1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
#![warn(missing_docs)]

//!
//! An implementation of Hermite Radial Basis Functions with higher order derivatives.
//!
//! # Overview
//!
//! Let `p: &[Point3<f64>]` be a slice of points in 3D space along with corresponding normal
//! vectors `n: &[Vector3<f64>]`. This library lets us construct a 3D potential field whose zero
//! level-set interpolates the points `p` and whose gradient is aligned with `n` at these points.
//!
//! Additionally `hrbf` implements first and second order derivatives of the resulting potential
//! field with respect to point positions `p` (i.e. the Jacobian and Hessian).
//!
//! This library uses [`nalgebra`](https://nalgebra.org/) for linear algebra computations and in
//! API icalls.
//!
//!
//! ## Examples
//!
//! Suppose that we have a function `fn cube() -> (Vec<Point3<f64>, Vec<Vector3<f64>>)`  that
//! samples a unit cube centered at (0.5, 0.5, 0.5) (see the integration tests for a specific
//! implementation), with points and corresponding normals. Then we can construct and use an HRBF
//! field as follows:
//!
//! ```
//! use hrbf::*;
//! use na::{Point3, Vector3};
//! # fn cube() -> (Vec<Point3<f64>>, Vec<Vector3<f64>>) {
//! #    // Fit an hrbf surface to a unit box
//! #    let pts = vec![
//! #        // Corners of the box
//! #        Point3::new(0.0, 0.0, 0.0),
//! #        Point3::new(0.0, 0.0, 1.0),
//! #        Point3::new(0.0, 1.0, 0.0),
//! #        Point3::new(0.0, 1.0, 1.0),
//! #        Point3::new(1.0, 0.0, 0.0),
//! #        Point3::new(1.0, 0.0, 1.0),
//! #        Point3::new(1.0, 1.0, 0.0),
//! #        Point3::new(1.0, 1.0, 1.0),
//! #        // Extra vertices on box faces
//! #        Point3::new(0.5, 0.5, 0.0),
//! #        Point3::new(0.5, 0.5, 1.0),
//! #        Point3::new(0.5, 0.0, 0.5),
//! #        Point3::new(0.5, 1.0, 0.5),
//! #        Point3::new(0.0, 0.5, 0.5),
//! #        Point3::new(1.0, 0.5, 0.5),
//! #    ];
//! #
//! #    let a = 1.0f64 / 3.0f64.sqrt();
//! #    let nmls = vec![
//! #        // Corner normals
//! #        Vector3::new(-a, -a, -a),
//! #        Vector3::new(-a, -a, a),
//! #        Vector3::new(-a, a, -a),
//! #        Vector3::new(-a, a, a),
//! #        Vector3::new(a, -a, -a),
//! #        Vector3::new(a, -a, a),
//! #        Vector3::new(a, a, -a),
//! #        Vector3::new(a, a, a),
//! #        // Side normals
//! #        Vector3::new(0.0, 0.0, -1.0),
//! #        Vector3::new(0.0, 0.0, 1.0),
//! #        Vector3::new(0.0, -1.0, 0.0),
//! #        Vector3::new(0.0, 1.0, 0.0),
//! #        Vector3::new(-1.0, 0.0, 0.0),
//! #        Vector3::new(1.0, 0.0, 0.0),
//! #    ];
//! #
//! #    (pts, nmls)
//! # }
//!
//! // Construct a sampling of a unit cube centered at (0.5, 0.5, 0.5).
//! let (points, normals) = cube();
//!
//! // Create a new HRBF field using the `x^3` kernel with samples located at `points`.
//! // Normals define the direction of the HRBF gradient field at `points`.
//! let hrbf = Pow3HrbfBuilder::new(points)
//!     .normals(normals)
//!     .build()
//!     .unwrap();
//!
//! // The HRBF potential can then be queried at any 3D location as follows:
//! let mut query_point = Point3::new(0.1_f64, 0.2, 0.3);
//!
//! // Inside the cube the potential is negative.
//! assert!(hrbf.eval(query_point) < 0.0);
//!
//! // Outside it is positive.
//! query_point.z = 1.3;
//! assert!(hrbf.eval(query_point) > 0.0);
//!
//! // The gradient of the HRBF potential can also be queried.
//!
//! // We expect the gradient to point outward from the cube center.
//! let direction = Vector3::new(1.0, 1.0, 1.0);
//! assert!(hrbf.grad(query_point).dot(&direction) > 0.0);
//!
//! query_point.z = 0.3;
//! assert!(hrbf.grad(query_point).dot(&direction) < 0.0);
//! ```
//!
//! ## What is the difference between "points" and "sites" when creating an HRBF field?
//!
//! It may seem surprising that we can specify "points" and "sites" as two distinct sets. So why do
//! we need to ever specify "points" in [`HrbfBuilder`](struct.HrbfBuilder.html) if we have already
//! passed a set of "sites" in [`HrbfBuilder::new`](struct.HrbfBuilder.html#method.new)?
//!
//! The reason is simply that "sites" and "points" have a different purpose.  The set of "sites"
//! (the set of points passed to [`HrbfBuilder::new`](struct.HrbfBuilder.html#method.new)) are used
//! to evaluate the HRBF potential, these are the basis for the potential
//! field.  On the other hand, "points" are the 3D positions that define where the zero level-set
//! (or an offset level-set if "offsets" are specified) of the HRBF potential field goes.  However,
//! currently there is a restriction in the implementation that "sites" and "points" must have the
//! same size. Additionally, the closer "points" are to "sites", the better quality the resulting
//! HRBF potential will be.
//!
//!
//! # Related Publications
//!
//! The following publications introduce and analyse Hermite Radial Basis Functions and describe
//! different uses for approximating scattered point data:
//!
//! [I. Macêdo, J. P. Gois, and L. Velho, "*Hermite Radial Basis Function
//! Implicits*"](https://doi.org/10.1111/j.1467-8659.2010.01785.x)
//!
//! [R. Vaillant, L. Barthe, G. Guennebaud, M.-P. Cani, D. Rhomer, B. Wyvill, O. Gourmel, and M.
//! Paulin, "*Implicit Skinning: Real-Time Skin Deformation with Contact
//! Modeling*"](http://rodolphe-vaillant.fr/pivotx/templates/projects/implicit_skinning/implicit_skinning.pdf)
//!
pub mod kernel;

