1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
/*
Copyright (c) 2016 Saurav Sachidanand

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/

/*!
This is a Rust library that taps into functionality that enables
hardware-accelerated execution of virtual machines on OS X.

It binds to the `Hypervisor` framework on OS X, and exposes a safe Rust
interface through the `hypervisor` module, and an unsafe foreign function
interface through the `hypervisor::ffi` module.

To use this library, you need

* OS X Yosemite (10.10), or newer

* an Intel processor with the VT-x feature set that includes Extended Page
Tables (EPT) and Unrestricted Mode. To verify this, run and expect the following
in your Terminal:

  ```shell
  $ sysctl kern.hv_support
  kern.hv_support: 1
  ```
!*/

extern crate libc;
extern crate core;

#[allow(non_camel_case_types)]
pub mod ffi;
pub mod consts;

use self::core::fmt;
use libc::*;

use self::ffi::*;

/// Error returned after every call
pub enum Error {
    /// Success
    Success,
    /// Error
    Error,
    /// Busy
    Busy,
    /// Bad argument
    BadArg,
    /// No resources
    NoRes,
    /// No device
    NoDev,
    /// Unsupported
    Unsupp
}

impl fmt::Debug for Error {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match *self {
            Error::Success => write!(f, "Success"),
            Error::Error   => write!(f, "Error"),
            Error::Busy    => write!(f, "Busy"),
            Error::BadArg  => write!(f, "Bad argument"),
            Error::NoRes   => write!(f, "No resources"),
            Error::NoDev   => write!(f, "No device"),
            Error::Unsupp  => write!(f, "Unsupported"),
        }
    }
}

// Returns an Error for a hv_return_t
fn match_error_code(code: hv_return_t) -> Error {
    match code {
        HV_SUCCESS      => Error::Success,
        HV_BUSY         => Error::Busy,
        HV_BAD_ARGUMENT => Error::BadArg,
        HV_NO_RESOURCES => Error::NoRes,
        HV_NO_DEVICE    => Error::NoDev,
        HV_UNSUPPORTED  => Error::Unsupp,
        _               => Error::Error
    }
}

/// Creates a VM instance for the current Mach task
pub fn create_vm() -> Error {
    match_error_code(unsafe {
        hv_vm_create(HV_VM_DEFAULT)
    })
}

/// Destroys the VM instance associated with the current Mach task
pub fn destroy_vm() -> Error {
    match_error_code(unsafe {
        hv_vm_destroy()
    })
}

/// Guest physical memory region permissions
pub enum MemPerm {
    /// Read
    Read,
    /// Write (implies read)
    Write,
    /// Execute
    Exec,
    /// Execute and write (implies read)
    ExecAndWrite,
    /// Execute and read
    ExecAndRead
}

#[allow(non_snake_case)]
#[inline(always)]
fn match_MemPerm(mem_perm: &MemPerm) -> uint64_t {
    match mem_perm {
        &MemPerm::Read         => HV_MEMORY_READ,
        &MemPerm::Write        => HV_MEMORY_WRITE | HV_MEMORY_READ,
        &MemPerm::Exec         => HV_MEMORY_EXEC,
        &MemPerm::ExecAndWrite => HV_MEMORY_EXEC | HV_MEMORY_WRITE | HV_MEMORY_READ,
        &MemPerm::ExecAndRead  => HV_MEMORY_EXEC | HV_MEMORY_READ,
    }
}

/// Maps a region in the virtual address space of the current Mach task into the guest physical
/// address space of the virutal machine
pub fn map_mem(mem: &[u8], gpa: u64, mem_perm: &MemPerm) -> Error {
    match_error_code(unsafe {
        hv_vm_map(
            mem.as_ptr() as *const c_void, gpa as hv_gpaddr_t, mem.len() as size_t,
            match_MemPerm(mem_perm)
        )
    })
}

/// Unmaps a region in the guest physical address space of the virutal machine
pub fn unmap_mem(gpa: u64, size: usize) -> Error {
    match_error_code(unsafe {
        hv_vm_unmap(gpa as hv_gpaddr_t, size as size_t)
    })
}

/// Modifies the permissions of a region in the guest physical address space of the virtual
/// machine
pub fn protect_mem(gpa: u64, size: usize, mem_perm: &MemPerm) -> Error {
    match_error_code(unsafe {
        hv_vm_protect(gpa as hv_gpaddr_t, size as size_t, match_MemPerm(mem_perm))
    })
}

