1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
//! Listen to external events in your application.
use crate::event::{self, Event};
use crate::window;
use crate::Hasher;

use iced_futures::futures::channel::mpsc;
use iced_futures::futures::never::Never;
use iced_futures::futures::{self, Future, Stream};
use iced_futures::{BoxStream, MaybeSend};

use std::hash::Hash;

/// A request to listen to external events.
///
/// Besides performing async actions on demand with [`Command`], most
/// applications also need to listen to external events passively.
///
/// A [`Subscription`] is normally provided to some runtime, like a [`Command`],
/// and it will generate events as long as the user keeps requesting it.
///
/// For instance, you can use a [`Subscription`] to listen to a WebSocket
/// connection, keyboard presses, mouse events, time ticks, etc.
///
/// [`Command`]: crate::Command
pub type Subscription<T> =
    iced_futures::Subscription<Hasher, (Event, event::Status), T>;

/// A stream of runtime events.
///
/// It is the input of a [`Subscription`] in the native runtime.
pub type EventStream = BoxStream<(Event, event::Status)>;

/// A native [`Subscription`] tracker.
pub type Tracker =
    iced_futures::subscription::Tracker<Hasher, (Event, event::Status)>;

pub use iced_futures::subscription::Recipe;

/// Returns a [`Subscription`] to all the ignored runtime events.
///
/// This subscription will notify your application of any [`Event`] that was
/// not captured by any widget.
pub fn events() -> Subscription<Event> {
    events_with(|event, status| match status {
        event::Status::Ignored => Some(event),
        event::Status::Captured => None,
    })
}

/// Returns a [`Subscription`] that filters all the runtime events with the
/// provided function, producing messages accordingly.
///
/// This subscription will call the provided function for every [`Event`]
/// handled by the runtime. If the function:
///
/// - Returns `None`, the [`Event`] will be discarded.
/// - Returns `Some` message, the `Message` will be produced.
pub fn events_with<Message>(
    f: fn(Event, event::Status) -> Option<Message>,
) -> Subscription<Message>
where
    Message: 'static + MaybeSend,
{
    #[derive(Hash)]
    struct EventsWith;

    Subscription::from_recipe(Runner {
        id: (EventsWith, f),
        spawn: move |events| {
            use futures::future;
            use futures::stream::StreamExt;

            events.filter_map(move |(event, status)| {
                future::ready(match event {
                    Event::Window(window::Event::RedrawRequested(_)) => None,
                    _ => f(event, status),
                })
            })
        },
    })
}

pub(crate) fn raw_events<Message>(
    f: fn(Event, event::Status) -> Option<Message>,
) -> Subscription<Message>
where
    Message: 'static + MaybeSend,
{
    #[derive(Hash)]
    struct RawEvents;

    Subscription::from_recipe(Runner {
        id: (RawEvents, f),
        spawn: move |events| {
            use futures::future;
            use futures::stream::StreamExt;

            events.filter_map(move |(event, status)| {
                future::ready(f(event, status))
            })
        },
    })
}

/// Returns a [`Subscription`] that will call the given function to create and
/// asynchronously run the given [`Stream`].
pub fn run<S, Message>(builder: fn() -> S) -> Subscription<Message>
where
    S: Stream<Item = Message> + MaybeSend + 'static,
    Message: 'static,
{
    Subscription::from_recipe(Runner {
        id: builder,
        spawn: move |_| builder(),
    })
}

/// Returns a [`Subscription`] that will create and asynchronously run the
/// given [`Stream`].
///
/// The `id` will be used to uniquely identify the [`Subscription`].
pub fn run_with_id<I, S, Message>(id: I, stream: S) -> Subscription<Message>
where
    I: Hash + 'static,
    S: Stream<Item = Message> + MaybeSend + 'static,
    Message: 'static,
{
    Subscription::from_recipe(Runner {
        id,
        spawn: move |_| stream,
    })
}