pub use kernel::*;
use na::storage::Storage;
use na::{
    DMatrix, DVector, Matrix3, Matrix3x4, Matrix4, Point3, RealField, Vector, Vector3, Vector4, U1,
    U3,
};
use num_traits::{Float, Zero};

/// Floating point real trait used throughout this library.
pub trait Real: Float + RealField + std::fmt::Debug {}
impl<T> Real for T where T: Float + RealField + std::fmt::Debug {}

/// Shorthand for an HRBF with a `x^3` kernel.
pub type Pow3Hrbf<T> = Hrbf<T, kernel::Pow3<T>>;
/// Shorthand for an HRBF with a `x^5` kernel.
pub type Pow5Hrbf<T> = Hrbf<T, kernel::Pow5<T>>;
/// Shorthand for an HRBF with a Gaussian `exp(-x*x)` kernel.
pub type GaussHrbf<T> = Hrbf<T, kernel::Gauss<T>>;
/// Shorthand for an HRBF with a CSRBF(3,1) `(1-x)^4 (4x+1)` kernel of type.
pub type Csrbf31Hrbf<T> = Hrbf<T, kernel::Csrbf31<T>>;
/// Shorthand for an HRBF with a CSRBF(4,1) `(1-x)^6 (35x^2 + 18x + 3)` kernel of type.
pub type Csrbf42Hrbf<T> = Hrbf<T, kernel::Csrbf42<T>>;

/// Shorthand for an HRBF builder with a `x^3` kernel.
pub type Pow3HrbfBuilder<T> = HrbfBuilder<T, kernel::Pow3<T>>;
/// Shorthand for an HRBF builder with a `x^5` kernel.
pub type Pow5HrbfBuilder<T> = HrbfBuilder<T, kernel::Pow5<T>>;
/// Shorthand for an HRBF builder with a Gaussian `exp(-x*x)` kernel.
pub type GaussHrbfBuilder<T> = HrbfBuilder<T, kernel::Gauss<T>>;
/// Shorthand for an HRBF builder with a CSRBF(3,1) `(1-x)^4 (4x+1)` kernel of type.
pub type Csrbf31HrbfBuilder<T> = HrbfBuilder<T, kernel::Csrbf31<T>>;
/// Shorthand for an HRBF builder with a CSRBF(4,1) `(1-x)^6 (35x^2 + 18x + 3)` kernel of type.
pub type Csrbf42HrbfBuilder<T> = HrbfBuilder<T, kernel::Csrbf42<T>>;