/// Synchronizes the guest Timestamp-Counters (TSC) across all vCPUs
///
/// * `tsc` Guest TSC value
pub fn sync_tsc(tsc: u64) -> Error {
    match_error_code(unsafe {
        hv_vm_sync_tsc(tsc as uint64_t)
    })
}

/// Forces an immediate VMEXIT of a set of vCPUs
///
/// * `vcpu_ids` Array of vCPU IDs
pub fn interrupt_vcpus(vcpu_ids: &[u32]) -> Error {
    match_error_code(unsafe {
        hv_vcpu_interrupt(vcpu_ids.as_ptr(), vcpu_ids.len() as c_uint)
    })
}

/// Virtual CPU
#[allow(non_camel_case_types)]
pub struct vCPU {
    /// Virtual CPU ID
    pub id: u32
}

/// x86 architectural register
#[allow(non_camel_case_types)]
#[derive(Clone)]
#[repr(C)]
pub enum x86Reg {
	RIP,
	RFLAGS,
	RAX,
	RCX,
	RDX,
	RBX,
	RSI,
	RDI,
	RSP,
	RBP,
	R8,
	R9,
	R10,
	R11,
	R12,
	R13,
	R14,
	R15,
	CS,
	SS,
	DS,
	ES,
	FS,
	GS,
	IDT_BASE,
	IDT_LIMIT,
	GDT_BASE,
	GDT_LIMIT,
	LDTR,
	LDT_BASE,
	LDT_LIMIT,
	LDT_AR,
	TR,
	TSS_BASE,
	TSS_LIMIT,
	TSS_AR,
	CR0,
	CR1,
	CR2,
	CR3,
	CR4,
	DR0,
	DR1,
	DR2,
	DR3,
	DR4,
	DR5,
	DR6,
	DR7,
	TPR,
	XCR0,
	REGISTERS_MAX,
}

impl vCPU {

    /// Creates a vCPU instance for the current thread
    pub fn new() -> Result<vCPU, Error> {
        let mut vcpuid: hv_vcpuid_t = 0;

        let error = match_error_code(unsafe {
            hv_vcpu_create(&mut vcpuid, HV_VCPU_DEFAULT)
        });

        match error {
            Error::Success => Ok(vCPU {
                id: vcpuid as u32
            }),
            _ => Err(error)
        }
    }

    /// Destroys the vCPU instance associated with the current thread
    pub fn destroy(&self) -> Error {
        match_error_code(unsafe {
            hv_vcpu_destroy(self.id as hv_vcpuid_t)
        })
    }

    /// Executes the vCPU
    pub fn run(&self) -> Error {
        match_error_code(unsafe {
            hv_vcpu_run(self.id as hv_vcpuid_t)
        })
    }

    /// Forces an immediate VMEXIT of the vCPU
    pub fn interrupt(&self) -> Error {
        match_error_code(unsafe {
            hv_vcpu_interrupt(&(self.id), 1 as c_uint)
        })
    }

    /// Returns the cumulative execution time of the vCPU in nanoseconds
    pub fn exec_time(&self) -> Result<u64, Error> {
        let mut exec_time: uint64_t = 0;

        let error = match_error_code(unsafe {
            hv_vcpu_get_exec_time(self.id, &mut exec_time)
        });

        match error {
            Error::Success => Ok(exec_time as u64),
            _ => Err(error)
        }
    }

    /// Forces flushing of cached vCPU state
    pub fn flush(&self) -> Error {
        match_error_code(unsafe {
            hv_vcpu_flush(self.id as hv_vcpuid_t)
        })
    }

    /// Invalidates the translation lookaside buffer (TLB) of the vCPU
    pub fn invalidate_tlb(&self) -> Error {
        match_error_code(unsafe {
            hv_vcpu_invalidate_tlb(self.id as hv_vcpuid_t)
        })
    }

    /// Enables an MSR to be used natively by the VM
    pub fn enable_native_msr(&self, msr: u32, enable: bool) -> Error {
        match_error_code(unsafe {
            hv_vcpu_enable_native_msr(self.id as hv_vcpuid_t, msr as uint32_t, enable)
        })
    }

