
    let (left, right) = slice.split_at_mut(2);
    left.clone_from_slice(&right[1..]);
}

assert_eq!(slice, [4, 5, 3, 4, 5]);

Copies all elements from src into self, using a memcpy.

The length of src must be the same as self.

If src does not implement Copy, use clone_from_slice.

Panics

This function will panic if the two slices have different lengths.

Examples

Copying two elements from a slice into another:

let src = [1, 2, 3, 4];
let mut dst = [0, 0];

dst.copy_from_slice(&src[2..]);

assert_eq!(src, [1, 2, 3, 4]);
assert_eq!(dst, [3, 4]);

Rust enforces that there can only be one mutable reference with no immutable references to a particular piece of data in a particular scope. Because of this, attempting to use copy_from_slice on a single slice will result in a compile failure:

This example deliberately fails to compile
let mut slice = [1, 2, 3, 4, 5];

slice[..2].copy_from_slice(&slice[3..]); // compile fail!

To work around this, we can use split_at_mut to create two distinct sub-slices from a slice:

let mut slice = [1, 2, 3, 4, 5];

{
    let (left, right) = slice.split_at_mut(2);
    left.copy_from_slice(&right[1..]);
}

assert_eq!(slice, [4, 5, 3, 4, 5]);

Swaps all elements in self with those in other.

The length of other must be the same as self.

Panics

This function will panic if the two slices have different lengths.

Example

Swapping two elements across slices:

let mut slice1 = [0, 0];
let mut slice2 = [1, 2, 3, 4];

slice1.swap_with_slice(&mut slice2[2..]);

assert_eq!(slice1, [3, 4]);
assert_eq!(slice2, [1, 2, 0, 0]);

Rust enforces that there can only be one mutable reference to a particular piece of data in a particular scope. Because of this, attempting to use swap_with_slice on a single slice will result in a compile failure:

This example deliberately fails to compile
let mut slice = [1, 2, 3, 4, 5];
slice[..2].swap_with_slice(&mut slice[3..]); // compile fail!

To work around this, we can use split_at_mut to create two distinct mutable sub-slices from a slice:

let mut slice = [1, 2, 3, 4, 5];

{
    let (left, right) = slice.split_at_mut(2);
    left.swap_with_slice(&mut right[1..]);
}

assert_eq!(slice, [4, 5, 3, 1, 2]);

🔬 This is a nightly-only experimental API. (slice_align_to)

Transmute the slice to a slice of another type, ensuring aligment of the types is maintained.

This method splits the slice into three distinct slices: prefix, correctly aligned middle slice of a new type, and the suffix slice. The middle slice will have the greatest length possible for a given type and input slice.

This method has no purpose when either input element T or output element U are zero-sized and will return the original slice without splitting anything.

Unsafety

This method is essentially a transmute with respect to the elements in the returned middle slice, so all the usual caveats pertaining to transmute::<T, U> also apply here.

Examples

Basic usage:

unsafe {
    let bytes: [u8; 7] = [1, 2, 3, 4, 5, 6, 7];
    let (prefix, shorts, suffix) = bytes.align_to::<u16>();
    // less_efficient_algorithm_for_bytes(prefix);
    // more_efficient_algorithm_for_aligned_shorts(shorts);
    // less_efficient_algorithm_for_bytes(suffix);
}

🔬 This is a nightly-only experimental API. (slice_align_to)

Transmute the slice to a slice of another type, ensuring aligment of the types is maintained.

This method splits the slice into three distinct slices: prefix, correctly aligned middle slice of a new type, and the suffix slice. The middle slice will have the greatest length possible for a given type and input slice.

This method has no purpose when either input element T or output element U are zero-sized and will return the original slice without splitting anything.

Unsafety

This method is essentially a transmute with respect to the elements in the returned middle slice, so all the usual caveats pertaining to transmute::<T, U> also apply here.

Examples

Basic usage:

unsafe {
    let mut bytes: [u8; 7] = [1, 2, 3, 4, 5, 6, 7];
    let (prefix, shorts, suffix) = bytes.align_to_mut::<u16>();
    // less_efficient_algorithm_for_bytes(prefix);
    // more_efficient_algorithm_for_aligned_shorts(shorts);
    // less_efficient_algorithm_for_bytes(suffix);
}

Trait Implementations

impl<A, N> Drop for Chunk<A, N> where
    N: ChunkLength<A>, 
[src]

Executes the destructor for this type. Read more

impl<A, N> Clone for Chunk<A, N> where
    A: Clone,
    N: ChunkLength<A>, 
[src]

Returns a copy of the value. Read more

Performs copy-assignment from source. Read more

impl<A, N> Default for Chunk<A, N> where
    N: ChunkLength<A>, 
[src]

Returns the "default value" for a type. Read more

impl<A, N, I> Index<I> for Chunk<A, N> where
    I: SliceIndex<[A]>,
    N: ChunkLength<A>, 
[src]

The returned type after indexing.

