http 0.2.7

A set of types for representing HTTP requests and responses.
Documentation
use std::collections::HashMap;
use std::collections::hash_map::RandomState;
use std::convert::TryFrom;
use std::hash::{BuildHasher, Hash, Hasher};
use std::iter::{FromIterator, FusedIterator};
use std::marker::PhantomData;
use std::{fmt, mem, ops, ptr, vec};

use crate::Error;

use super::HeaderValue;
use super::name::{HdrName, HeaderName, InvalidHeaderName};

pub use self::as_header_name::AsHeaderName;
pub use self::into_header_name::IntoHeaderName;

/// A set of HTTP headers
///
/// `HeaderMap` is an multimap of [`HeaderName`] to values.
///
/// [`HeaderName`]: struct.HeaderName.html
///
/// # Examples
///
/// Basic usage
///
/// ```
/// # use http::HeaderMap;
/// # use http::header::{CONTENT_LENGTH, HOST, LOCATION};
/// let mut headers = HeaderMap::new();
///
/// headers.insert(HOST, "example.com".parse().unwrap());
/// headers.insert(CONTENT_LENGTH, "123".parse().unwrap());
///
/// assert!(headers.contains_key(HOST));
/// assert!(!headers.contains_key(LOCATION));
///
/// assert_eq!(headers[HOST], "example.com");
///
/// headers.remove(HOST);
///
/// assert!(!headers.contains_key(HOST));
/// ```
#[derive(Clone)]
pub struct HeaderMap<T = HeaderValue> {
    // Used to mask values to get an index
    mask: Size,
    indices: Box<[Pos]>,
    entries: Vec<Bucket<T>>,
    extra_values: Vec<ExtraValue<T>>,
    danger: Danger,
}

// # Implementation notes
//
// Below, you will find a fairly large amount of code. Most of this is to
// provide the necessary functions to efficiently manipulate the header
// multimap. The core hashing table is based on robin hood hashing [1]. While
// this is the same hashing algorithm used as part of Rust's `HashMap` in
// stdlib, many implementation details are different. The two primary reasons
// for this divergence are that `HeaderMap` is a multimap and the structure has
// been optimized to take advantage of the characteristics of HTTP headers.
//
// ## Structure Layout
//
// Most of the data contained by `HeaderMap` is *not* stored in the hash table.
// Instead, pairs of header name and *first* associated header value are stored
// in the `entries` vector. If the header name has more than one associated
// header value, then additional values are stored in `extra_values`. The actual
// hash table (`indices`) only maps hash codes to indices in `entries`. This
// means that, when an eviction happens, the actual header name and value stay
// put and only a tiny amount of memory has to be copied.
//
// Extra values associated with a header name are tracked using a linked list.
// Links are formed with offsets into `extra_values` and not pointers.
//
// [1]: https://en.wikipedia.org/wiki/Hash_table#Robin_Hood_hashing

/// `HeaderMap` entry iterator.
///
/// Yields `(&HeaderName, &value)` tuples. The same header name may be yielded
/// more than once if it has more than one associated value.
#[derive(Debug)]
pub struct Iter<'a, T> {
    inner: IterMut<'a, T>,
}

/// `HeaderMap` mutable entry iterator
///
/// Yields `(&HeaderName, &mut value)` tuples. The same header name may be
/// yielded more than once if it has more than one associated value.
#[derive(Debug)]
pub struct IterMut<'a, T> {
    map: *mut HeaderMap<T>,
    entry: usize,
    cursor: Option<Cursor>,
    lt: PhantomData<&'a mut HeaderMap<T>>,
}

/// An owning iterator over the entries of a `HeaderMap`.
///
/// This struct is created by the `into_iter` method on `HeaderMap`.
#[derive(Debug)]
pub struct IntoIter<T> {
    // If None, pull from `entries`
    next: Option<usize>,
    entries: vec::IntoIter<Bucket<T>>,
    extra_values: Vec<ExtraValue<T>>,
}

/// An iterator over `HeaderMap` keys.
///
/// Each header name is yielded only once, even if it has more than one
/// associated value.
#[derive(Debug)]
pub struct Keys<'a, T> {
    inner: ::std::slice::Iter<'a, Bucket<T>>,
}

/// `HeaderMap` value iterator.
///
/// Each value contained in the `HeaderMap` will be yielded.
#[derive(Debug)]
pub struct Values<'a, T> {
    inner: Iter<'a, T>,
}

/// `HeaderMap` mutable value iterator
#[derive(Debug)]
pub struct ValuesMut<'a, T> {
    inner: IterMut<'a, T>,
}

/// A drain iterator for `HeaderMap`.
#[derive(Debug)]
pub struct Drain<'a, T> {
    idx: usize,
    len: usize,
    entries: *mut [Bucket<T>],
    // If None, pull from `entries`
    next: Option<usize>,
    extra_values: *mut Vec<ExtraValue<T>>,
    lt: PhantomData<&'a mut HeaderMap<T>>,
}

/// A view to all values stored in a single entry.
///
/// This struct is returned by `HeaderMap::get_all`.
#[derive(Debug)]
pub struct GetAll<'a, T> {
    map: &'a HeaderMap<T>,
    index: Option<usize>,
}

/// A view into a single location in a `HeaderMap`, which may be vacant or occupied.
#[derive(Debug)]
pub enum Entry<'a, T: 'a> {
    /// An occupied entry
    Occupied(OccupiedEntry<'a, T>),

    /// A vacant entry
    Vacant(VacantEntry<'a, T>),
}

/// A view into a single empty location in a `HeaderMap`.
///
/// This struct is returned as part of the `Entry` enum.
#[derive(Debug)]
pub struct VacantEntry<'a, T> {
    map: &'a mut HeaderMap<T>,
    key: HeaderName,
    hash: HashValue,
    probe: usize,
    danger: bool,
}

/// A view into a single occupied location in a `HeaderMap`.
///
/// This struct is returned as part of the `Entry` enum.
#[derive(Debug)]
pub struct OccupiedEntry<'a, T> {
    map: &'a mut HeaderMap<T>,
    probe: usize,
    index: usize,
}

/// An iterator of all values associated with a single header name.
#[derive(Debug)]
pub struct ValueIter<'a, T> {
    map: &'a HeaderMap<T>,
    index: usize,
    front: Option<Cursor>,
    back: Option<Cursor>,
}

/// A mutable iterator of all values associated with a single header name.
#[derive(Debug)]
pub struct ValueIterMut<'a, T> {
    map: *mut HeaderMap<T>,
    index: usize,
    front: Option<Cursor>,
    back: Option<Cursor>,
    lt: PhantomData<&'a mut HeaderMap<T>>,
}

/// An drain iterator of all values associated with a single header name.
#[derive(Debug)]
pub struct ValueDrain<'a, T> {
    first: Option<T>,
    next: Option<::std::vec::IntoIter<T>>,
    lt: PhantomData<&'a mut HeaderMap<T>>,
}

/// Tracks the value iterator state
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
enum Cursor {
    Head,
    Values(usize),
}

/// Type used for representing the size of a HeaderMap value.
///
/// 32,768 is more than enough entries for a single header map. Setting this
/// limit enables using `u16` to represent all offsets, which takes 2 bytes
/// instead of 8 on 64 bit processors.
///
/// Setting this limit is especially benificial for `indices`, making it more
/// cache friendly. More hash codes can fit in a cache line.
///
/// You may notice that `u16` may represent more than 32,768 values. This is
/// true, but 32,768 should be plenty and it allows us to reserve the top bit
/// for future usage.
type Size = u16;

/// This limit falls out from above.
const MAX_SIZE: usize = 1 << 15;

/// An entry in the hash table. This represents the full hash code for an entry
/// as well as the position of the entry in the `entries` vector.
#[derive(Copy, Clone)]
struct Pos {
    // Index in the `entries` vec
    index: Size,
    // Full hash value for the entry.
    hash: HashValue,
}

/// Hash values are limited to u16 as well. While `fast_hash` and `Hasher`
/// return `usize` hash codes, limiting the effective hash code to the lower 16
/// bits is fine since we know that the `indices` vector will never grow beyond
/// that size.
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
struct HashValue(u16);

/// Stores the data associated with a `HeaderMap` entry. Only the first value is
/// included in this struct. If a header name has more than one associated
/// value, all extra values are stored in the `extra_values` vector. A doubly
/// linked list of entries is maintained. The doubly linked list is used so that
/// removing a value is constant time. This also has the nice property of
/// enabling double ended iteration.
#[derive(Debug, Clone)]
struct Bucket<T> {
    hash: HashValue,
    key: HeaderName,
    value: T,
    links: Option<Links>,
}

/// The head and tail of the value linked list.
#[derive(Debug, Copy, Clone)]
struct Links {
    next: usize,
    tail: usize,
}

/// Access to the `links` value in a slice of buckets.
///
/// It's important that no other field is accessed, since it may have been
/// freed in a `Drain` iterator.
#[derive(Debug)]
struct RawLinks<T>(*mut [Bucket<T>]);

/// Node in doubly-linked list of header value entries
#[derive(Debug, Clone)]
struct ExtraValue<T> {
    value: T,
    prev: Link,
    next: Link,
}

/// A header value node is either linked to another node in the `extra_values`
/// list or it points to an entry in `entries`. The entry in `entries` is the
/// start of the list and holds the associated header name.
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
enum Link {
    Entry(usize),
    Extra(usize),
}

/// Tracks the header map danger level! This relates to the adaptive hashing
/// algorithm. A HeaderMap starts in the "green" state, when a large number of
/// collisions are detected, it transitions to the yellow state. At this point,
/// the header map will either grow and switch back to the green state OR it
/// will transition to the red state.
///
/// When in the red state, a safe hashing algorithm is used and all values in
/// the header map have to be rehashed.
#[derive(Clone)]
enum Danger {
    Green,
    Yellow,
    Red(RandomState),
}

// Constants related to detecting DOS attacks.
//
// Displacement is the number of entries that get shifted when inserting a new
// value. Forward shift is how far the entry gets stored from the ideal
// position.
//
// The current constant values were picked from another implementation. It could
// be that there are different values better suited to the header map case.
const DISPLACEMENT_THRESHOLD: usize = 128;
const FORWARD_SHIFT_THRESHOLD: usize = 512;

// The default strategy for handling the yellow danger state is to increase the
// header map capacity in order to (hopefully) reduce the number of collisions.
// If growing the hash map would cause the load factor to drop bellow this
// threshold, then instead of growing, the headermap is switched to the red
// danger state and safe hashing is used instead.
const LOAD_FACTOR_THRESHOLD: f32 = 0.2;

// Macro used to iterate the hash table starting at a given point, looping when
// the end is hit.
macro_rules! probe_loop {
    ($label:tt: $probe_var: ident < $len: expr, $body: expr) => {
        debug_assert!($len > 0);
        $label:
        loop {
            if $probe_var < $len {
                $body
                $probe_var += 1;
            } else {
                $probe_var = 0;
            }
        }
    };
    ($probe_var: ident < $len: expr, $body: expr) => {
        debug_assert!($len > 0);
        loop {
            if $probe_var < $len {
                $body
                $probe_var += 1;
            } else {
                $probe_var = 0;
            }
        }
    };
}

// First part of the robinhood algorithm. Given a key, find the slot in which it
// will be inserted. This is done by starting at the "ideal" spot. Then scanning
// until the destination slot is found. A destination slot is either the next
// empty slot or the next slot that is occupied by an entry that has a lower
// displacement (displacement is the distance from the ideal spot).
//
// This is implemented as a macro instead of a function that takes a closure in
// order to guarantee that it is "inlined". There is no way to annotate closures
// to guarantee inlining.
macro_rules! insert_phase_one {
    ($map:ident,
     $key:expr,
     $probe:ident,
     $pos:ident,
     $hash:ident,
     $danger:ident,
     $vacant:expr,
     $occupied:expr,
     $robinhood:expr) =>
    {{
        let $hash = hash_elem_using(&$map.danger, &$key);
        let mut $probe = desired_pos($map.mask, $hash);
        let mut dist = 0;
        let ret;