    /// Returns the current value of an MSR of the vCPU
    pub fn read_msr(&self, msr: u32) -> Result<u64, Error> {
        let mut value: uint64_t = 0;

        let error = match_error_code(unsafe {
            hv_vcpu_read_msr(self.id as hv_vcpuid_t, msr as uint32_t, &mut value)
        });

        match error {
            Error::Success => Ok(value as u64),
            _ => Err(error)
        }
    }

    /// Set the value of an MSR of the vCPU
    pub fn write_msr(&self, msr: u32, value: u64) -> Error {
        match_error_code(unsafe {
            hv_vcpu_write_msr(self.id as hv_vcpuid_t, msr as uint32_t, &(value as uint64_t))
        })
    }

    /// Returns the current value of an architectural x86 register
    /// of the vCPU
    pub fn read_register(&self, reg: &x86Reg) -> Result<u64, Error> {
        let mut value: uint64_t = 0;

        let error = match_error_code(unsafe {
            hv_vcpu_read_register(self.id as hv_vcpuid_t, (*reg).clone(), &mut value)
        });

        match error {
            Error::Success => Ok(value as u64),
            _ => Err(error)
        }
    }

    /// Sets the value of an architectural x86 register of the vCPU
    pub fn write_register(&self, reg: &x86Reg, value: u64) -> Error {
        match_error_code(unsafe {
            hv_vcpu_write_register(self.id as hv_vcpuid_t, (*reg).clone(), value as uint64_t)
        })
    }

    /// Returns the current value of a VMCS field of the vCPU
    pub fn read_vmcs(&self, field: u32) -> Result<u64, Error> {
        let mut value: uint64_t = 0;

        let error = match_error_code(unsafe {
            hv_vmx_vcpu_read_vmcs(self.id as hv_vcpuid_t, field as uint32_t, &mut value)
        });

        match error {
            Error::Success => Ok(value as u64),
            _ => Err(error)
        }
    }

    /// Sets the value of a VMCS field of the vCPU
    pub fn write_vmcs(&self, field: u32, value: u64) -> Error {
        match_error_code(unsafe {
            hv_vmx_vcpu_write_vmcs(self.id as hv_vcpuid_t, field as uint32_t, value as uint64_t)
        })
    }

    /// Sets the address of the guest APIC for the vCPU in the
    /// guest physical address space of the VM
    pub fn set_apic_addr(&self, gpa: u64) -> Error {
        match_error_code(unsafe {
            hv_vmx_vcpu_set_apic_address(self.id as hv_vcpuid_t, gpa as uint64_t)
        })
    }

    /// Reads the current architectural x86 floating point and SIMD state of the vCPU
    pub fn read_fpstate(&self, buffer: &mut [u8]) -> Error {
        match_error_code(unsafe {
            hv_vcpu_read_fpstate(self.id as hv_vcpuid_t, buffer.as_mut_ptr() as *mut c_void,
            buffer.len() as size_t)
        })
    }

    /// Sets the architectural x86 floating point and SIMD state of the vCPU
    pub fn write_fpstate(&self, buffer: &[u8]) -> Error {
        match_error_code(unsafe {
            hv_vcpu_write_fpstate(self.id as hv_vcpuid_t, buffer.as_ptr() as *const c_void,
            buffer.len() as size_t)
        })
    }

}

impl fmt::Debug for vCPU {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "vCPU ID: {}", (*self).id)
    }
}

/// VMX cabability
#[allow(non_camel_case_types)]
#[derive(Clone)]
#[repr(C)]
pub enum VMXCap {
    /// Pin-based VMX capabilities
    PINBASED                                     = 0,
    /// Primary proc-based VMX capabilities
    PROCBASED                                    = 1,
    /// Secondary proc-based VMX capabilities
    PROCBASED2                                   = 2,
    /// VM-entry VMX capabilities
    ENTRY                                        = 3,
    /// VM-exit VMX capabilities
    EXIT                                         = 4,
    /// VMX preemption timer frequency
    PREEMPTION_TIMER                             = 32,
}

/// Reads a VMX capability of the host processor
pub fn read_vmx_cap(vmx_cap: &VMXCap) -> Result<u64, Error> {
    let mut value: uint64_t = 0;

    let error = match_error_code(unsafe {
        hv_vmx_read_capability((*vmx_cap).clone(), &mut value)
    });

    match error {
        Error::Success => Ok(value as u64),
        _ => Err(error)
    }
}