/// Error indicating that the building the HRBF potential failed.
#[derive(Clone, Debug, PartialEq, Eq)]
pub enum Error {
    /// The number of points does not match the number of sites.
    NumPointsMismatch,
    /// The number of offsets does not match the number of sites.
    NumOffsetsMismatch,
    /// The number of normalsdoes not match the number of sites.
    NumNormalsMismatch,
    /// The linear system solver responsible for fitting the HRBF to the given data failed.
    LinearSolveFailure,
}

impl std::fmt::Display for Error {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match self {
            Error::NumPointsMismatch => "Number of points does not match the number of sites",
            Error::NumOffsetsMismatch => "Number of offsets does not match the number of sites",
            Error::NumNormalsMismatch => "Number of normals does not match the number of sites",
            Error::LinearSolveFailure => "Linear solve failed when building the HRBF potential",
        }
        .fmt(f)
    }
}
impl std::error::Error for Error {}

/// A Result with a custom Error type encapsulating all possible failures in this crate.
pub type Result<T> = std::result::Result<T, Error>;

/// HRBF specific kernel type. In general, we can assign a unique kernel to each HRBF site, or we
/// can use the same kernel for all points. This corresponds to Variable and Constant kernel types
/// respectively.
#[derive(Clone, Debug)]
pub enum KernelType<K> {
    /// Each site has its own kernel, although all kernels must have the same type.
    Variable(Vec<K>),
    /// Same kernel for all sites.
    Constant(K),
}

impl<K> ::std::ops::Index<usize> for KernelType<K> {
    type Output = K;

    fn index(&self, index: usize) -> &K {
        match *self {
            KernelType::Variable(ref ks) => &ks[index],
            KernelType::Constant(ref k) => k,
        }
    }
}

/// A builder for an HRBF potential.
///
/// This struct collects the data needed to build a complete HRBF potential. This includes a set of
/// `sites`, `points`, normals and optionally a custom `kernel`.
#[derive(Clone, Debug)]
pub struct HrbfBuilder<T, K>
where
    T: Real,
    K: Kernel<T>,
{
    sites: Vec<Point3<T>>,
    points: Vec<Point3<T>>,
    normals: Vec<Vector3<T>>,
    offsets: Vec<T>,
    kernel: KernelType<K>,
}

impl<T, K> HrbfBuilder<T, K>
where
    T: Real,
    K: Kernel<T> + Clone + Default,
{
    /// Construct an HRBF builder with a set of `sites`.
    ///
    /// `sites` define the points used by HRBF at which the kernel will be evaluated.  Typically it
    /// is recommended to use the sites colocated with, or closely approximating the `points`
    /// sampling the desired zero level-set of the HRBF field.
    ///
    /// `sites` also initializes the size of the HRBF. Additional data to the HRBF builder must
    /// have the same size as `sites`.
    ///
    /// `sites` also serve as the default sampling `points` used to interpolate the zero level-set
    /// of the HRBF. In other words, if `points` is not specified, `sites` will be used instead.
    pub fn new(sites: Vec<Point3<T>>) -> HrbfBuilder<T, K> {
        HrbfBuilder {
            sites,
            points: Vec::new(),
            normals: Vec::new(),
            offsets: Vec::new(),
            kernel: KernelType::Constant(K::default()),
        }
    }

    /// Specify a set of values indicating the potential to be intepolated at each corresponding
    /// point interpolated by the HRBF.
    ///
    /// If this is not specified, each point is expected to be
    /// interpolating the zero level-set of the HRBF. Effectively, this assigns the offset of the
    /// HRBF field potential from the sample points.
    ///
    /// Negative offsets would result in the HRBF zero level-set to be pushed outwards, while
    /// positive offsets would push it inwards assuming that the interior of the object is
    /// represented by the negative HRBF potential (it is also equally valid to reverse this
    /// convention).
    ///
    /// The number of offsets must be the same as the `sites` specified to `new`.
    pub fn offsets(&mut self, offsets: Vec<T>) -> &mut Self {
        self.offsets = offsets;
        self
    }

    /// A set of points intended to sample the surface, or the zero level-set of the HRBF
    /// potential.
    ///
    /// If `points` is the same as as `sites` specified in `new`, then this setting can be omitted.
    pub fn points(&mut self, points: Vec<Point3<T>>) -> &mut Self {
        self.points = points;
        self
    }

    /// A set of normal vectors setting the direction of the HRBF gradient at each of the `points`
    /// as specified by the `points` function or `sites` passsed into `new` if the `points`
    /// function is not called.
    pub fn normals(&mut self, normals: Vec<Vector3<T>>) -> &mut Self {
        self.normals = normals;
        self
    }