        // Start at the ideal position, checking all slots
        probe_loop!('probe: $probe < $map.indices.len(), {
            if let Some(($pos, entry_hash)) = $map.indices[$probe].resolve() {
                // The slot is already occupied, but check if it has a lower
                // displacement.
                let their_dist = probe_distance($map.mask, entry_hash, $probe);

                if their_dist < dist {
                    // The new key's distance is larger, so claim this spot and
                    // displace the current entry.
                    //
                    // Check if this insertion is above the danger threshold.
                    let $danger =
                        dist >= FORWARD_SHIFT_THRESHOLD && !$map.danger.is_red();

                    ret = $robinhood;
                    break 'probe;
                } else if entry_hash == $hash && $map.entries[$pos].key == $key {
                    // There already is an entry with the same key.
                    ret = $occupied;
                    break 'probe;
                }
            } else {
                // The entry is vacant, use it for this key.
                let $danger =
                    dist >= FORWARD_SHIFT_THRESHOLD && !$map.danger.is_red();

                ret = $vacant;
                break 'probe;
            }

            dist += 1;
        });

        ret
    }}
}

// ===== impl HeaderMap =====

impl HeaderMap {
    /// Create an empty `HeaderMap`.
    ///
    /// The map will be created without any capacity. This function will not
    /// allocate.
    ///
    /// # Examples
    ///
    /// ```
    /// # use http::HeaderMap;
    /// let map = HeaderMap::new();
    ///
    /// assert!(map.is_empty());
    /// assert_eq!(0, map.capacity());
    /// ```
    pub fn new() -> Self {
        HeaderMap::with_capacity(0)
    }
}

impl<T> HeaderMap<T> {
    /// Create an empty `HeaderMap` with the specified capacity.
    ///
    /// The returned map will allocate internal storage in order to hold about
    /// `capacity` elements without reallocating. However, this is a "best
    /// effort" as there are usage patterns that could cause additional
    /// allocations before `capacity` headers are stored in the map.
    ///
    /// More capacity than requested may be allocated.
    ///
    /// # Examples
    ///
    /// ```
    /// # use http::HeaderMap;
    /// let map: HeaderMap<u32> = HeaderMap::with_capacity(10);
    ///
    /// assert!(map.is_empty());
    /// assert_eq!(12, map.capacity());
    /// ```
    pub fn with_capacity(capacity: usize) -> HeaderMap<T> {
        if capacity == 0 {
            HeaderMap {
                mask: 0,
                indices: Box::new([]), // as a ZST, this doesn't actually allocate anything
                entries: Vec::new(),
                extra_values: Vec::new(),
                danger: Danger::Green,
            }
        } else {
            let raw_cap = to_raw_capacity(capacity).next_power_of_two();
            assert!(raw_cap <= MAX_SIZE, "requested capacity too large");
            debug_assert!(raw_cap > 0);

            HeaderMap {
                mask: (raw_cap - 1) as Size,
                indices: vec![Pos::none(); raw_cap].into_boxed_slice(),
                entries: Vec::with_capacity(raw_cap),
                extra_values: Vec::new(),
                danger: Danger::Green,
            }
        }
    }

    /// Returns the number of headers stored in the map.
    ///
    /// This number represents the total number of **values** stored in the map.
    /// This number can be greater than or equal to the number of **keys**
    /// stored given that a single key may have more than one associated value.
    ///
    /// # Examples
    ///
    /// ```
    /// # use http::HeaderMap;
    /// # use http::header::{ACCEPT, HOST};
    /// let mut map = HeaderMap::new();
    ///
    /// assert_eq!(0, map.len());
    ///
    /// map.insert(ACCEPT, "text/plain".parse().unwrap());
    /// map.insert(HOST, "localhost".parse().unwrap());
    ///
    /// assert_eq!(2, map.len());
    ///
    /// map.append(ACCEPT, "text/html".parse().unwrap());
    ///
    /// assert_eq!(3, map.len());
    /// ```
    pub fn len(&self) -> usize {
        self.entries.len() + self.extra_values.len()
    }

    /// Returns the number of keys stored in the map.
    ///
    /// This number will be less than or equal to `len()` as each key may have
    /// more than one associated value.
    ///
    /// # Examples
    ///
    /// ```
    /// # use http::HeaderMap;
    /// # use http::header::{ACCEPT, HOST};
    /// let mut map = HeaderMap::new();
    ///
    /// assert_eq!(0, map.keys_len());
    ///
    /// map.insert(ACCEPT, "text/plain".parse().unwrap());
    /// map.insert(HOST, "localhost".parse().unwrap());
    ///
    /// assert_eq!(2, map.keys_len());
    ///
    /// map.insert(ACCEPT, "text/html".parse().unwrap());
    ///
    /// assert_eq!(2, map.keys_len());
    /// ```
    pub fn keys_len(&self) -> usize {
        self.entries.len()
    }

    /// Returns true if the map contains no elements.
    ///
    /// # Examples
    ///
    /// ```
    /// # use http::HeaderMap;
    /// # use http::header::HOST;
    /// let mut map = HeaderMap::new();
    ///
    /// assert!(map.is_empty());
    ///
    /// map.insert(HOST, "hello.world".parse().unwrap());
    ///
    /// assert!(!map.is_empty());
    /// ```
    pub fn is_empty(&self) -> bool {
        self.entries.len() == 0
    }

    /// Clears the map, removing all key-value pairs. Keeps the allocated memory
    /// for reuse.
    ///
    /// # Examples
    ///
    /// ```
    /// # use http::HeaderMap;
    /// # use http::header::HOST;
    /// let mut map = HeaderMap::new();
    /// map.insert(HOST, "hello.world".parse().unwrap());
    ///
    /// map.clear();
    /// assert!(map.is_empty());
    /// assert!(map.capacity() > 0);
    /// ```
    pub fn clear(&mut self) {
        self.entries.clear();
        self.extra_values.clear();
        self.danger = Danger::Green;

        for e in self.indices.iter_mut() {
            *e = Pos::none();
        }
    }

    /// Returns the number of headers the map can hold without reallocating.
    ///
    /// This number is an approximation as certain usage patterns could cause
    /// additional allocations before the returned capacity is filled.
    ///
    /// # Examples
    ///
    /// ```
    /// # use http::HeaderMap;
    /// # use http::header::HOST;
    /// let mut map = HeaderMap::new();
    ///
    /// assert_eq!(0, map.capacity());
    ///
    /// map.insert(HOST, "hello.world".parse().unwrap());
    /// assert_eq!(6, map.capacity());
    /// ```
    pub fn capacity(&self) -> usize {
        usable_capacity(self.indices.len())
    }

    /// Reserves capacity for at least `additional` more headers to be inserted
    /// into the `HeaderMap`.
    ///
    /// The header map may reserve more space to avoid frequent reallocations.
    /// Like with `with_capacity`, this will be a "best effort" to avoid
    /// allocations until `additional` more headers are inserted. Certain usage
    /// patterns could cause additional allocations before the number is
    /// reached.
    ///
    /// # Panics
    ///
    /// Panics if the new allocation size overflows `usize`.
    ///
    /// # Examples
    ///
    /// ```
    /// # use http::HeaderMap;
    /// # use http::header::HOST;
    /// let mut map = HeaderMap::new();
    /// map.reserve(10);
    /// # map.insert(HOST, "bar".parse().unwrap());
    /// ```
    pub fn reserve(&mut self, additional: usize) {
        // TODO: This can't overflow if done properly... since the max # of
        // elements is u16::MAX.
        let cap = self
            .entries
            .len()
            .checked_add(additional)
            .expect("reserve overflow");

        if cap > self.indices.len() {
            let cap = cap.next_power_of_two();
            assert!(cap <= MAX_SIZE, "header map reserve over max capacity");
            assert!(cap != 0, "header map reserve overflowed");

            if self.entries.len() == 0 {
                self.mask = cap as Size - 1;
                self.indices = vec![Pos::none(); cap].into_boxed_slice();
                self.entries = Vec::with_capacity(usable_capacity(cap));
            } else {
                self.grow(cap);
            }
        }
    }

    /// Returns a reference to the value associated with the key.
    ///
    /// If there are multiple values associated with the key, then the first one
    /// is returned. Use `get_all` to get all values associated with a given
    /// key. Returns `None` if there are no values associated with the key.
    ///
    /// # Examples
    ///
    /// ```
    /// # use http::HeaderMap;
    /// # use http::header::HOST;
    /// let mut map = HeaderMap::new();
    /// assert!(map.get("host").is_none());
    ///
    /// map.insert(HOST, "hello".parse().unwrap());
    /// assert_eq!(map.get(HOST).unwrap(), &"hello");
    /// assert_eq!(map.get("host").unwrap(), &"hello");
    ///
    /// map.append(HOST, "world".parse().unwrap());
    /// assert_eq!(map.get("host").unwrap(), &"hello");
    /// ```
    pub fn get<K>(&self, key: K) -> Option<&T>
    where
        K: AsHeaderName,
    {
        self.get2(&key)
    }

    fn get2<K>(&self, key: &K) -> Option<&T>
    where
        K: AsHeaderName,
    {
        match key.find(self) {
            Some((_, found)) => {
                let entry = &self.entries[found];
                Some(&entry.value)
            }
            None => None,
        }
    }

    /// Returns a mutable reference to the value associated with the key.
    ///
    /// If there are multiple values associated with the key, then the first one
    /// is returned. Use `entry` to get all values associated with a given
    /// key. Returns `None` if there are no values associated with the key.
    ///
    /// # Examples
    ///
    /// ```
    /// # use http::HeaderMap;
    /// # use http::header::HOST;
    /// let mut map = HeaderMap::default();
    /// map.insert(HOST, "hello".to_string());
    /// map.get_mut("host").unwrap().push_str("-world");
    ///
    /// assert_eq!(map.get(HOST).unwrap(), &"hello-world");
    /// ```
    pub fn get_mut<K>(&mut self, key: K) -> Option<&mut T>
    where
        K: AsHeaderName,
    {
        match key.find(self) {
            Some((_, found)) => {
                let entry = &mut self.entries[found];
                Some(&mut entry.value)
            }
            None => None,
        }
    }

    /// Returns a view of all values associated with a key.
    ///
    /// The returned view does not incur any allocations and allows iterating
    /// the values associated with the key.  See [`GetAll`] for more details.
    /// Returns `None` if there are no values associated with the key.
    ///
    /// [`GetAll`]: struct.GetAll.html
    ///
    /// # Examples
    ///
    /// ```
    /// # use http::HeaderMap;
    /// # use http::header::HOST;
    /// let mut map = HeaderMap::new();
    ///
    /// map.insert(HOST, "hello".parse().unwrap());
    /// map.append(HOST, "goodbye".parse().unwrap());
    ///
    /// let view = map.get_all("host");
    ///
    /// let mut iter = view.iter();
    /// assert_eq!(&"hello", iter.next().unwrap());
    /// assert_eq!(&"goodbye", iter.next().unwrap());
    /// assert!(iter.next().is_none());
    /// ```
    pub fn get_all<K>(&self, key: K) -> GetAll<'_, T>
    where
        K: AsHeaderName,
    {
        GetAll {
            map: self,
            index: key.find(self).map(|(_, i)| i),
        }
    }

    /// Returns true if the map contains a value for the specified key.
    ///
    /// # Examples
    ///
    /// ```
    /// # use http::HeaderMap;
    /// # use http::header::HOST;
    /// let mut map = HeaderMap::new();
    /// assert!(!map.contains_key(HOST));
    ///
    /// map.insert(HOST, "world".parse().unwrap());
    /// assert!(map.contains_key("host"));
    /// ```
    pub fn contains_key<K>(&self, key: K) -> bool
    where
        K: AsHeaderName,
    {
        key.find(self).is_some()
    }

    /// An iterator visiting all key-value pairs.
    ///
    /// The iteration order is arbitrary, but consistent across platforms for
    /// the same crate version. Each key will be yielded once per associated
    /// value. So, if a key has 3 associated values, it will be yielded 3 times.
    ///
    /// # Examples
    ///
    /// ```
    /// # use http::HeaderMap;
    /// # use http::header::{CONTENT_LENGTH, HOST};
    /// let mut map = HeaderMap::new();
    ///
    /// map.insert(HOST, "hello".parse().unwrap());
    /// map.append(HOST, "goodbye".parse().unwrap());
    /// map.insert(CONTENT_LENGTH, "123".parse().unwrap());
    ///
    /// for (key, value) in map.iter() {
    ///     println!("{:?}: {:?}", key, value);
    /// }
    /// ```
    pub fn iter(&self) -> Iter<'_, T> {
        Iter {
            inner: IterMut {
                map: self as *const _ as *mut _,
                entry: 0,
                cursor: self.entries.first().map(|_| Cursor::Head),
                lt: PhantomData,
            },
        }
    }