Performs the indexing (container[index]) operation.

impl<A, N, I> IndexMut<I> for Chunk<A, N> where
    I: SliceIndex<[A]>,
    N: ChunkLength<A>, 
[src]

Performs the mutable indexing (container[index]) operation.

impl<A, N> Debug for Chunk<A, N> where
    A: Debug,
    N: ChunkLength<A>, 
[src]

Formats the value using the given formatter. Read more

impl<A, N> Hash for Chunk<A, N> where
    A: Hash,
    N: ChunkLength<A>, 
[src]

Feeds this value into the given [Hasher]. Read more

Feeds a slice of this type into the given [Hasher]. Read more

impl<A, N> PartialEq for Chunk<A, N> where
    A: PartialEq,
    N: ChunkLength<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<A, N> Eq for Chunk<A, N> where
    A: Eq,
    N: ChunkLength<A>, 
[src]

impl<A, N> PartialOrd for Chunk<A, N> where
    A: PartialOrd,
    N: ChunkLength<A>, 
[src]

This method returns an ordering between self and other values if one exists. Read more

This method tests less than (for self and other) and is used by the < operator. Read more

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more

This method tests greater than (for self and other) and is used by the > operator. Read more

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more

impl<A, N> Ord for Chunk<A, N> where
    A: Ord,
    N: ChunkLength<A>, 
[src]

This method returns an Ordering between self and other. Read more

Compares and returns the maximum of two values. Read more

Compares and returns the minimum of two values. Read more

impl<N> Write for Chunk<u8, N> where
    N: ChunkLength<u8>, 
[src]

Write a buffer into this object, returning how many bytes were written. Read more

Flush this output stream, ensuring that all intermediately buffered contents reach their destination. Read more

Attempts to write an entire buffer into this write. Read more

Writes a formatted string into this writer, returning any error encountered. Read more

Creates a "by reference" adaptor for this instance of Write. Read more

impl<A, N> Borrow<[A]> for Chunk<A, N> where
    N: ChunkLength<A>, 
[src]

Immutably borrows from an owned value. Read more

impl<A, N> BorrowMut<[A]> for Chunk<A, N> where
    N: ChunkLength<A>, 
[src]

Mutably borrows from an owned value. Read more

impl<A, N> AsRef<[A]> for Chunk<A, N> where
    N: ChunkLength<A>, 
[src]

Performs the conversion.

impl<A, N> AsMut<[A]> for Chunk<A, N> where
    N: ChunkLength<A>, 
[src]

Performs the conversion.

impl<A, N> Deref for Chunk<A, N> where
    N: ChunkLength<A>, 
[src]

The resulting type after dereferencing.

Dereferences the value.

impl<A, N> DerefMut for Chunk<A, N> where
    N: ChunkLength<A>, 
[src]

Mutably dereferences the value.

impl<A, N> FromIterator<A> for Chunk<A, N> where
    N: ChunkLength<A>, 
[src]

Creates a value from an iterator. Read more

impl<'a, A, N> IntoIterator for &'a Chunk<A, N> where
    N: ChunkLength<A>, 
[src]

The type of the elements being iterated over.

Which kind of iterator are we turning this into?

Creates an iterator from a value. Read more

impl<'a, A, N> IntoIterator for &'a mut Chunk<A, N> where
    N: ChunkLength<A>, 
[src]

The type of the elements being iterated over.

Which kind of iterator are we turning this into?

Creates an iterator from a value. Read more

impl<A, N> Extend<A> for Chunk<A, N> where
    N: ChunkLength<A>, 
[src]

Append the contents of the iterator to the back of the chunk.

Panics if the chunk exceeds its capacity.

Time: O(n) for the length of the iterator

impl<'a, A, N> Extend<&'a A> for Chunk<A, N> where
    A: 'a + Copy,
    N: ChunkLength<A>, 
[src]

Append the contents of the iterator to the back of the chunk.

Panics if the chunk exceeds its capacity.

Time: O(n) for the length of the iterator

impl<A, N> IntoIterator for Chunk<A, N> where
    N: ChunkLength<A>, 
[src]

The type of the elements being iterated over.

Which kind of iterator are we turning this into?

Creates an iterator from a value. Read more

Auto Trait Implementations

impl<A, N> Send for Chunk<A, N> where
    <N as ChunkLength<A>>::SizedType: Send

impl<A, N> Sync for Chunk<A, N> where
    <N as ChunkLength<A>>::SizedType: Sync