    /// Recall that the HRBF fit is done as
    ///
    /// ```verbatim
    /// ∑ⱼ ⎡  𝜙(𝑥ᵢ - 𝑥ⱼ)  ∇𝜙(𝑥ᵢ - 𝑥ⱼ)'⎤ ⎡ 𝛼ⱼ⎤ = ⎡ 0 ⎤
    ///    ⎣ ∇𝜙(𝑥ᵢ - 𝑥ⱼ) ∇∇𝜙(𝑥ᵢ - 𝑥ⱼ) ⎦ ⎣ 𝛽ⱼ⎦   ⎣ 𝑛ᵢ⎦
    /// ```
    ///
    /// for every HRBF site `i`, where the sum runs over HRBF sites `j`
    /// where `𝜙(𝑥) = 𝜑(||𝑥||)` for one of the basis kernels we define in
    /// [`kernel`](kernel/index.html)
    /// If we rewrite the equation above as
    ///
    /// ```verbatim
    /// ∑ⱼ Aⱼ(𝑥ᵢ)bⱼ = rᵢ
    /// ```
    ///
    /// this function returns the matrix Aⱼ(p).
    ///
    /// This is the symmetric 4x4 matrix block that is used to fit the HRBF coefficients.
    /// This is equivalent to stacking the vector from `eval_block` on top of the
    /// 3x4 matrix returned by `grad_block`. This function is more efficient than
    /// evaluating `eval_block` and `grad_block`.
    /// This is `[g ∇g]' = [𝜙 (∇𝜙)'; ∇𝜙 ∇(∇𝜙)']` in MATLAB notation.
    pub(crate) fn fit_block(
        sites: &[Point3<T>],
        kernel: &KernelType<K>,
        p: Point3<T>,
        j: usize,
    ) -> Matrix4<T> {
        let x = p - sites[j];
        let l = x.norm();
        let w = kernel[j].f(l);
        let g = Hrbf::grad_phi(kernel, x, l, j);
        let h = Hrbf::hess_phi(kernel, x, l, j);
        Matrix4::new(
            w,
            g[0],
            g[1],
            g[2],
            g[0],
            h[(0, 0)],
            h[(0, 1)],
            h[(0, 2)],
            g[1],
            h[(1, 0)],
            h[(1, 1)],
            h[(1, 2)],
            g[2],
            h[(2, 0)],
            h[(2, 1)],
            h[(2, 2)],
        )
    }

    /// Build the linear system given all the needed data.
    #[allow(non_snake_case)]
    pub(crate) fn fit_system(
        sites: &[Point3<T>],
        points: &[Point3<T>],
        offsets: &[T],
        normals: &[Vector3<T>],
        kernel: &KernelType<K>,
    ) -> (DMatrix<T>, DVector<T>) {
        let num_sites = sites.len();
        debug_assert_eq!(points.len(), num_sites);
        debug_assert_eq!(normals.len(), num_sites);
        debug_assert!(offsets.is_empty() || offsets.len() == num_sites);
        let rows = 4 * points.len();
        let cols = 4 * num_sites;
        let mut A = DMatrix::<T>::zeros(rows, cols);
        let mut b = DVector::<T>::zeros(rows);
        for (i, p) in points.iter().enumerate() {
            b[4 * i] = if offsets.is_empty() {
                T::zero()
            } else {
                offsets[i]
            };
            b.fixed_rows_mut::<3>(4 * i + 1).copy_from(&normals[i]);
            for j in 0..num_sites {
                A.fixed_view_mut::<4, 4>(4 * i, 4 * j)
                    .copy_from(&Self::fit_block(sites, &kernel, *p, j));
            }
        }
        (A, b)
    }

    /// (Advanced) Build the linear system that is solved to compute the actual HRBF without evaluating it.
    ///
    /// This function returns the fitting matrix `A` and corresponding right-hand-side `b`.
    /// `b` is a stacked vector of 4D vectors representing the desired HRBF potential
    /// and normal at data point `i`, so `A.inverse()*b` gives the `betas` (or weights)
    /// defining the HRBF potential.
    pub fn build_system(&self) -> Result<(DMatrix<T>, DVector<T>)> {
        let HrbfBuilder {
            sites,
            points,
            normals,
            offsets,
            kernel,
        } = self;

        let num_sites = sites.len();

        let points = if points.is_empty() {
            sites.as_slice()
        } else {
            points.as_slice()
        };

        if points.len() != num_sites {
            return Err(Error::NumPointsMismatch);
        }

        if !offsets.is_empty() || offsets.len() != num_sites {
            return Err(Error::NumOffsetsMismatch);
        }

        if normals.len() != num_sites {
            return Err(Error::NumNormalsMismatch);
        }