    /// An iterator visiting all key-value pairs, with mutable value references.
    ///
    /// The iterator order is arbitrary, but consistent across platforms for the
    /// same crate version. Each key will be yielded once per associated value,
    /// so if a key has 3 associated values, it will be yielded 3 times.
    ///
    /// # Examples
    ///
    /// ```
    /// # use http::HeaderMap;
    /// # use http::header::{CONTENT_LENGTH, HOST};
    /// let mut map = HeaderMap::default();
    ///
    /// map.insert(HOST, "hello".to_string());
    /// map.append(HOST, "goodbye".to_string());
    /// map.insert(CONTENT_LENGTH, "123".to_string());
    ///
    /// for (key, value) in map.iter_mut() {
    ///     value.push_str("-boop");
    /// }
    /// ```
    pub fn iter_mut(&mut self) -> IterMut<'_, T> {
        IterMut {
            map: self as *mut _,
            entry: 0,
            cursor: self.entries.first().map(|_| Cursor::Head),
            lt: PhantomData,
        }
    }

    /// An iterator visiting all keys.
    ///
    /// The iteration order is arbitrary, but consistent across platforms for
    /// the same crate version. Each key will be yielded only once even if it
    /// has multiple associated values.
    ///
    /// # Examples
    ///
    /// ```
    /// # use http::HeaderMap;
    /// # use http::header::{CONTENT_LENGTH, HOST};
    /// let mut map = HeaderMap::new();
    ///
    /// map.insert(HOST, "hello".parse().unwrap());
    /// map.append(HOST, "goodbye".parse().unwrap());
    /// map.insert(CONTENT_LENGTH, "123".parse().unwrap());
    ///
    /// for key in map.keys() {
    ///     println!("{:?}", key);
    /// }
    /// ```
    pub fn keys(&self) -> Keys<'_, T> {
        Keys {
            inner: self.entries.iter(),
        }
    }

    /// An iterator visiting all values.
    ///
    /// The iteration order is arbitrary, but consistent across platforms for
    /// the same crate version.
    ///
    /// # Examples
    ///
    /// ```
    /// # use http::HeaderMap;
    /// # use http::header::{CONTENT_LENGTH, HOST};
    /// let mut map = HeaderMap::new();
    ///
    /// map.insert(HOST, "hello".parse().unwrap());
    /// map.append(HOST, "goodbye".parse().unwrap());
    /// map.insert(CONTENT_LENGTH, "123".parse().unwrap());
    ///
    /// for value in map.values() {
    ///     println!("{:?}", value);
    /// }
    /// ```
    pub fn values(&self) -> Values<'_, T> {
        Values { inner: self.iter() }
    }

    /// An iterator visiting all values mutably.
    ///
    /// The iteration order is arbitrary, but consistent across platforms for
    /// the same crate version.
    ///
    /// # Examples
    ///
    /// ```
    /// # use http::HeaderMap;
    /// # use http::header::{CONTENT_LENGTH, HOST};
    /// let mut map = HeaderMap::default();
    ///
    /// map.insert(HOST, "hello".to_string());
    /// map.append(HOST, "goodbye".to_string());
    /// map.insert(CONTENT_LENGTH, "123".to_string());
    ///
    /// for value in map.values_mut() {
    ///     value.push_str("-boop");
    /// }
    /// ```
    pub fn values_mut(&mut self) -> ValuesMut<'_, T> {
        ValuesMut {
            inner: self.iter_mut(),
        }
    }

    /// Clears the map, returning all entries as an iterator.
    ///
    /// The internal memory is kept for reuse.
    ///
    /// For each yielded item that has `None` provided for the `HeaderName`,
    /// then the associated header name is the same as that of the previously
    /// yielded item. The first yielded item will have `HeaderName` set.
    ///
    /// # Examples
    ///
    /// ```
    /// # use http::HeaderMap;
    /// # use http::header::{CONTENT_LENGTH, HOST};
    /// let mut map = HeaderMap::new();
    ///
    /// map.insert(HOST, "hello".parse().unwrap());
    /// map.append(HOST, "goodbye".parse().unwrap());
    /// map.insert(CONTENT_LENGTH, "123".parse().unwrap());
    ///
    /// let mut drain = map.drain();
    ///
    ///
    /// assert_eq!(drain.next(), Some((Some(HOST), "hello".parse().unwrap())));
    /// assert_eq!(drain.next(), Some((None, "goodbye".parse().unwrap())));
    ///
    /// assert_eq!(drain.next(), Some((Some(CONTENT_LENGTH), "123".parse().unwrap())));
    ///
    /// assert_eq!(drain.next(), None);
    /// ```
    pub fn drain(&mut self) -> Drain<'_, T> {
        for i in self.indices.iter_mut() {
            *i = Pos::none();
        }

        // Memory safety
        //
        // When the Drain is first created, it shortens the length of
        // the source vector to make sure no uninitialized or moved-from
        // elements are accessible at all if the Drain's destructor never
        // gets to run.

        let entries = &mut self.entries[..] as *mut _;
        let extra_values = &mut self.extra_values as *mut _;
        let len = self.entries.len();
        unsafe { self.entries.set_len(0); }

        Drain {
            idx: 0,
            len,
            entries,
            extra_values,
            next: None,
            lt: PhantomData,
        }
    }

    fn value_iter(&self, idx: Option<usize>) -> ValueIter<'_, T> {
        use self::Cursor::*;

        if let Some(idx) = idx {
            let back = {
                let entry = &self.entries[idx];

                entry.links.map(|l| Values(l.tail)).unwrap_or(Head)
            };

            ValueIter {
                map: self,
                index: idx,
                front: Some(Head),
                back: Some(back),
            }
        } else {
            ValueIter {
                map: self,
                index: ::std::usize::MAX,
                front: None,
                back: None,
            }
        }
    }

    fn value_iter_mut(&mut self, idx: usize) -> ValueIterMut<'_, T> {
        use self::Cursor::*;

        let back = {
            let entry = &self.entries[idx];

            entry.links.map(|l| Values(l.tail)).unwrap_or(Head)
        };

        ValueIterMut {
            map: self as *mut _,
            index: idx,
            front: Some(Head),
            back: Some(back),
            lt: PhantomData,
        }
    }

    /// Gets the given key's corresponding entry in the map for in-place
    /// manipulation.
    ///
    /// # Examples
    ///
    /// ```
    /// # use http::HeaderMap;
    /// let mut map: HeaderMap<u32> = HeaderMap::default();
    ///
    /// let headers = &[
    ///     "content-length",
    ///     "x-hello",
    ///     "Content-Length",
    ///     "x-world",
    /// ];
    ///
    /// for &header in headers {
    ///     let counter = map.entry(header).or_insert(0);
    ///     *counter += 1;
    /// }
    ///
    /// assert_eq!(map["content-length"], 2);
    /// assert_eq!(map["x-hello"], 1);
    /// ```
    pub fn entry<K>(&mut self, key: K) -> Entry<'_, T>
    where
        K: IntoHeaderName,
    {
        key.entry(self)
    }

    /// Gets the given key's corresponding entry in the map for in-place
    /// manipulation.
    ///
    /// # Errors
    ///
    /// This method differs from `entry` by allowing types that may not be
    /// valid `HeaderName`s to passed as the key (such as `String`). If they
    /// do not parse as a valid `HeaderName`, this returns an
    /// `InvalidHeaderName` error.
    pub fn try_entry<K>(&mut self, key: K) -> Result<Entry<'_, T>, InvalidHeaderName>
    where
        K: AsHeaderName,
    {
        key.try_entry(self)
    }

    fn entry2<K>(&mut self, key: K) -> Entry<'_, T>
    where
        K: Hash + Into<HeaderName>,
        HeaderName: PartialEq<K>,
    {
        // Ensure that there is space in the map
        self.reserve_one();

        insert_phase_one!(
            self,
            key,
            probe,
            pos,
            hash,
            danger,
            Entry::Vacant(VacantEntry {
                map: self,
                hash: hash,
                key: key.into(),
                probe: probe,
                danger: danger,
            }),
            Entry::Occupied(OccupiedEntry {
                map: self,
                index: pos,
                probe: probe,
            }),
            Entry::Vacant(VacantEntry {
                map: self,
                hash: hash,
                key: key.into(),
                probe: probe,
                danger: danger,
            })
        )
    }

    /// Inserts a key-value pair into the map.
    ///
    /// If the map did not previously have this key present, then `None` is
    /// returned.
    ///
    /// If the map did have this key present, the new value is associated with
    /// the key and all previous values are removed. **Note** that only a single
    /// one of the previous values is returned. If there are multiple values
    /// that have been previously associated with the key, then the first one is
    /// returned. See `insert_mult` on `OccupiedEntry` for an API that returns
    /// all values.
    ///
    /// The key is not updated, though; this matters for types that can be `==`
    /// without being identical.
    ///
    /// # Examples
    ///
    /// ```
    /// # use http::HeaderMap;
    /// # use http::header::HOST;
    /// let mut map = HeaderMap::new();
    /// assert!(map.insert(HOST, "world".parse().unwrap()).is_none());
    /// assert!(!map.is_empty());
    ///
    /// let mut prev = map.insert(HOST, "earth".parse().unwrap()).unwrap();
    /// assert_eq!("world", prev);
    /// ```
    pub fn insert<K>(&mut self, key: K, val: T) -> Option<T>
    where
        K: IntoHeaderName,
    {
        key.insert(self, val)
    }

    #[inline]
    fn insert2<K>(&mut self, key: K, value: T) -> Option<T>
    where
        K: Hash + Into<HeaderName>,
        HeaderName: PartialEq<K>,
    {
        self.reserve_one();

        insert_phase_one!(
            self,
            key,
            probe,
            pos,
            hash,
            danger,
            // Vacant
            {
                drop(danger); // Make lint happy
                let index = self.entries.len();
                self.insert_entry(hash, key.into(), value);
                self.indices[probe] = Pos::new(index, hash);
                None
            },
            // Occupied
            Some(self.insert_occupied(pos, value)),
            // Robinhood
            {
                self.insert_phase_two(key.into(), value, hash, probe, danger);
                None
            }
        )
    }

    /// Set an occupied bucket to the given value
    #[inline]
    fn insert_occupied(&mut self, index: usize, value: T) -> T {
        if let Some(links) = self.entries[index].links {
            self.remove_all_extra_values(links.next);
        }

        let entry = &mut self.entries[index];
        mem::replace(&mut entry.value, value)
    }

    fn insert_occupied_mult(&mut self, index: usize, value: T) -> ValueDrain<'_, T> {
        let old;
        let links;

        {
            let entry = &mut self.entries[index];

            old = mem::replace(&mut entry.value, value);
            links = entry.links.take();
        }

        let raw_links = self.raw_links();
        let extra_values = &mut self.extra_values;

        let next = links.map(|l| {
            drain_all_extra_values(raw_links, extra_values, l.next)
                .into_iter()
        });

        ValueDrain {
            first: Some(old),
            next: next,
            lt: PhantomData,
        }
    }

    /// Inserts a key-value pair into the map.
    ///
    /// If the map did not previously have this key present, then `false` is
    /// returned.
    ///
    /// If the map did have this key present, the new value is pushed to the end
    /// of the list of values currently associated with the key. The key is not
    /// updated, though; this matters for types that can be `==` without being
    /// identical.
    ///
    /// # Examples
    ///
    /// ```
    /// # use http::HeaderMap;
    /// # use http::header::HOST;
    /// let mut map = HeaderMap::new();
    /// assert!(map.insert(HOST, "world".parse().unwrap()).is_none());
    /// assert!(!map.is_empty());
    ///
    /// map.append(HOST, "earth".parse().unwrap());
    ///
    /// let values = map.get_all("host");
    /// let mut i = values.iter();
    /// assert_eq!("world", *i.next().unwrap());
    /// assert_eq!("earth", *i.next().unwrap());
    /// ```
    pub fn append<K>(&mut self, key: K, value: T) -> bool
    where
        K: IntoHeaderName,
    {
        key.append(self, value)
    }

