1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
//! Primitive types.

#[cfg(not(any(
    target_pointer_width = "16",
    target_pointer_width = "32",
    target_pointer_width = "64"
)))]
compile_error!("Machine architecture must be 16-bit, 32-bit or 64-bit.");

use crate::sign::Sign::{self, *};
use core::{
    convert::{TryFrom, TryInto},
    fmt::{self, Debug, Display, Formatter},
    mem::size_of,
};

/// Number out of bounds.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub struct OutOfBoundsError;

impl Display for OutOfBoundsError {
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        f.write_str("number out of bounds")
    }
}

#[cfg(feature = "std")]
impl std::error::Error for OutOfBoundsError {}

/// Machine word.
pub(crate) type Word = usize;

/// Signed machine word.
pub(crate) type SignedWord = isize;

#[cfg(target_pointer_width = "16")]
/// Double machine word.
pub(crate) type DoubleWord = u32;
#[cfg(target_pointer_width = "32")]
/// Double machine word.
pub(crate) type DoubleWord = u64;
#[cfg(target_pointer_width = "64")]
/// Double machine word.
pub(crate) type DoubleWord = u128;

/// Cast `Word` to `DoubleWord`.
pub(crate) fn extend_word(word: Word) -> DoubleWord {
    word as DoubleWord
}

/// Create a `DoubleWord` from two `Word`s.
pub(crate) fn double_word(low: Word, high: Word) -> DoubleWord {
    extend_word(low) | extend_word(high) << WORD_BITS
}

pub(crate) fn split_double_word(dw: DoubleWord) -> (Word, Word) {
    (dw as Word, (dw >> WORD_BITS) as Word)
}

pub(crate) trait PrimitiveUnsigned
where
    Self: Copy,
    Self: Debug,
    Self: Default,
    Self: TryFrom<Word>,
    Self: TryInto<Word>,
{
    const BYTE_SIZE: usize = size_of::<Self>();
    const BIT_SIZE: u32 = 8 * Self::BYTE_SIZE as u32;
    type ByteRepr: AsRef<[u8]> + AsMut<[u8]>;

    fn to_le_bytes(self) -> Self::ByteRepr;
    fn from_le_bytes(repr: Self::ByteRepr) -> Self;
}

pub(crate) trait PrimitiveSigned
where
    Self: Copy,
    Self: TryFrom<Word>,
    Self::Unsigned: PrimitiveUnsigned,
    Self::Unsigned: TryFrom<Self>,
    Self::Unsigned: TryInto<Self>,
{
    type Unsigned;

    fn to_sign_magnitude(self) -> (Sign, Self::Unsigned);
    fn try_from_sign_magnitude(sign: Sign, mag: Self::Unsigned) -> Result<Self, OutOfBoundsError>;
}

macro_rules! impl_primitive_unsigned {
    ($t:ty) => {
        impl PrimitiveUnsigned for $t {
            type ByteRepr = [u8; size_of::<$t>()];

            fn to_le_bytes(self) -> Self::ByteRepr {
                self.to_le_bytes()
            }

            fn from_le_bytes(repr: Self::ByteRepr) -> Self {
                Self::from_le_bytes(repr)
            }
        }
    };
}

macro_rules! impl_primitive_signed {
    ($t:ty, $u:ty) => {
        impl PrimitiveSigned for $t {
            type Unsigned = $u;

            fn to_sign_magnitude(self) -> (Sign, Self::Unsigned) {
                if self >= 0 {
                    (Positive, self as Self::Unsigned)
                } else {
                    (Negative, (self as Self::Unsigned).wrapping_neg())
                }
            }

            fn try_from_sign_magnitude(
                sign: Sign,
                mag: Self::Unsigned,
            ) -> Result<Self, OutOfBoundsError> {
                match sign {
                    Positive => mag.try_into().map_err(|_| OutOfBoundsError),
                    Negative => {
                        let x = mag.wrapping_neg() as Self;
                        if x <= 0 {
                            Ok(x)
                        } else {
                            Err(OutOfBoundsError)
                        }
                    }
                }
            }
        }
    };
}