        Ok(Self::fit_system(
            &sites, &points, &offsets, &normals, &kernel,
        ))
    }

    /// A non-consuming builder.
    pub fn build(&self) -> Result<Hrbf<T, K>> {
        let HrbfBuilder {
            sites,
            points,
            normals,
            offsets,
            kernel,
        } = self;

        let mut hrbf = Hrbf {
            sites: sites.clone(),
            betas: Vec::new(),
            kernel: kernel.clone(),
        };

        let result = if offsets.is_empty() {
            if points.is_empty() {
                Hrbf::fit(&mut hrbf, &normals)
            } else {
                Hrbf::fit_to_points(&mut hrbf, &points, &normals)
            }
        } else {
            if points.is_empty() {
                Hrbf::offset_fit(&mut hrbf, &offsets, &normals)
            } else {
                Hrbf::offset_fit_to_points(&mut hrbf, &points, &offsets, &normals)
            }
        };

        match result {
            Ok(_) => Ok(hrbf),
            Err(e) => Err(e),
        }
    }
}

impl<T, K> HrbfBuilder<T, K>
where
    T: Real,
    K: Kernel<T> + LocalKernel<T>,
{
    /// Set the kernel radius to be `radius` for all sites.
    ///
    /// Note that this parameter is only valid for local kernel types like `Csrbf31`, `Csrbf42` and
    /// `Gauss`. The radius in the `Gauss` kernel specifies its standard deviation, while in
    /// `Csrbf31` and `Csrbf42`, radius is the support radius beyond which the kernel is zero
    /// valued.
    pub fn radius(mut self, radius: T) -> Self {
        self.kernel = KernelType::Constant(K::new(radius));
        self
    }

    /// Set the kernel radius for each site individually.
    ///
    /// Note that this parameter is only valid for local kernel types like `Csrbf31`, `Csrbf42` and
    /// `Gauss`. The radii for the `Gauss` kernel specify its standard deviation, while in
    /// `Csrbf31` and `Csrbf42`, the radii are the support radii beyond which the kernel is zero.
    pub fn radii(mut self, radii: Vec<T>) -> Self {
        self.kernel = KernelType::Variable(radii.into_iter().map(|r| K::new(r)).collect());
        self
    }
}

/// An HRBF potential field.
///
/// The field and its first and second derivatives can be queried at any 3D position.
/// Additionally this field can be reset with a different set of points and normals using one of
/// the `fit`, `fit_to_points`, `offset_fit`, or `offset_fit_to_points` methods. Some advanced
/// functionality is also exposed (see individual methods for details).
#[derive(Clone, Debug)]
pub struct Hrbf<T, K>
where
    T: Real,
    K: Kernel<T>,
{
    sites: Vec<Point3<T>>,
    betas: Vec<Vector4<T>>,
    kernel: KernelType<K>,
}

impl<T, K> Hrbf<T, K>
where
    T: Real,
    K: Kernel<T> + Clone + Default,
{
    /// Returns a reference to the vector of site locations used by this HRBF.
    pub fn sites(&self) -> &[Point3<T>] {
        &self.sites
    }

    /// (Advanced) Returns a reference to the vector of 4D weight vectors, which determine the
    /// global HRBF potential.
    ///
    /// These are the unknowns computed during fitting.  Each 4D vector has
    /// the structure `[aⱼ; bⱼ]` per site `j` where `a` is a scalar weighing the contribution from
    /// the kernel at site `j` and `b` is a 3D vector weighin the contribution from the kernel
    /// gradient at site `j` to the total HRBF potential.
    pub fn betas(&self) -> &[Vector4<T>] {
        &self.betas
    }

    /// Fit the current HRBF to the `sites`, with which this HRBF was built.
    ///
    /// Normals dictate the direction of the HRBF gradient at the specified `sites`.
    /// Return a mutable reference to `Self` if successful.
    #[allow(non_snake_case)]
    pub fn fit(&mut self, normals: &[Vector3<T>]) -> Result<&mut Self> {
        self.fit_impl(None, None, normals)
    }

    /// Fit the current HRBF to the given data.
    ///
    /// Return a mutable reference to `Self` if successful.
    /// NOTE: Currently, points must be the same size as sites.
    #[allow(non_snake_case)]
    pub fn fit_to_points(
        &mut self,
        points: &[Point3<T>],
        normals: &[Vector3<T>],
    ) -> Result<&mut Self> {
        self.fit_impl(points.into(), None, normals)
    }