    #[inline]
    fn append2<K>(&mut self, key: K, value: T) -> bool
    where
        K: Hash + Into<HeaderName>,
        HeaderName: PartialEq<K>,
    {
        self.reserve_one();

        insert_phase_one!(
            self,
            key,
            probe,
            pos,
            hash,
            danger,
            // Vacant
            {
                drop(danger);
                let index = self.entries.len();
                self.insert_entry(hash, key.into(), value);
                self.indices[probe] = Pos::new(index, hash);
                false
            },
            // Occupied
            {
                append_value(pos, &mut self.entries[pos], &mut self.extra_values, value);
                true
            },
            // Robinhood
            {
                self.insert_phase_two(key.into(), value, hash, probe, danger);

                false
            }
        )
    }

    #[inline]
    fn find<K: ?Sized>(&self, key: &K) -> Option<(usize, usize)>
    where
        K: Hash + Into<HeaderName>,
        HeaderName: PartialEq<K>,
    {
        if self.entries.is_empty() {
            return None;
        }

        let hash = hash_elem_using(&self.danger, key);
        let mask = self.mask;
        let mut probe = desired_pos(mask, hash);
        let mut dist = 0;

        probe_loop!(probe < self.indices.len(), {
            if let Some((i, entry_hash)) = self.indices[probe].resolve() {
                if dist > probe_distance(mask, entry_hash, probe) {
                    // give up when probe distance is too long
                    return None;
                } else if entry_hash == hash && self.entries[i].key == *key {
                    return Some((probe, i));
                }
            } else {
                return None;
            }

            dist += 1;
        });
    }

    /// phase 2 is post-insert where we forward-shift `Pos` in the indices.
    #[inline]
    fn insert_phase_two(
        &mut self,
        key: HeaderName,
        value: T,
        hash: HashValue,
        probe: usize,
        danger: bool,
    ) -> usize {
        // Push the value and get the index
        let index = self.entries.len();
        self.insert_entry(hash, key, value);

        let num_displaced = do_insert_phase_two(&mut self.indices, probe, Pos::new(index, hash));

        if danger || num_displaced >= DISPLACEMENT_THRESHOLD {
            // Increase danger level
            self.danger.to_yellow();
        }

        index
    }

    /// Removes a key from the map, returning the value associated with the key.
    ///
    /// Returns `None` if the map does not contain the key. If there are
    /// multiple values associated with the key, then the first one is returned.
    /// See `remove_entry_mult` on `OccupiedEntry` for an API that yields all
    /// values.
    ///
    /// # Examples
    ///
    /// ```
    /// # use http::HeaderMap;
    /// # use http::header::HOST;
    /// let mut map = HeaderMap::new();
    /// map.insert(HOST, "hello.world".parse().unwrap());
    ///
    /// let prev = map.remove(HOST).unwrap();
    /// assert_eq!("hello.world", prev);
    ///
    /// assert!(map.remove(HOST).is_none());
    /// ```
    pub fn remove<K>(&mut self, key: K) -> Option<T>
    where
        K: AsHeaderName,
    {
        match key.find(self) {
            Some((probe, idx)) => {
                if let Some(links) = self.entries[idx].links {
                    self.remove_all_extra_values(links.next);
                }

                let entry = self.remove_found(probe, idx);

                Some(entry.value)
            }
            None => None,
        }
    }

    /// Remove an entry from the map.
    ///
    /// Warning: To avoid inconsistent state, extra values _must_ be removed
    /// for the `found` index (via `remove_all_extra_values` or similar)
    /// _before_ this method is called.
    #[inline]
    fn remove_found(&mut self, probe: usize, found: usize) -> Bucket<T> {
        // index `probe` and entry `found` is to be removed
        // use swap_remove, but then we need to update the index that points
        // to the other entry that has to move
        self.indices[probe] = Pos::none();
        let entry = self.entries.swap_remove(found);

        // correct index that points to the entry that had to swap places
        if let Some(entry) = self.entries.get(found) {
            // was not last element
            // examine new element in `found` and find it in indices
            let mut probe = desired_pos(self.mask, entry.hash);

            probe_loop!(probe < self.indices.len(), {
                if let Some((i, _)) = self.indices[probe].resolve() {
                    if i >= self.entries.len() {
                        // found it
                        self.indices[probe] = Pos::new(found, entry.hash);
                        break;
                    }
                }
            });

            // Update links
            if let Some(links) = entry.links {
                self.extra_values[links.next].prev = Link::Entry(found);
                self.extra_values[links.tail].next = Link::Entry(found);
            }
        }

        // backward shift deletion in self.indices
        // after probe, shift all non-ideally placed indices backward
        if self.entries.len() > 0 {
            let mut last_probe = probe;
            let mut probe = probe + 1;

            probe_loop!(probe < self.indices.len(), {
                if let Some((_, entry_hash)) = self.indices[probe].resolve() {
                    if probe_distance(self.mask, entry_hash, probe) > 0 {
                        self.indices[last_probe] = self.indices[probe];
                        self.indices[probe] = Pos::none();
                    } else {
                        break;
                    }
                } else {
                    break;
                }

                last_probe = probe;
            });
        }

        entry
    }

    /// Removes the `ExtraValue` at the given index.
    #[inline]
    fn remove_extra_value(&mut self, idx: usize) -> ExtraValue<T> {
        let raw_links = self.raw_links();
        remove_extra_value(raw_links, &mut self.extra_values, idx)
    }

    fn remove_all_extra_values(&mut self, mut head: usize) {
        loop {
            let extra = self.remove_extra_value(head);

            if let Link::Extra(idx) = extra.next {
                head = idx;
            } else {
                break;
            }
        }
    }

    #[inline]
    fn insert_entry(&mut self, hash: HashValue, key: HeaderName, value: T) {
        assert!(self.entries.len() < MAX_SIZE, "header map at capacity");

        self.entries.push(Bucket {
            hash: hash,
            key: key,
            value: value,
            links: None,
        });
    }

    fn rebuild(&mut self) {
        // Loop over all entries and re-insert them into the map
        'outer: for (index, entry) in self.entries.iter_mut().enumerate() {
            let hash = hash_elem_using(&self.danger, &entry.key);
            let mut probe = desired_pos(self.mask, hash);
            let mut dist = 0;

            // Update the entry's hash code
            entry.hash = hash;

            probe_loop!(probe < self.indices.len(), {
                if let Some((_, entry_hash)) = self.indices[probe].resolve() {
                    // if existing element probed less than us, swap
                    let their_dist = probe_distance(self.mask, entry_hash, probe);

                    if their_dist < dist {
                        // Robinhood
                        break;
                    }
                } else {
                    // Vacant slot
                    self.indices[probe] = Pos::new(index, hash);
                    continue 'outer;
                }

                dist += 1;
            });

            do_insert_phase_two(&mut self.indices, probe, Pos::new(index, hash));
        }
    }

    fn reinsert_entry_in_order(&mut self, pos: Pos) {
        if let Some((_, entry_hash)) = pos.resolve() {
            // Find first empty bucket and insert there
            let mut probe = desired_pos(self.mask, entry_hash);

            probe_loop!(probe < self.indices.len(), {
                if self.indices[probe].resolve().is_none() {
                    // empty bucket, insert here
                    self.indices[probe] = pos;
                    return;
                }
            });
        }
    }

    fn reserve_one(&mut self) {
        let len = self.entries.len();

        if self.danger.is_yellow() {
            let load_factor = self.entries.len() as f32 / self.indices.len() as f32;

            if load_factor >= LOAD_FACTOR_THRESHOLD {
                // Transition back to green danger level
                self.danger.to_green();

                // Double the capacity
                let new_cap = self.indices.len() * 2;

                // Grow the capacity
                self.grow(new_cap);
            } else {
                self.danger.to_red();

                // Rebuild hash table
                for index in self.indices.iter_mut() {
                    *index = Pos::none();
                }

                self.rebuild();
            }
        } else if len == self.capacity() {
            if len == 0 {
                let new_raw_cap = 8;
                self.mask = 8 - 1;
                self.indices = vec![Pos::none(); new_raw_cap].into_boxed_slice();
                self.entries = Vec::with_capacity(usable_capacity(new_raw_cap));
            } else {
                let raw_cap = self.indices.len();
                self.grow(raw_cap << 1);
            }
        }
    }

    #[inline]
    fn grow(&mut self, new_raw_cap: usize) {
        assert!(new_raw_cap <= MAX_SIZE, "requested capacity too large");
        // This path can never be reached when handling the first allocation in
        // the map.

        // find first ideally placed element -- start of cluster
        let mut first_ideal = 0;

        for (i, pos) in self.indices.iter().enumerate() {
            if let Some((_, entry_hash)) = pos.resolve() {
                if 0 == probe_distance(self.mask, entry_hash, i) {
                    first_ideal = i;
                    break;
                }
            }
        }

        // visit the entries in an order where we can simply reinsert them
        // into self.indices without any bucket stealing.
        let old_indices = mem::replace(
            &mut self.indices,
            vec![Pos::none(); new_raw_cap].into_boxed_slice(),
        );
        self.mask = new_raw_cap.wrapping_sub(1) as Size;

        for &pos in &old_indices[first_ideal..] {
            self.reinsert_entry_in_order(pos);
        }

        for &pos in &old_indices[..first_ideal] {
            self.reinsert_entry_in_order(pos);
        }

        // Reserve additional entry slots
        let more = self.capacity() - self.entries.len();
        self.entries.reserve_exact(more);
    }

    #[inline]
    fn raw_links(&mut self) -> RawLinks<T> {
        RawLinks(&mut self.entries[..] as *mut _)
    }
}

/// Removes the `ExtraValue` at the given index.
#[inline]
fn remove_extra_value<T>(
    mut raw_links: RawLinks<T>,
    extra_values: &mut Vec<ExtraValue<T>>,
    idx: usize)
    -> ExtraValue<T>
{
    let prev;
    let next;

    {
        debug_assert!(extra_values.len() > idx);
        let extra = &extra_values[idx];
        prev = extra.prev;
        next = extra.next;
    }

    // First unlink the extra value
    match (prev, next) {
        (Link::Entry(prev), Link::Entry(next)) => {
            debug_assert_eq!(prev, next);

            raw_links[prev] = None;
        }
        (Link::Entry(prev), Link::Extra(next)) => {
            debug_assert!(raw_links[prev].is_some());

            raw_links[prev].as_mut().unwrap()
                .next = next;

            debug_assert!(extra_values.len() > next);
            extra_values[next].prev = Link::Entry(prev);
        }
        (Link::Extra(prev), Link::Entry(next)) => {
            debug_assert!(raw_links[next].is_some());

            raw_links[next].as_mut().unwrap()
                .tail = prev;

            debug_assert!(extra_values.len() > prev);
            extra_values[prev].next = Link::Entry(next);
        }
        (Link::Extra(prev), Link::Extra(next)) => {
            debug_assert!(extra_values.len() > next);
            debug_assert!(extra_values.len() > prev);

            extra_values[prev].next = Link::Extra(next);
            extra_values[next].prev = Link::Extra(prev);
        }
    }

    // Remove the extra value
    let mut extra = extra_values.swap_remove(idx);

    // This is the index of the value that was moved (possibly `extra`)
    let old_idx = extra_values.len();

    // Update the links
    if extra.prev == Link::Extra(old_idx) {
        extra.prev = Link::Extra(idx);
    }

    if extra.next == Link::Extra(old_idx) {
        extra.next = Link::Extra(idx);
    }

    // Check if another entry was displaced. If it was, then the links
    // need to be fixed.
    if idx != old_idx {
        let next;
        let prev;

        {
            debug_assert!(extra_values.len() > idx);
            let moved = &extra_values[idx];
            next = moved.next;
            prev = moved.prev;
        }

        // An entry was moved, we have to the links
        match prev {
            Link::Entry(entry_idx) => {
                // It is critical that we do not attempt to read the
                // header name or value as that memory may have been
                // "released" already.
                debug_assert!(raw_links[entry_idx].is_some());

                let links = raw_links[entry_idx].as_mut().unwrap();
                links.next = idx;
            }
            Link::Extra(extra_idx) => {
                debug_assert!(extra_values.len() > extra_idx);
                extra_values[extra_idx].next = Link::Extra(idx);
            }
        }

        match next {
            Link::Entry(entry_idx) => {
                debug_assert!(raw_links[entry_idx].is_some());

                let links = raw_links[entry_idx].as_mut().unwrap();
                links.tail = idx;
            }
            Link::Extra(extra_idx) => {
                debug_assert!(extra_values.len() > extra_idx);
                extra_values[extra_idx].prev = Link::Extra(idx);
            }
        }
    }

    debug_assert!({
        for v in &*extra_values {
            assert!(v.next != Link::Extra(old_idx));
            assert!(v.prev != Link::Extra(old_idx));
        }

        true
    });

    extra
}

fn drain_all_extra_values<T>(
    raw_links: RawLinks<T>,
    extra_values: &mut Vec<ExtraValue<T>>,
    mut head: usize)
    -> Vec<T>
{
    let mut vec = Vec::new();
    loop {
        let extra = remove_extra_value(raw_links, extra_values, head);
        vec.push(extra.value);

        if let Link::Extra(idx) = extra.next {
            head = idx;
        } else {
            break;
        }
    }
    vec
}

impl<'a, T> IntoIterator for &'a HeaderMap<T> {
    type Item = (&'a HeaderName, &'a T);
    type IntoIter = Iter<'a, T>;

    fn into_iter(self) -> Iter<'a, T> {
        self.iter()
    }
}

impl<'a, T> IntoIterator for &'a mut HeaderMap<T> {
    type Item = (&'a HeaderName, &'a mut T);
    type IntoIter = IterMut<'a, T>;

    fn into_iter(self) -> IterMut<'a, T> {
        self.iter_mut()
    }
}

impl<T> IntoIterator for HeaderMap<T> {
    type Item = (Option<HeaderName>, T);
    type IntoIter = IntoIter<T>;