impl_primitive_unsigned!(u8);
impl_primitive_unsigned!(u16);
impl_primitive_unsigned!(u32);
impl_primitive_unsigned!(u64);
impl_primitive_unsigned!(u128);
impl_primitive_unsigned!(usize);

impl_primitive_signed!(i8, u8);
impl_primitive_signed!(i16, u16);
impl_primitive_signed!(i32, u32);
impl_primitive_signed!(i64, u64);
impl_primitive_signed!(i128, u128);
impl_primitive_signed!(isize, usize);

pub(crate) const WORD_BITS: u32 = Word::BIT_SIZE;
pub(crate) const WORD_BYTES: usize = Word::BYTE_SIZE;

pub(crate) fn word_from_le_bytes_partial(bytes: &[u8]) -> Word {
    let mut word_bytes = [0; WORD_BYTES];
    word_bytes[..bytes.len()].copy_from_slice(bytes);
    Word::from_le_bytes(word_bytes)
}

pub(crate) fn word_from_be_bytes_partial(bytes: &[u8]) -> Word {
    let mut word_bytes = [0; WORD_BYTES];
    word_bytes[Word::BYTE_SIZE - bytes.len()..].copy_from_slice(bytes);
    Word::from_be_bytes(word_bytes)
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_bits_bytes() {
        assert_eq!(u8::BIT_SIZE, 8);
        assert_eq!(u64::BIT_SIZE, 64);
        assert_eq!(u8::BYTE_SIZE, 1);
        assert_eq!(u64::BYTE_SIZE, 8);
    }

    #[test]
    fn test_word_from_le_bytes_partial() {
        assert_eq!(word_from_le_bytes_partial(&[1, 2]), 0x0201);
    }

    #[test]
    fn test_word_from_be_bytes_partial() {
        assert_eq!(word_from_be_bytes_partial(&[1, 2]), 0x0102);
    }

    #[test]
    fn test_double_word() {
        assert_eq!(DoubleWord::BIT_SIZE, 2 * WORD_BITS);
        assert_eq!(split_double_word(double_word(3, 4)), (3, 4));
    }

    #[test]
    fn test_to_sign_magnitude() {
        assert_eq!(0.to_sign_magnitude(), (Positive, 0u32));
        assert_eq!(5.to_sign_magnitude(), (Positive, 5u32));
        assert_eq!(0x7fffffff.to_sign_magnitude(), (Positive, 0x7fffffffu32));
        assert_eq!((-0x80000000).to_sign_magnitude(), (Negative, 0x80000000u32));
    }

    #[test]
    fn test_try_from_sign_magnitude() {
        assert_eq!(i32::try_from_sign_magnitude(Positive, 0), Ok(0));
        assert_eq!(i32::try_from_sign_magnitude(Positive, 5), Ok(5));
        assert_eq!(
            i32::try_from_sign_magnitude(Positive, 0x7fffffff),
            Ok(0x7fffffff)
        );
        assert!(i32::try_from_sign_magnitude(Positive, 0x80000000).is_err());
        assert_eq!(i32::try_from_sign_magnitude(Negative, 0), Ok(0));
        assert_eq!(i32::try_from_sign_magnitude(Negative, 5), Ok(-5));
        assert_eq!(
            i32::try_from_sign_magnitude(Negative, 0x7fffffff),
            Ok(-0x7fffffff)
        );
        assert_eq!(
            i32::try_from_sign_magnitude(Negative, 0x80000000),
            Ok(-0x80000000)
        );
        assert!(i32::try_from_sign_magnitude(Negative, 0x80000001).is_err());
        assert!(i32::try_from_sign_magnitude(Negative, 0xffffffff).is_err());
    }
}