/// Returns a [`Subscription`] that will create and asynchronously run a
/// [`Stream`] that will call the provided closure to produce every `Message`.
///
/// The `id` will be used to uniquely identify the [`Subscription`].
pub fn unfold<I, T, Fut, Message>(
    id: I,
    initial: T,
    mut f: impl FnMut(T) -> Fut + MaybeSend + Sync + 'static,
) -> Subscription<Message>
where
    I: Hash + 'static,
    T: MaybeSend + 'static,
    Fut: Future<Output = (Message, T)> + MaybeSend + 'static,
    Message: 'static + MaybeSend,
{
    use futures::future::FutureExt;

    run_with_id(
        id,
        futures::stream::unfold(initial, move |state| f(state).map(Some)),
    )
}

/// Creates a [`Subscription`] that publishes the events sent from a [`Future`]
/// to an [`mpsc::Sender`] with the given bounds.
///
/// # Creating an asynchronous worker with bidirectional communication
/// You can leverage this helper to create a [`Subscription`] that spawns
/// an asynchronous worker in the background and establish a channel of
/// communication with an `iced` application.
///
/// You can achieve this by creating an `mpsc` channel inside the closure
/// and returning the `Sender` as a `Message` for the `Application`:
///
/// ```
/// use iced_native::subscription::{self, Subscription};
/// use iced_native::futures::channel::mpsc;
/// use iced_native::futures::sink::SinkExt;
///
/// pub enum Event {
///     Ready(mpsc::Sender<Input>),
///     WorkFinished,
///     // ...
/// }
///
/// enum Input {
///     DoSomeWork,
///     // ...
/// }
///
/// enum State {
///     Starting,
///     Ready(mpsc::Receiver<Input>),
/// }
///
/// fn some_worker() -> Subscription<Event> {
///     struct SomeWorker;
///
///     subscription::channel(std::any::TypeId::of::<SomeWorker>(), 100, |mut output| async move {
///         let mut state = State::Starting;
///
///         loop {
///             match &mut state {
///                 State::Starting => {
///                     // Create channel
///                     let (sender, receiver) = mpsc::channel(100);
///
///                     // Send the sender back to the application
///                     output.send(Event::Ready(sender)).await;
///
///                     // We are ready to receive messages
///                     state = State::Ready(receiver);
///                 }
///                 State::Ready(receiver) => {
///                     use iced_native::futures::StreamExt;
///
///                     // Read next input sent from `Application`
///                     let input = receiver.select_next_some().await;
///
///                     match input {
///                         Input::DoSomeWork => {
///                             // Do some async work...
///
///                             // Finally, we can optionally produce a message to tell the
///                             // `Application` the work is done
///                             output.send(Event::WorkFinished).await;
///                         }
///                     }
///                 }
///             }
///         }
///     })
/// }
/// ```
///
/// Check out the [`websocket`] example, which showcases this pattern to maintain a WebSocket
/// connection open.
///
/// [`websocket`]: https://github.com/iced-rs/iced/tree/0.9/examples/websocket
pub fn channel<I, Fut, Message>(
    id: I,
    size: usize,
    f: impl Fn(mpsc::Sender<Message>) -> Fut + MaybeSend + Sync + 'static,
) -> Subscription<Message>
where
    I: Hash + 'static,
    Fut: Future<Output = Never> + MaybeSend + 'static,
    Message: 'static + MaybeSend,
{
    use futures::stream::{self, StreamExt};

    Subscription::from_recipe(Runner {
        id,
        spawn: move |_| {
            let (sender, receiver) = mpsc::channel(size);

            let runner = stream::once(f(sender)).map(|_| unreachable!());

            stream::select(receiver, runner)
        },
    })
}

struct Runner<I, F, S, Message>
where
    F: FnOnce(EventStream) -> S,
    S: Stream<Item = Message>,
{
    id: I,
    spawn: F,
}

impl<I, S, F, Message> Recipe<Hasher, (Event, event::Status)>
    for Runner<I, F, S, Message>
where
    I: Hash + 'static,
    F: FnOnce(EventStream) -> S,
    S: Stream<Item = Message> + MaybeSend + 'static,
{
    type Output = Message;

    fn hash(&self, state: &mut Hasher) {
        std::any::TypeId::of::<I>().hash(state);
        self.id.hash(state);
    }

    fn stream(self: Box<Self>, input: EventStream) -> BoxStream<Self::Output> {
        iced_futures::boxed_stream((self.spawn)(input))
    }
}