    /// Creates a consuming iterator, that is, one that moves keys and values
    /// out of the map in arbitrary order. The map cannot be used after calling
    /// this.
    ///
    /// For each yielded item that has `None` provided for the `HeaderName`,
    /// then the associated header name is the same as that of the previously
    /// yielded item. The first yielded item will have `HeaderName` set.
    ///
    /// # Examples
    ///
    /// Basic usage.
    ///
    /// ```
    /// # use http::header;
    /// # use http::header::*;
    /// let mut map = HeaderMap::new();
    /// map.insert(header::CONTENT_LENGTH, "123".parse().unwrap());
    /// map.insert(header::CONTENT_TYPE, "json".parse().unwrap());
    ///
    /// let mut iter = map.into_iter();
    /// assert_eq!(iter.next(), Some((Some(header::CONTENT_LENGTH), "123".parse().unwrap())));
    /// assert_eq!(iter.next(), Some((Some(header::CONTENT_TYPE), "json".parse().unwrap())));
    /// assert!(iter.next().is_none());
    /// ```
    ///
    /// Multiple values per key.
    ///
    /// ```
    /// # use http::header;
    /// # use http::header::*;
    /// let mut map = HeaderMap::new();
    ///
    /// map.append(header::CONTENT_LENGTH, "123".parse().unwrap());
    /// map.append(header::CONTENT_LENGTH, "456".parse().unwrap());
    ///
    /// map.append(header::CONTENT_TYPE, "json".parse().unwrap());
    /// map.append(header::CONTENT_TYPE, "html".parse().unwrap());
    /// map.append(header::CONTENT_TYPE, "xml".parse().unwrap());
    ///
    /// let mut iter = map.into_iter();
    ///
    /// assert_eq!(iter.next(), Some((Some(header::CONTENT_LENGTH), "123".parse().unwrap())));
    /// assert_eq!(iter.next(), Some((None, "456".parse().unwrap())));
    ///
    /// assert_eq!(iter.next(), Some((Some(header::CONTENT_TYPE), "json".parse().unwrap())));
    /// assert_eq!(iter.next(), Some((None, "html".parse().unwrap())));
    /// assert_eq!(iter.next(), Some((None, "xml".parse().unwrap())));
    /// assert!(iter.next().is_none());
    /// ```
    fn into_iter(self) -> IntoIter<T> {
        IntoIter {
            next: None,
            entries: self.entries.into_iter(),
            extra_values: self.extra_values,
        }
    }
}

impl<T> FromIterator<(HeaderName, T)> for HeaderMap<T> {
    fn from_iter<I>(iter: I) -> Self
    where
        I: IntoIterator<Item = (HeaderName, T)>,
    {
        let mut map = HeaderMap::default();
        map.extend(iter);
        map
    }
}

/// Try to convert a `HashMap` into a `HeaderMap`.
///
/// # Examples
///
/// ```
/// use std::collections::HashMap;
/// use std::convert::TryInto;
/// use http::HeaderMap;
///
/// let mut map = HashMap::new();
/// map.insert("X-Custom-Header".to_string(), "my value".to_string());
///
/// let headers: HeaderMap = (&map).try_into().expect("valid headers");
/// assert_eq!(headers["X-Custom-Header"], "my value");
/// ```
impl<'a, K, V, T> TryFrom<&'a HashMap<K, V>> for HeaderMap<T>
    where
        K: Eq + Hash,
        HeaderName: TryFrom<&'a K>,
        <HeaderName as TryFrom<&'a K>>::Error: Into<crate::Error>,
        T: TryFrom<&'a V>,
        T::Error: Into<crate::Error>,
{
    type Error = Error;

    fn try_from(c: &'a HashMap<K, V>) -> Result<Self, Self::Error> {
        c.into_iter()
            .map(|(k, v)| -> crate::Result<(HeaderName, T)> {
                let name = TryFrom::try_from(k).map_err(Into::into)?;
                let value = TryFrom::try_from(v).map_err(Into::into)?;
                Ok((name, value))
            })
            .collect()
    }
}

impl<T> Extend<(Option<HeaderName>, T)> for HeaderMap<T> {
    /// Extend a `HeaderMap` with the contents of another `HeaderMap`.
    ///
    /// This function expects the yielded items to follow the same structure as
    /// `IntoIter`.
    ///
    /// # Panics
    ///
    /// This panics if the first yielded item does not have a `HeaderName`.
    ///
    /// # Examples
    ///
    /// ```
    /// # use http::header::*;
    /// let mut map = HeaderMap::new();
    ///
    /// map.insert(ACCEPT, "text/plain".parse().unwrap());
    /// map.insert(HOST, "hello.world".parse().unwrap());
    ///
    /// let mut extra = HeaderMap::new();
    ///
    /// extra.insert(HOST, "foo.bar".parse().unwrap());
    /// extra.insert(COOKIE, "hello".parse().unwrap());
    /// extra.append(COOKIE, "world".parse().unwrap());
    ///
    /// map.extend(extra);
    ///
    /// assert_eq!(map["host"], "foo.bar");
    /// assert_eq!(map["accept"], "text/plain");
    /// assert_eq!(map["cookie"], "hello");
    ///
    /// let v = map.get_all("host");
    /// assert_eq!(1, v.iter().count());
    ///
    /// let v = map.get_all("cookie");
    /// assert_eq!(2, v.iter().count());
    /// ```
    fn extend<I: IntoIterator<Item = (Option<HeaderName>, T)>>(&mut self, iter: I) {
        let mut iter = iter.into_iter();

        // The structure of this is a bit weird, but it is mostly to make the
        // borrow checker happy.
        let (mut key, mut val) = match iter.next() {
            Some((Some(key), val)) => (key, val),
            Some((None, _)) => panic!("expected a header name, but got None"),
            None => return,
        };

        'outer: loop {
            let mut entry = match self.entry2(key) {
                Entry::Occupied(mut e) => {
                    // Replace all previous values while maintaining a handle to
                    // the entry.
                    e.insert(val);
                    e
                }
                Entry::Vacant(e) => e.insert_entry(val),
            };

            // As long as `HeaderName` is none, keep inserting the value into
            // the current entry
            loop {
                match iter.next() {
                    Some((Some(k), v)) => {
                        key = k;
                        val = v;
                        continue 'outer;
                    }
                    Some((None, v)) => {
                        entry.append(v);
                    }
                    None => {
                        return;
                    }
                }
            }
        }
    }
}

impl<T> Extend<(HeaderName, T)> for HeaderMap<T> {
    fn extend<I: IntoIterator<Item = (HeaderName, T)>>(&mut self, iter: I) {
        // Keys may be already present or show multiple times in the iterator.
        // Reserve the entire hint lower bound if the map is empty.
        // Otherwise reserve half the hint (rounded up), so the map
        // will only resize twice in the worst case.
        let iter = iter.into_iter();

        let reserve = if self.is_empty() {
            iter.size_hint().0
        } else {
            (iter.size_hint().0 + 1) / 2
        };

        self.reserve(reserve);

        for (k, v) in iter {
            self.append(k, v);
        }
    }
}

impl<T: PartialEq> PartialEq for HeaderMap<T> {
    fn eq(&self, other: &HeaderMap<T>) -> bool {
        if self.len() != other.len() {
            return false;
        }

        self.keys()
            .all(|key| self.get_all(key) == other.get_all(key))
    }
}

impl<T: Eq> Eq for HeaderMap<T> {}

impl<T: fmt::Debug> fmt::Debug for HeaderMap<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_map().entries(self.iter()).finish()
    }
}

impl<T> Default for HeaderMap<T> {
    fn default() -> Self {
        HeaderMap::with_capacity(0)
    }
}

impl<'a, K, T> ops::Index<K> for HeaderMap<T>
where
    K: AsHeaderName,
{
    type Output = T;

    /// # Panics
    /// Using the index operator will cause a panic if the header you're querying isn't set.
    #[inline]
    fn index(&self, index: K) -> &T {
        match self.get2(&index) {
            Some(val) => val,
            None => panic!("no entry found for key {:?}", index.as_str()),
        }
    }
}

/// phase 2 is post-insert where we forward-shift `Pos` in the indices.
///
/// returns the number of displaced elements
#[inline]
fn do_insert_phase_two(indices: &mut [Pos], mut probe: usize, mut old_pos: Pos) -> usize {
    let mut num_displaced = 0;

    probe_loop!(probe < indices.len(), {
        let pos = &mut indices[probe];

        if pos.is_none() {
            *pos = old_pos;
            break;
        } else {
            num_displaced += 1;
            old_pos = mem::replace(pos, old_pos);
        }
    });

    num_displaced
}

#[inline]
fn append_value<T>(
    entry_idx: usize,
    entry: &mut Bucket<T>,
    extra: &mut Vec<ExtraValue<T>>,
    value: T,
) {
    match entry.links {
        Some(links) => {
            let idx = extra.len();
            extra.push(ExtraValue {
                value: value,
                prev: Link::Extra(links.tail),
                next: Link::Entry(entry_idx),
            });

            extra[links.tail].next = Link::Extra(idx);

            entry.links = Some(Links { tail: idx, ..links });
        }
        None => {
            let idx = extra.len();
            extra.push(ExtraValue {
                value: value,
                prev: Link::Entry(entry_idx),
                next: Link::Entry(entry_idx),
            });

            entry.links = Some(Links {
                next: idx,
                tail: idx,
            });
        }
    }
}

// ===== impl Iter =====

impl<'a, T> Iterator for Iter<'a, T> {
    type Item = (&'a HeaderName, &'a T);

    fn next(&mut self) -> Option<Self::Item> {
        self.inner
            .next_unsafe()
            .map(|(key, ptr)| (key, unsafe { &*ptr }))
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.inner.size_hint()
    }
}

impl<'a, T> FusedIterator for Iter<'a, T> {}

unsafe impl<'a, T: Sync> Sync for Iter<'a, T> {}
unsafe impl<'a, T: Sync> Send for Iter<'a, T> {}

// ===== impl IterMut =====

impl<'a, T> IterMut<'a, T> {
    fn next_unsafe(&mut self) -> Option<(&'a HeaderName, *mut T)> {
        use self::Cursor::*;

        if self.cursor.is_none() {
            if (self.entry + 1) >= unsafe { &*self.map }.entries.len() {
                return None;
            }

            self.entry += 1;
            self.cursor = Some(Cursor::Head);
        }

        let entry = unsafe { &(*self.map).entries[self.entry] };

        match self.cursor.unwrap() {
            Head => {
                self.cursor = entry.links.map(|l| Values(l.next));
                Some((&entry.key, &entry.value as *const _ as *mut _))
            }
            Values(idx) => {
                let extra = unsafe { &(*self.map).extra_values[idx] };

                match extra.next {
                    Link::Entry(_) => self.cursor = None,
                    Link::Extra(i) => self.cursor = Some(Values(i)),
                }

                Some((&entry.key, &extra.value as *const _ as *mut _))
            }
        }
    }
}

impl<'a, T> Iterator for IterMut<'a, T> {
    type Item = (&'a HeaderName, &'a mut T);

    fn next(&mut self) -> Option<Self::Item> {
        self.next_unsafe()
            .map(|(key, ptr)| (key, unsafe { &mut *ptr }))
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        let map = unsafe { &*self.map };
        debug_assert!(map.entries.len() >= self.entry);

        let lower = map.entries.len() - self.entry;
        // We could pessimistically guess at the upper bound, saying
        // that its lower + map.extra_values.len(). That could be
        // way over though, such as if we're near the end, and have
        // already gone through several extra values...
        (lower, None)
    }
}

impl<'a, T> FusedIterator for IterMut<'a, T> {}

unsafe impl<'a, T: Sync> Sync for IterMut<'a, T> {}
unsafe impl<'a, T: Send> Send for IterMut<'a, T> {}

// ===== impl Keys =====

impl<'a, T> Iterator for Keys<'a, T> {
    type Item = &'a HeaderName;

    fn next(&mut self) -> Option<Self::Item> {
        self.inner.next().map(|b| &b.key)
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.inner.size_hint()
    }
}

impl<'a, T> ExactSizeIterator for Keys<'a, T> {}
impl<'a, T> FusedIterator for Keys<'a, T> {}