    /// Fit the current HRBF to the `sites`, with which this HRBF was built, offset by the given
    /// `offsets`.
    ///
    /// The resulting HRBF field is equal to `offsets` at the `sites`.
    /// and has a gradient equal to `normals`.
    /// Return a mutable reference to `Self` if successful.
    #[allow(non_snake_case)]
    pub fn offset_fit(&mut self, offsets: &[T], normals: &[Vector3<T>]) -> Result<&mut Self> {
        self.fit_impl(None, offsets.into(), normals)
    }

    /// Fit the current HRBF to the given data.
    ///
    /// The resulting HRBF field is equal to `offsets` at the provided `points`
    /// and has a gradient equal to `normals`.
    /// Return a mutable reference to `Self` if successful.
    /// NOTE: Currently, points must be the same size as sites.
    #[allow(non_snake_case)]
    pub fn offset_fit_to_points(
        &mut self,
        points: &[Point3<T>],
        offsets: &[T],
        normals: &[Vector3<T>],
    ) -> Result<&mut Self> {
        self.fit_impl(points.into(), offsets.into(), normals)
    }

    /// Implementation of the fitting algorithm.
    ///
    /// Return a mutable reference to `Self` if the computation is successful.
    #[allow(non_snake_case)]
    fn fit_impl(
        &mut self,
        points: Option<&[Point3<T>]>,
        offsets: Option<&[T]>,
        normals: &[Vector3<T>],
    ) -> Result<&mut Self> {
        let num_sites = self.sites.len();

        let points = points.unwrap_or_else(|| self.sites.as_slice());

        if points.len() != num_sites {
            return Err(Error::NumPointsMismatch);
        }

        if normals.len() != num_sites {
            return Err(Error::NumNormalsMismatch);
        }

        let mut potential = Vec::new();
        let offsets = offsets.unwrap_or_else(|| {
            potential.resize(num_sites, T::zero());
            potential.as_slice()
        });

        if offsets.len() != num_sites {
            return Err(Error::NumOffsetsMismatch);
        }

        let (A, b) = HrbfBuilder::fit_system(
            self.sites.as_slice(),
            points,
            offsets,
            normals,
            &self.kernel,
        );

        self.betas.clear();
        if let Some(x) = A.lu().solve(&b) {
            assert_eq!(x.len(), 4 * num_sites);

            self.betas.resize(num_sites, Vector4::zero());
            for j in 0..num_sites {
                self.betas[j].copy_from(&x.fixed_rows::<4>(4 * j));
            }

            Ok(self)
        } else {
            Err(Error::LinearSolveFailure)
        }
    }

    /// The following are derivatives of the function
    ///
    /// `phi(x) := kernel(|x|)`
    ///
    /// Given a vector `x` and its norm `l`, return the gradient of the kernel evaluated
    /// at `l` wrt `x`. `j` denotes the site at which the kernel is evaluated.
    fn grad_phi(kernel: &KernelType<K>, x: Vector3<T>, l: T, j: usize) -> Vector3<T> {
        x * kernel[j].df_l(l)
    }

    // TODO: The computations below do more than needed. For instance most computed
    // matrices are symmetric, if we can reformulate this formulas below into operations
    // on symmetric matrices, we can optimize a lot of flops out.

    /// Given a vector `x` and its norm `l`, return the hessian of the kernel evaluated
    /// at `l` wrt `x`. `j` denotes the site at which the kernel is evaluated.
    fn hess_phi(kernel: &KernelType<K>, x: Vector3<T>, l: T, j: usize) -> Matrix3<T> {
        let df_l = kernel[j].df_l(l);
        let mut hess = Matrix3::identity();
        if l <= T::zero() {
            debug_assert!({
                let g = kernel[j].ddf(l) - df_l;
                g * g < T::from(1e-12).unwrap()
            });
            return hess * df_l;
        }

        let ddf = kernel[j].ddf(l);
        let x_hat = x / l;
        // df_l*I + x_hat*x_hat.transpose()*(ddf - df_l)
        hess.ger(ddf - df_l, &x_hat, &x_hat, df_l);
        hess
    }