// ===== impl Values ====

impl<'a, T> Iterator for Values<'a, T> {
    type Item = &'a T;

    fn next(&mut self) -> Option<Self::Item> {
        self.inner.next().map(|(_, v)| v)
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.inner.size_hint()
    }
}

impl<'a, T> FusedIterator for Values<'a, T> {}

// ===== impl ValuesMut ====

impl<'a, T> Iterator for ValuesMut<'a, T> {
    type Item = &'a mut T;

    fn next(&mut self) -> Option<Self::Item> {
        self.inner.next().map(|(_, v)| v)
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.inner.size_hint()
    }
}

impl<'a, T> FusedIterator for ValuesMut<'a, T> {}

// ===== impl Drain =====

impl<'a, T> Iterator for Drain<'a, T> {
    type Item = (Option<HeaderName>, T);

    fn next(&mut self) -> Option<Self::Item> {
        if let Some(next) = self.next {
            // Remove the extra value

            let raw_links = RawLinks(self.entries);
            let extra = unsafe {
                remove_extra_value(raw_links, &mut *self.extra_values, next)
            };

            match extra.next {
                Link::Extra(idx) => self.next = Some(idx),
                Link::Entry(_) => self.next = None,
            }

            return Some((None, extra.value));
        }

        let idx = self.idx;

        if idx == self.len {
            return None;
        }

        self.idx += 1;

        unsafe {
            let entry = &(*self.entries)[idx];

            // Read the header name
            let key = ptr::read(&entry.key as *const _);
            let value = ptr::read(&entry.value as *const _);
            self.next = entry.links.map(|l| l.next);

            Some((Some(key), value))
        }
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        // At least this many names... It's unknown if the user wants
        // to count the extra_values on top.
        //
        // For instance, extending a new `HeaderMap` wouldn't need to
        // reserve the upper-bound in `entries`, only the lower-bound.
        let lower = self.len - self.idx;
        let upper = unsafe { (*self.extra_values).len() } + lower;
        (lower, Some(upper))
    }
}

impl<'a, T> FusedIterator for Drain<'a, T> {}

impl<'a, T> Drop for Drain<'a, T> {
    fn drop(&mut self) {
        for _ in self {}
    }
}

unsafe impl<'a, T: Sync> Sync for Drain<'a, T> {}
unsafe impl<'a, T: Send> Send for Drain<'a, T> {}

// ===== impl Entry =====

impl<'a, T> Entry<'a, T> {
    /// Ensures a value is in the entry by inserting the default if empty.
    ///
    /// Returns a mutable reference to the **first** value in the entry.
    ///
    /// # Examples
    ///
    /// ```
    /// # use http::HeaderMap;
    /// let mut map: HeaderMap<u32> = HeaderMap::default();
    ///
    /// let headers = &[
    ///     "content-length",
    ///     "x-hello",
    ///     "Content-Length",
    ///     "x-world",
    /// ];
    ///
    /// for &header in headers {
    ///     let counter = map.entry(header)
    ///         .or_insert(0);
    ///     *counter += 1;
    /// }
    ///
    /// assert_eq!(map["content-length"], 2);
    /// assert_eq!(map["x-hello"], 1);
    /// ```
    pub fn or_insert(self, default: T) -> &'a mut T {
        use self::Entry::*;

        match self {
            Occupied(e) => e.into_mut(),
            Vacant(e) => e.insert(default),
        }
    }

    /// Ensures a value is in the entry by inserting the result of the default
    /// function if empty.
    ///
    /// The default function is not called if the entry exists in the map.
    /// Returns a mutable reference to the **first** value in the entry.
    ///
    /// # Examples
    ///
    /// Basic usage.
    ///
    /// ```
    /// # use http::HeaderMap;
    /// let mut map = HeaderMap::new();
    ///
    /// let res = map.entry("x-hello")
    ///     .or_insert_with(|| "world".parse().unwrap());
    ///
    /// assert_eq!(res, "world");
    /// ```
    ///
    /// The default function is not called if the entry exists in the map.
    ///
    /// ```
    /// # use http::HeaderMap;
    /// # use http::header::HOST;
    /// let mut map = HeaderMap::new();
    /// map.insert(HOST, "world".parse().unwrap());
    ///
    /// let res = map.entry("host")
    ///     .or_insert_with(|| unreachable!());
    ///
    ///
    /// assert_eq!(res, "world");
    /// ```
    pub fn or_insert_with<F: FnOnce() -> T>(self, default: F) -> &'a mut T {
        use self::Entry::*;

        match self {
            Occupied(e) => e.into_mut(),
            Vacant(e) => e.insert(default()),
        }
    }

    /// Returns a reference to the entry's key
    ///
    /// # Examples
    ///
    /// ```
    /// # use http::HeaderMap;
    /// let mut map = HeaderMap::new();
    ///
    /// assert_eq!(map.entry("x-hello").key(), "x-hello");
    /// ```
    pub fn key(&self) -> &HeaderName {
        use self::Entry::*;

        match *self {
            Vacant(ref e) => e.key(),
            Occupied(ref e) => e.key(),
        }
    }
}

// ===== impl VacantEntry =====

impl<'a, T> VacantEntry<'a, T> {
    /// Returns a reference to the entry's key
    ///
    /// # Examples
    ///
    /// ```
    /// # use http::HeaderMap;
    /// let mut map = HeaderMap::new();
    ///
    /// assert_eq!(map.entry("x-hello").key().as_str(), "x-hello");
    /// ```
    pub fn key(&self) -> &HeaderName {
        &self.key
    }

    /// Take ownership of the key
    ///
    /// # Examples
    ///
    /// ```
    /// # use http::header::{HeaderMap, Entry};
    /// let mut map = HeaderMap::new();
    ///
    /// if let Entry::Vacant(v) = map.entry("x-hello") {
    ///     assert_eq!(v.into_key().as_str(), "x-hello");
    /// }
    /// ```
    pub fn into_key(self) -> HeaderName {
        self.key
    }

    /// Insert the value into the entry.
    ///
    /// The value will be associated with this entry's key. A mutable reference
    /// to the inserted value will be returned.
    ///
    /// # Examples
    ///
    /// ```
    /// # use http::header::{HeaderMap, Entry};
    /// let mut map = HeaderMap::new();
    ///
    /// if let Entry::Vacant(v) = map.entry("x-hello") {
    ///     v.insert("world".parse().unwrap());
    /// }
    ///
    /// assert_eq!(map["x-hello"], "world");
    /// ```
    pub fn insert(self, value: T) -> &'a mut T {
        // Ensure that there is space in the map
        let index =
            self.map
                .insert_phase_two(self.key, value.into(), self.hash, self.probe, self.danger);

        &mut self.map.entries[index].value
    }

    /// Insert the value into the entry.
    ///
    /// The value will be associated with this entry's key. The new
    /// `OccupiedEntry` is returned, allowing for further manipulation.
    ///
    /// # Examples
    ///
    /// ```
    /// # use http::header::*;
    /// let mut map = HeaderMap::new();
    ///
    /// if let Entry::Vacant(v) = map.entry("x-hello") {
    ///     let mut e = v.insert_entry("world".parse().unwrap());
    ///     e.insert("world2".parse().unwrap());
    /// }
    ///
    /// assert_eq!(map["x-hello"], "world2");
    /// ```
    pub fn insert_entry(self, value: T) -> OccupiedEntry<'a, T> {
        // Ensure that there is space in the map
        let index =
            self.map
                .insert_phase_two(self.key, value.into(), self.hash, self.probe, self.danger);

        OccupiedEntry {
            map: self.map,
            index: index,
            probe: self.probe,
        }
    }
}

// ===== impl GetAll =====

impl<'a, T: 'a> GetAll<'a, T> {
    /// Returns an iterator visiting all values associated with the entry.
    ///
    /// Values are iterated in insertion order.
    ///
    /// # Examples
    ///
    /// ```
    /// # use http::HeaderMap;
    /// # use http::header::HOST;
    /// let mut map = HeaderMap::new();
    /// map.insert(HOST, "hello.world".parse().unwrap());
    /// map.append(HOST, "hello.earth".parse().unwrap());
    ///
    /// let values = map.get_all("host");
    /// let mut iter = values.iter();
    /// assert_eq!(&"hello.world", iter.next().unwrap());
    /// assert_eq!(&"hello.earth", iter.next().unwrap());
    /// assert!(iter.next().is_none());
    /// ```
    pub fn iter(&self) -> ValueIter<'a, T> {
        // This creates a new GetAll struct so that the lifetime
        // isn't bound to &self.
        GetAll {
            map: self.map,
            index: self.index,
        }
        .into_iter()
    }
}

impl<'a, T: PartialEq> PartialEq for GetAll<'a, T> {
    fn eq(&self, other: &Self) -> bool {
        self.iter().eq(other.iter())
    }
}

impl<'a, T> IntoIterator for GetAll<'a, T> {
    type Item = &'a T;
    type IntoIter = ValueIter<'a, T>;

    fn into_iter(self) -> ValueIter<'a, T> {
        self.map.value_iter(self.index)
    }
}

impl<'a, 'b: 'a, T> IntoIterator for &'b GetAll<'a, T> {
    type Item = &'a T;
    type IntoIter = ValueIter<'a, T>;

    fn into_iter(self) -> ValueIter<'a, T> {
        self.map.value_iter(self.index)
    }
}

// ===== impl ValueIter =====

impl<'a, T: 'a> Iterator for ValueIter<'a, T> {
    type Item = &'a T;

    fn next(&mut self) -> Option<Self::Item> {
        use self::Cursor::*;

        match self.front {
            Some(Head) => {
                let entry = &self.map.entries[self.index];

                if self.back == Some(Head) {
                    self.front = None;
                    self.back = None;
                } else {
                    // Update the iterator state
                    match entry.links {
                        Some(links) => {
                            self.front = Some(Values(links.next));
                        }
                        None => unreachable!(),
                    }
                }

                Some(&entry.value)
            }
            Some(Values(idx)) => {
                let extra = &self.map.extra_values[idx];

                if self.front == self.back {
                    self.front = None;
                    self.back = None;
                } else {
                    match extra.next {
                        Link::Entry(_) => self.front = None,
                        Link::Extra(i) => self.front = Some(Values(i)),
                    }
                }

                Some(&extra.value)
            }
            None => None,
        }
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        match (self.front, self.back) {
            // Exactly 1 value...
            (Some(Cursor::Head), Some(Cursor::Head)) => (1, Some(1)),
            // At least 1...
            (Some(_), _) => (1, None),
            // No more values...
            (None, _) => (0, Some(0)),
        }
    }
}

impl<'a, T: 'a> DoubleEndedIterator for ValueIter<'a, T> {
    fn next_back(&mut self) -> Option<Self::Item> {
        use self::Cursor::*;

        match self.back {
            Some(Head) => {
                self.front = None;
                self.back = None;
                Some(&self.map.entries[self.index].value)
            }
            Some(Values(idx)) => {
                let extra = &self.map.extra_values[idx];

                if self.front == self.back {
                    self.front = None;
                    self.back = None;
                } else {
                    match extra.prev {
                        Link::Entry(_) => self.back = Some(Head),
                        Link::Extra(idx) => self.back = Some(Values(idx)),
                    }
                }

                Some(&extra.value)
            }
            None => None,
        }
    }
}

impl<'a, T> FusedIterator for ValueIter<'a, T> {}

// ===== impl ValueIterMut =====

impl<'a, T: 'a> Iterator for ValueIterMut<'a, T> {
    type Item = &'a mut T;

    fn next(&mut self) -> Option<Self::Item> {
        use self::Cursor::*;

        let entry = unsafe { &mut (*self.map).entries[self.index] };

        match self.front {
            Some(Head) => {
                if self.back == Some(Head) {
                    self.front = None;
                    self.back = None;
                } else {
                    // Update the iterator state
                    match entry.links {
                        Some(links) => {
                            self.front = Some(Values(links.next));
                        }
                        None => unreachable!(),
                    }
                }

                Some(&mut entry.value)
            }
            Some(Values(idx)) => {
                let extra = unsafe { &mut (*self.map).extra_values[idx] };

                if self.front == self.back {
                    self.front = None;
                    self.back = None;
                } else {
                    match extra.next {
                        Link::Entry(_) => self.front = None,
                        Link::Extra(i) => self.front = Some(Values(i)),
                    }
                }

                Some(&mut extra.value)
            }
            None => None,
        }
    }
}

impl<'a, T: 'a> DoubleEndedIterator for ValueIterMut<'a, T> {
    fn next_back(&mut self) -> Option<Self::Item> {
        use self::Cursor::*;

        let entry = unsafe { &mut (*self.map).entries[self.index] };

        match self.back {
            Some(Head) => {
                self.front = None;
                self.back = None;
                Some(&mut entry.value)
            }
            Some(Values(idx)) => {
                let extra = unsafe { &mut (*self.map).extra_values[idx] };

                if self.front == self.back {
                    self.front = None;
                    self.back = None;
                } else {
                    match extra.prev {
                        Link::Entry(_) => self.back = Some(Head),
                        Link::Extra(idx) => self.back = Some(Values(idx)),
                    }
                }

                Some(&mut extra.value)
            }
            None => None,
        }
    }
}

impl<'a, T> FusedIterator for ValueIterMut<'a, T> {}

unsafe impl<'a, T: Sync> Sync for ValueIterMut<'a, T> {}
unsafe impl<'a, T: Send> Send for ValueIterMut<'a, T> {}

// ===== impl IntoIter =====

impl<T> Iterator for IntoIter<T> {
    type Item = (Option<HeaderName>, T);

    fn next(&mut self) -> Option<Self::Item> {
        if let Some(next) = self.next {
            self.next = match self.extra_values[next].next {
                Link::Entry(_) => None,
                Link::Extra(v) => Some(v),
            };

            let value = unsafe { ptr::read(&self.extra_values[next].value) };

            return Some((None, value));
        }

        if let Some(bucket) = self.entries.next() {
            self.next = bucket.links.map(|l| l.next);
            let name = Some(bucket.key);
            let value = bucket.value;

            return Some((name, value));
        }

        None
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        let (lower, _) = self.entries.size_hint();
        // There could be more than just the entries upper, as there
        // could be items in the `extra_values`. We could guess, saying
        // `upper + extra_values.len()`, but that could overestimate by a lot.
        (lower, None)
    }
}

impl<T> FusedIterator for IntoIter<T> {}

impl<T> Drop for IntoIter<T> {
    fn drop(&mut self) {
        // Ensure the iterator is consumed
        for _ in self.by_ref() {}

        // All the values have already been yielded out.
        unsafe {
            self.extra_values.set_len(0);
        }
    }
}

// ===== impl OccupiedEntry =====

impl<'a, T> OccupiedEntry<'a, T> {
    /// Returns a reference to the entry's key.
    ///
    /// # Examples
    ///
    /// ```
    /// # use http::header::{HeaderMap, Entry, HOST};
    /// let mut map = HeaderMap::new();
    /// map.insert(HOST, "world".parse().unwrap());
    ///
    /// if let Entry::Occupied(e) = map.entry("host") {
    ///     assert_eq!("host", e.key());
    /// }
    /// ```
    pub fn key(&self) -> &HeaderName {
        &self.map.entries[self.index].key
    }

    /// Get a reference to the first value in the entry.
    ///
    /// Values are stored in insertion order.
    ///
    /// # Panics
    ///
    /// `get` panics if there are no values associated with the entry.
    ///
    /// # Examples
    ///
    /// ```
    /// # use http::header::{HeaderMap, Entry, HOST};
    /// let mut map = HeaderMap::new();
    /// map.insert(HOST, "hello.world".parse().unwrap());
    ///
    /// if let Entry::Occupied(mut e) = map.entry("host") {
    ///     assert_eq!(e.get(), &"hello.world");
    ///
    ///     e.append("hello.earth".parse().unwrap());
    ///
    ///     assert_eq!(e.get(), &"hello.world");
    /// }
    /// ```
    pub fn get(&self) -> &T {
        &self.map.entries[self.index].value
    }

    /// Get a mutable reference to the first value in the entry.
    ///
    /// Values are stored in insertion order.
    ///
    /// # Panics
    ///
    /// `get_mut` panics if there are no values associated with the entry.
    ///
    /// # Examples
    ///
    /// ```
    /// # use http::header::{HeaderMap, Entry, HOST};
    /// let mut map = HeaderMap::default();
    /// map.insert(HOST, "hello.world".to_string());
    ///
    /// if let Entry::Occupied(mut e) = map.entry("host") {
    ///     e.get_mut().push_str("-2");
    ///     assert_eq!(e.get(), &"hello.world-2");
    /// }
    /// ```
    pub fn get_mut(&mut self) -> &mut T {
        &mut self.map.entries[self.index].value
    }

    /// Converts the `OccupiedEntry` into a mutable reference to the **first**
    /// value.
    ///
    /// The lifetime of the returned reference is bound to the original map.
    ///
    /// # Panics
    ///
    /// `into_mut` panics if there are no values associated with the entry.
    ///
    /// # Examples
    ///
    /// ```
    /// # use http::header::{HeaderMap, Entry, HOST};
    /// let mut map = HeaderMap::default();
    /// map.insert(HOST, "hello.world".to_string());
    /// map.append(HOST, "hello.earth".to_string());
    ///
    /// if let Entry::Occupied(e) = map.entry("host") {
    ///     e.into_mut().push_str("-2");
    /// }
    ///
    /// assert_eq!("hello.world-2", map["host"]);
    /// ```
    pub fn into_mut(self) -> &'a mut T {
        &mut self.map.entries[self.index].value
    }

    /// Sets the value of the entry.
    ///
    /// All previous values associated with the entry are removed and the first
    /// one is returned. See `insert_mult` for an API that returns all values.
    ///
    /// # Examples
    ///
    /// ```
    /// # use http::header::{HeaderMap, Entry, HOST};
    /// let mut map = HeaderMap::new();
    /// map.insert(HOST, "hello.world".parse().unwrap());
    ///
    /// if let Entry::Occupied(mut e) = map.entry("host") {
    ///     let mut prev = e.insert("earth".parse().unwrap());
    ///     assert_eq!("hello.world", prev);
    /// }
    ///
    /// assert_eq!("earth", map["host"]);
    /// ```
    pub fn insert(&mut self, value: T) -> T {
        self.map.insert_occupied(self.index, value.into())
    }

    /// Sets the value of the entry.
    ///
    /// This function does the same as `insert` except it returns an iterator
    /// that yields all values previously associated with the key.
    ///
    /// # Examples
    ///
    /// ```
    /// # use http::header::{HeaderMap, Entry, HOST};
    /// let mut map = HeaderMap::new();
    /// map.insert(HOST, "world".parse().unwrap());
    /// map.append(HOST, "world2".parse().unwrap());
    ///
    /// if let Entry::Occupied(mut e) = map.entry("host") {
    ///     let mut prev = e.insert_mult("earth".parse().unwrap());
    ///     assert_eq!("world", prev.next().unwrap());
    ///     assert_eq!("world2", prev.next().unwrap());
    ///     assert!(prev.next().is_none());
    /// }
    ///
    /// assert_eq!("earth", map["host"]);
    /// ```
    pub fn insert_mult(&mut self, value: T) -> ValueDrain<'_, T> {
        self.map.insert_occupied_mult(self.index, value.into())
    }

    /// Insert the value into the entry.
    ///
    /// The new value is appended to the end of the entry's value list. All
    /// previous values associated with the entry are retained.
    ///
    /// # Examples
    ///
    /// ```
    /// # use http::header::{HeaderMap, Entry, HOST};
    /// let mut map = HeaderMap::new();
    /// map.insert(HOST, "world".parse().unwrap());
    ///
    /// if let Entry::Occupied(mut e) = map.entry("host") {
    ///     e.append("earth".parse().unwrap());
    /// }
    ///
    /// let values = map.get_all("host");
    /// let mut i = values.iter();
    /// assert_eq!("world", *i.next().unwrap());
    /// assert_eq!("earth", *i.next().unwrap());
    /// ```
    pub fn append(&mut self, value: T) {
        let idx = self.index;
        let entry = &mut self.map.entries[idx];
        append_value(idx, entry, &mut self.map.extra_values, value.into());
    }

    /// Remove the entry from the map.
    ///
    /// All values associated with the entry are removed and the first one is
    /// returned. See `remove_entry_mult` for an API that returns all values.
    ///
    /// # Examples
    ///
    /// ```
    /// # use http::header::{HeaderMap, Entry, HOST};
    /// let mut map = HeaderMap::new();
    /// map.insert(HOST, "world".parse().unwrap());
    ///
    /// if let Entry::Occupied(e) = map.entry("host") {
    ///     let mut prev = e.remove();
    ///     assert_eq!("world", prev);
    /// }
    ///
    /// assert!(!map.contains_key("host"));
    /// ```
    pub fn remove(self) -> T {
        self.remove_entry().1
    }

    /// Remove the entry from the map.
    ///
    /// The key and all values associated with the entry are removed and the
    /// first one is returned. See `remove_entry_mult` for an API that returns
    /// all values.
    ///
    /// # Examples
    ///
    /// ```
    /// # use http::header::{HeaderMap, Entry, HOST};
    /// let mut map = HeaderMap::new();
    /// map.insert(HOST, "world".parse().unwrap());
    ///
    /// if let Entry::Occupied(e) = map.entry("host") {
    ///     let (key, mut prev) = e.remove_entry();
    ///     assert_eq!("host", key.as_str());
    ///     assert_eq!("world", prev);
    /// }
    ///
    /// assert!(!map.contains_key("host"));
    /// ```
    pub fn remove_entry(self) -> (HeaderName, T) {
        if let Some(links) = self.map.entries[self.index].links {
            self.map.remove_all_extra_values(links.next);
        }

        let entry = self.map.remove_found(self.probe, self.index);

        (entry.key, entry.value)
    }

    /// Remove the entry from the map.
    ///
    /// The key and all values associated with the entry are removed and
    /// returned.
    pub fn remove_entry_mult(self) -> (HeaderName, ValueDrain<'a, T>) {
        let raw_links = self.map.raw_links();
        let extra_values = &mut self.map.extra_values;

        let next = self.map.entries[self.index].links.map(|l| {
            drain_all_extra_values(raw_links, extra_values, l.next)
                .into_iter()
        });

        let entry = self.map.remove_found(self.probe, self.index);

        let drain = ValueDrain {
            first: Some(entry.value),
            next,
            lt: PhantomData,
        };
        (entry.key, drain)
    }

    /// Returns an iterator visiting all values associated with the entry.
    ///
    /// Values are iterated in insertion order.
    ///
    /// # Examples
    ///
    /// ```
    /// # use http::header::{HeaderMap, Entry, HOST};
    /// let mut map = HeaderMap::new();
    /// map.insert(HOST, "world".parse().unwrap());
    /// map.append(HOST, "earth".parse().unwrap());
    ///
    /// if let Entry::Occupied(e) = map.entry("host") {
    ///     let mut iter = e.iter();
    ///     assert_eq!(&"world", iter.next().unwrap());
    ///     assert_eq!(&"earth", iter.next().unwrap());
    ///     assert!(iter.next().is_none());
    /// }
    /// ```
    pub fn iter(&self) -> ValueIter<'_, T> {
        self.map.value_iter(Some(self.index))
    }

    /// Returns an iterator mutably visiting all values associated with the
    /// entry.
    ///
    /// Values are iterated in insertion order.
    ///
    /// # Examples
    ///
    /// ```
    /// # use http::header::{HeaderMap, Entry, HOST};
    /// let mut map = HeaderMap::default();
    /// map.insert(HOST, "world".to_string());
    /// map.append(HOST, "earth".to_string());
    ///
    /// if let Entry::Occupied(mut e) = map.entry("host") {
    ///     for e in e.iter_mut() {
    ///         e.push_str("-boop");
    ///     }
    /// }
    ///
    /// let mut values = map.get_all("host");
    /// let mut i = values.iter();
    /// assert_eq!(&"world-boop", i.next().unwrap());
    /// assert_eq!(&"earth-boop", i.next().unwrap());
    /// ```
    pub fn iter_mut(&mut self) -> ValueIterMut<'_, T> {
        self.map.value_iter_mut(self.index)
    }
}

impl<'a, T> IntoIterator for OccupiedEntry<'a, T> {
    type Item = &'a mut T;
    type IntoIter = ValueIterMut<'a, T>;

    fn into_iter(self) -> ValueIterMut<'a, T> {
        self.map.value_iter_mut(self.index)
    }
}

impl<'a, 'b: 'a, T> IntoIterator for &'b OccupiedEntry<'a, T> {
    type Item = &'a T;
    type IntoIter = ValueIter<'a, T>;

    fn into_iter(self) -> ValueIter<'a, T> {
        self.iter()
    }
}

impl<'a, 'b: 'a, T> IntoIterator for &'b mut OccupiedEntry<'a, T> {
    type Item = &'a mut T;
    type IntoIter = ValueIterMut<'a, T>;

    fn into_iter(self) -> ValueIterMut<'a, T> {
        self.iter_mut()
    }
}

// ===== impl ValueDrain =====

impl<'a, T> Iterator for ValueDrain<'a, T> {
    type Item = T;

    fn next(&mut self) -> Option<T> {
        if self.first.is_some() {
            self.first.take()
        } else if let Some(ref mut extras) = self.next {
            extras.next()
        } else {
            None
        }
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        match (&self.first, &self.next) {
            // Exactly 1
            (&Some(_), &None) => (1, Some(1)),
            // 1 + extras
            (&Some(_), &Some(ref extras)) => {
                let (l, u) = extras.size_hint();
                (l + 1, u.map(|u| u + 1))
            },
            // Extras only
            (&None, &Some(ref extras)) => extras.size_hint(),
            // No more
            (&None, &None) => (0, Some(0)),
        }
    }
}

impl<'a, T> FusedIterator for ValueDrain<'a, T> {}

impl<'a, T> Drop for ValueDrain<'a, T> {
    fn drop(&mut self) {
        while let Some(_) = self.next() {}
    }
}

unsafe impl<'a, T: Sync> Sync for ValueDrain<'a, T> {}
unsafe impl<'a, T: Send> Send for ValueDrain<'a, T> {}