    /// Given a vector `x` and its norm `l`, return the third derivative of the kernel evaluated
    /// at `l` wrt `x` when multiplied by vector b.
    /// `j` denotes the site at which the kernel is evaluated.
    fn third_deriv_prod_phi<S>(
        &self,
        x: Vector3<T>,
        l: T,
        b: &Vector<T, U3, S>,
        j: usize,
    ) -> Matrix3<T>
    where
        S: Storage<T, U3, U1>,
    {
        if l <= T::zero() {
            debug_assert!({
                let g = self.kernel[j].g(l); // ddf(l)/l - df(l)/l^2
                let dddf = self.kernel[j].dddf(l);
                dddf == T::zero() && g == T::zero()
            });
            return Matrix3::zero();
        }

        let g = self.kernel[j].g(l); // ddf(l)/l - df(l)/l^2
        let dddf = self.kernel[j].dddf(l);
        let x_hat = x / l;
        let x_dot_b = b.dot(&x_hat);
        let mut mtx = Matrix3::identity();
        let _3 = T::from(3).unwrap();
        let _1 = T::one();

        // TODO: optimize this expression. we can probably achieve the same thing with less flops
        // (bxT + xTb*I + xbT)*g + xxT*((dddf - T::from(3).unwrap()*g)*xTb)
        mtx.ger(_1, b, &x_hat, x_dot_b);
        mtx.ger(_1, &x_hat, b, _1);
        mtx.ger((dddf - _3 * g) * x_dot_b, &x_hat, &x_hat, g);
        mtx
    }

    /// Given a vector `x` and its norm `l`, return the fourth derivative of the kernel
    /// evaluated at `l` wrt `x` when multiplied by vectors `b` and `c`.
    /// `j` denotes the site at which the kernel is evaluated.
    #[inline]
    fn fourth_deriv_prod_phi<S>(
        &self,
        x: Vector3<T>,
        l: T,
        b: &Vector<T, U3, S>,
        c: &Vector<T, U3, S>,
        j: usize,
    ) -> Matrix3<T>
    where
        S: Storage<T, U3, U1>,
    {
        let g_l = self.kernel[j].g_l(l);
        let bc_tr = Matrix3::new(
            b[0] * c[0],
            b[1] * c[0],
            b[2] * c[0],
            b[0] * c[1],
            b[1] * c[1],
            b[2] * c[1],
            b[0] * c[2],
            b[1] * c[2],
            b[2] * c[2],
        );
        let c_dot_b = bc_tr.trace();
        let bc_tr_plus_cb_tr = bc_tr + bc_tr.transpose();
        let mut res = Matrix3::identity();
        if l <= T::zero() {
            debug_assert!({
                let h3 = self.kernel[j].h(l, T::from(3).unwrap());
                let h52 = self.kernel[j].h(l, T::from(5.0 / 2.0).unwrap());
                let ddddf = self.kernel[j].ddddf(l);
                let a = ddddf - T::from(6.0).unwrap() * h52;
                h3 == T::zero() && a * a < T::from(1e-12).unwrap()
            });
            return res * (g_l * c_dot_b) + (bc_tr_plus_cb_tr) * g_l;
        }

        let h3 = self.kernel[j].h(l, T::from(3).unwrap());
        let h52 = self.kernel[j].h(l, T::from(5.0 / 2.0).unwrap());
        let ddddf = self.kernel[j].ddddf(l);
        let a = ddddf - T::from(6.0).unwrap() * h52;
        let x_hat = x / l;
        let x_dot_b = x_hat.dot(b);
        let x_dot_c = x_hat.dot(c);
        let cb_sum = c * x_dot_b + b * x_dot_c;
        let _1 = T::one();

        // TODO: optimize this expression. we can probably achieve the same thing with less flops
        //xxT*(a*xTb*xTc + h3*cTb)
        //    + I*(h3*xTc*xTb + g_l*cTb)
        //    + ((cxT + xcT)*xTb + (bxT + xbT)*xTc)*h3
        //    + (bcT + cbT)*g_l
        res.ger(
            a * x_dot_b * x_dot_c + h3 * c_dot_b,
            &x_hat,
            &x_hat,
            h3 * x_dot_c * x_dot_b + g_l * c_dot_b,
        );
        res.ger(h3, &cb_sum, &x_hat, _1);
        res.ger(h3, &x_hat, &cb_sum, _1);
        res + (bc_tr_plus_cb_tr) * g_l
    }

    /// Evaluate the HRBF at point `p`.
    pub fn eval(&self, p: Point3<T>) -> T {
        self.betas
            .iter()
            .enumerate()
            .fold(T::zero(), |sum, (j, b)| sum + self.eval_block(p, j).dot(b))
    }