// ===== impl RawLinks =====

impl<T> Clone for RawLinks<T> {
    fn clone(&self) -> RawLinks<T> {
        *self
    }
}

impl<T> Copy for RawLinks<T> {}

impl<T> ops::Index<usize> for RawLinks<T> {
    type Output = Option<Links>;

    fn index(&self, idx: usize) -> &Self::Output {
        unsafe {
            &(*self.0)[idx].links
        }
    }
}

impl<T> ops::IndexMut<usize> for RawLinks<T> {
    fn index_mut(&mut self, idx: usize) -> &mut Self::Output {
        unsafe {
            &mut (*self.0)[idx].links
        }
    }
}

// ===== impl Pos =====

impl Pos {
    #[inline]
    fn new(index: usize, hash: HashValue) -> Self {
        debug_assert!(index < MAX_SIZE);
        Pos {
            index: index as Size,
            hash: hash,
        }
    }

    #[inline]
    fn none() -> Self {
        Pos {
            index: !0,
            hash: HashValue(0),
        }
    }

    #[inline]
    fn is_some(&self) -> bool {
        !self.is_none()
    }

    #[inline]
    fn is_none(&self) -> bool {
        self.index == !0
    }

    #[inline]
    fn resolve(&self) -> Option<(usize, HashValue)> {
        if self.is_some() {
            Some((self.index as usize, self.hash))
        } else {
            None
        }
    }
}

impl Danger {
    fn is_red(&self) -> bool {
        match *self {
            Danger::Red(_) => true,
            _ => false,
        }
    }

    fn to_red(&mut self) {
        debug_assert!(self.is_yellow());
        *self = Danger::Red(RandomState::new());
    }

    fn is_yellow(&self) -> bool {
        match *self {
            Danger::Yellow => true,
            _ => false,
        }
    }

    fn to_yellow(&mut self) {
        match *self {
            Danger::Green => {
                *self = Danger::Yellow;
            }
            _ => {}
        }
    }

    fn to_green(&mut self) {
        debug_assert!(self.is_yellow());
        *self = Danger::Green;
    }
}

// ===== impl Utils =====

#[inline]
fn usable_capacity(cap: usize) -> usize {
    cap - cap / 4
}

#[inline]
fn to_raw_capacity(n: usize) -> usize {
    n + n / 3
}

#[inline]
fn desired_pos(mask: Size, hash: HashValue) -> usize {
    (hash.0 & mask) as usize
}

/// The number of steps that `current` is forward of the desired position for hash
#[inline]
fn probe_distance(mask: Size, hash: HashValue, current: usize) -> usize {
    current.wrapping_sub(desired_pos(mask, hash)) & mask as usize
}

fn hash_elem_using<K: ?Sized>(danger: &Danger, k: &K) -> HashValue
where
    K: Hash,
{
    use fnv::FnvHasher;

    const MASK: u64 = (MAX_SIZE as u64) - 1;

    let hash = match *danger {
        // Safe hash
        Danger::Red(ref hasher) => {
            let mut h = hasher.build_hasher();
            k.hash(&mut h);
            h.finish()
        }
        // Fast hash
        _ => {
            let mut h = FnvHasher::default();
            k.hash(&mut h);
            h.finish()
        }
    };

    HashValue((hash & MASK) as u16)
}

/*
 *
 * ===== impl IntoHeaderName / AsHeaderName =====
 *
 */

mod into_header_name {
    use super::{Entry, HdrName, HeaderMap, HeaderName};

    /// A marker trait used to identify values that can be used as insert keys
    /// to a `HeaderMap`.
    pub trait IntoHeaderName: Sealed {}

    // All methods are on this pub(super) trait, instead of `IntoHeaderName`,
    // so that they aren't publicly exposed to the world.
    //
    // Being on the `IntoHeaderName` trait would mean users could call
    // `"host".insert(&mut map, "localhost")`.
    //
    // Ultimately, this allows us to adjust the signatures of these methods
    // without breaking any external crate.
    pub trait Sealed {
        #[doc(hidden)]
        fn insert<T>(self, map: &mut HeaderMap<T>, val: T) -> Option<T>;

        #[doc(hidden)]
        fn append<T>(self, map: &mut HeaderMap<T>, val: T) -> bool;

        #[doc(hidden)]
        fn entry<T>(self, map: &mut HeaderMap<T>) -> Entry<'_, T>;
    }

    // ==== impls ====

    impl Sealed for HeaderName {
        #[doc(hidden)]
        #[inline]
        fn insert<T>(self, map: &mut HeaderMap<T>, val: T) -> Option<T> {
            map.insert2(self, val)
        }

        #[doc(hidden)]
        #[inline]
        fn append<T>(self, map: &mut HeaderMap<T>, val: T) -> bool {
            map.append2(self, val)
        }

        #[doc(hidden)]
        #[inline]
        fn entry<T>(self, map: &mut HeaderMap<T>) -> Entry<'_, T> {
            map.entry2(self)
        }
    }

    impl IntoHeaderName for HeaderName {}

    impl<'a> Sealed for &'a HeaderName {
        #[doc(hidden)]
        #[inline]
        fn insert<T>(self, map: &mut HeaderMap<T>, val: T) -> Option<T> {
            map.insert2(self, val)
        }
        #[doc(hidden)]
        #[inline]
        fn append<T>(self, map: &mut HeaderMap<T>, val: T) -> bool {
            map.append2(self, val)
        }

        #[doc(hidden)]
        #[inline]
        fn entry<T>(self, map: &mut HeaderMap<T>) -> Entry<'_, T> {
            map.entry2(self)
        }
    }

    impl<'a> IntoHeaderName for &'a HeaderName {}

    impl Sealed for &'static str {
        #[doc(hidden)]
        #[inline]
        fn insert<T>(self, map: &mut HeaderMap<T>, val: T) -> Option<T> {
            HdrName::from_static(self, move |hdr| map.insert2(hdr, val))
        }
        #[doc(hidden)]
        #[inline]
        fn append<T>(self, map: &mut HeaderMap<T>, val: T) -> bool {
            HdrName::from_static(self, move |hdr| map.append2(hdr, val))
        }

        #[doc(hidden)]
        #[inline]
        fn entry<T>(self, map: &mut HeaderMap<T>) -> Entry<'_, T> {
            HdrName::from_static(self, move |hdr| map.entry2(hdr))
        }
    }

    impl IntoHeaderName for &'static str {}
}

mod as_header_name {
    use super::{Entry, HdrName, HeaderMap, HeaderName, InvalidHeaderName};

    /// A marker trait used to identify values that can be used as search keys
    /// to a `HeaderMap`.
    pub trait AsHeaderName: Sealed {}

    // All methods are on this pub(super) trait, instead of `AsHeaderName`,
    // so that they aren't publicly exposed to the world.
    //
    // Being on the `AsHeaderName` trait would mean users could call
    // `"host".find(&map)`.
    //
    // Ultimately, this allows us to adjust the signatures of these methods
    // without breaking any external crate.
    pub trait Sealed {
        #[doc(hidden)]
        fn try_entry<T>(self, map: &mut HeaderMap<T>) -> Result<Entry<'_, T>, InvalidHeaderName>;

        #[doc(hidden)]
        fn find<T>(&self, map: &HeaderMap<T>) -> Option<(usize, usize)>;

        #[doc(hidden)]
        fn as_str(&self) -> &str;
    }

    // ==== impls ====

    impl Sealed for HeaderName {
        #[doc(hidden)]
        #[inline]
        fn try_entry<T>(self, map: &mut HeaderMap<T>) -> Result<Entry<'_, T>, InvalidHeaderName> {
            Ok(map.entry2(self))
        }

        #[doc(hidden)]
        #[inline]
        fn find<T>(&self, map: &HeaderMap<T>) -> Option<(usize, usize)> {
            map.find(self)
        }

        #[doc(hidden)]
        fn as_str(&self) -> &str {
            <HeaderName>::as_str(self)
        }
    }

    impl AsHeaderName for HeaderName {}

    impl<'a> Sealed for &'a HeaderName {
        #[doc(hidden)]
        #[inline]
        fn try_entry<T>(self, map: &mut HeaderMap<T>) -> Result<Entry<'_, T>, InvalidHeaderName> {
            Ok(map.entry2(self))
        }

        #[doc(hidden)]
        #[inline]
        fn find<T>(&self, map: &HeaderMap<T>) -> Option<(usize, usize)> {
            map.find(*self)
        }

        #[doc(hidden)]
        fn as_str(&self) -> &str {
            <HeaderName>::as_str(*self)
        }
    }

    impl<'a> AsHeaderName for &'a HeaderName {}

    impl<'a> Sealed for &'a str {
        #[doc(hidden)]
        #[inline]
        fn try_entry<T>(self, map: &mut HeaderMap<T>) -> Result<Entry<'_, T>, InvalidHeaderName> {
            HdrName::from_bytes(self.as_bytes(), move |hdr| map.entry2(hdr))
        }

        #[doc(hidden)]
        #[inline]
        fn find<T>(&self, map: &HeaderMap<T>) -> Option<(usize, usize)> {
            HdrName::from_bytes(self.as_bytes(), move |hdr| map.find(&hdr)).unwrap_or(None)
        }

        #[doc(hidden)]
        fn as_str(&self) -> &str {
            self
        }
    }

    impl<'a> AsHeaderName for &'a str {}

    impl Sealed for String {
        #[doc(hidden)]
        #[inline]
        fn try_entry<T>(self, map: &mut HeaderMap<T>) -> Result<Entry<'_, T>, InvalidHeaderName> {
            self.as_str().try_entry(map)
        }

        #[doc(hidden)]
        #[inline]
        fn find<T>(&self, map: &HeaderMap<T>) -> Option<(usize, usize)> {
            Sealed::find(&self.as_str(), map)
        }

        #[doc(hidden)]
        fn as_str(&self) -> &str {
            self
        }
    }

    impl AsHeaderName for String {}

    impl<'a> Sealed for &'a String {
        #[doc(hidden)]
        #[inline]
        fn try_entry<T>(self, map: &mut HeaderMap<T>) -> Result<Entry<'_, T>, InvalidHeaderName> {
            self.as_str().try_entry(map)
        }

        #[doc(hidden)]
        #[inline]
        fn find<T>(&self, map: &HeaderMap<T>) -> Option<(usize, usize)> {
            Sealed::find(*self, map)
        }

        #[doc(hidden)]
        fn as_str(&self) -> &str {
            *self
        }
    }

    impl<'a> AsHeaderName for &'a String {}
}

#[test]
fn test_bounds() {
    fn check_bounds<T: Send + Send>() {}

    check_bounds::<HeaderMap<()>>();
    check_bounds::<Iter<'static, ()>>();
    check_bounds::<IterMut<'static, ()>>();
    check_bounds::<Keys<'static, ()>>();
    check_bounds::<Values<'static, ()>>();
    check_bounds::<ValuesMut<'static, ()>>();
    check_bounds::<Drain<'static, ()>>();
    check_bounds::<GetAll<'static, ()>>();
    check_bounds::<Entry<'static, ()>>();
    check_bounds::<VacantEntry<'static, ()>>();
    check_bounds::<OccupiedEntry<'static, ()>>();
    check_bounds::<ValueIter<'static, ()>>();
    check_bounds::<ValueIterMut<'static, ()>>();
    check_bounds::<ValueDrain<'static, ()>>();
}

#[test]
fn skip_duplicates_during_key_iteration() {
    let mut map = HeaderMap::new();
    map.append("a", HeaderValue::from_static("a"));
    map.append("a", HeaderValue::from_static("b"));
    assert_eq!(map.keys().count(), map.keys_len());
}