    /// Helper function for `eval`.
    fn eval_block(&self, p: Point3<T>, j: usize) -> Vector4<T> {
        let x = p - self.sites[j];
        let l = x.norm();
        let w = self.kernel[j].f(l);
        let g = Self::grad_phi(&self.kernel, x, l, j);
        Vector4::new(w, g[0], g[1], g[2])
    }

    /// Gradient of the HRBF function at point `p`.
    pub fn grad(&self, p: Point3<T>) -> Vector3<T> {
        self.betas
            .iter()
            .enumerate()
            .fold(Vector3::zero(), |sum, (j, b)| {
                sum + self.grad_block(p, j) * b
            })
    }

    /// Helper function for `grad`. Returns a 3x4 matrix that gives the gradient of the HRBF when
    /// multiplied by the corresponding coefficients.
    fn grad_block(&self, p: Point3<T>, j: usize) -> Matrix3x4<T> {
        let x = p - self.sites[j];
        let l = x.norm();
        let h = Self::hess_phi(&self.kernel, x, l, j);
        let mut grad = Matrix3x4::zero();
        grad.column_mut(0)
            .copy_from(&Self::grad_phi(&self.kernel, x, l, j));
        grad.fixed_columns_mut::<3>(1).copy_from(&h);
        grad
    }

    /// Compute the Hessian of the HRBF function.
    pub fn hess(&self, p: Point3<T>) -> Matrix3<T> {
        self.betas
            .iter()
            .enumerate()
            .fold(Matrix3::zero(), |sum, (j, b)| {
                sum + self.hess_block_prod(p, b, j)
            })
    }

    /// Helper function for computing the hessian
    #[inline]
    fn hess_block_prod(&self, p: Point3<T>, b: &Vector4<T>, j: usize) -> Matrix3<T> {
        let x = p - self.sites[j];
        let l = x.norm();
        let b3 = b.fixed_rows::<3>(1);
        let h = Self::hess_phi(&self.kernel, x, l, j);
        h * b[0] + self.third_deriv_prod_phi(x, l, &b3, j)
    }

    /// (Advanced) Recall that the HRBF fit is done as
    ///
    /// ```verbatim
    /// ∑ⱼ ⎡  𝜙(𝑥ᵢ - 𝑥ⱼ)  ∇𝜙(𝑥ᵢ - 𝑥ⱼ)'⎤ ⎡ 𝛼ⱼ⎤ = ⎡ 0 ⎤
    ///    ⎣ ∇𝜙(𝑥ᵢ - 𝑥ⱼ) ∇∇𝜙(𝑥ᵢ - 𝑥ⱼ) ⎦ ⎣ 𝛽ⱼ⎦   ⎣ 𝑛ᵢ⎦
    /// ```
    ///
    /// for every HRBF site `i`, where the sum runs over HRBF sites `j`
    /// where `𝜙(𝑥) = 𝜑(||𝑥||)` for one of the basis kernels we define in
    /// [`kernel`](kernel/index.html)
    /// If we rewrite the equation above as
    ///
    /// ```verbatim
    /// ∑ⱼ Aⱼ(𝑥ᵢ)bⱼ = rᵢ
    /// ```
    ///
    /// this function returns the matrix Aⱼ(p).
    ///
    /// This is the symmetric 4x4 matrix block that is used to fit the HRBF coefficients.
    /// This is equivalent to stacking the vector from `eval_block` on top of the
    /// 3x4 matrix returned by `grad_block`. This function is more efficient than
    /// evaluating `eval_block` and `grad_block`.
    /// This is `[g ∇g]' = [𝜙 (∇𝜙)'; ∇𝜙 ∇(∇𝜙)']` in MATLAB notation.
    pub fn fit_block(&self, p: Point3<T>, j: usize) -> Matrix4<T> {
        HrbfBuilder::fit_block(self.sites.as_slice(), &self.kernel, p, j)
    }

    /// (Advanced) Using the same notation as above,
    /// this function returns the matrix `∇(Aⱼ(p)b)'`
    pub fn grad_fit_block_prod(&self, p: Point3<T>, b: Vector4<T>, j: usize) -> Matrix3x4<T> {
        let x = p - self.sites[j];
        let l = x.norm();

        let b3 = b.fixed_rows::<3>(1);

        let g = Self::grad_phi(&self.kernel, x, l, j);
        let h = Self::hess_phi(&self.kernel, x, l, j);

        let third = h * b[0] + self.third_deriv_prod_phi(x, l, &b3, j);

        let mut grad = Matrix3x4::zero();
        grad.column_mut(0).copy_from(&(g * b[0] + h * b3));
        grad.fixed_columns_mut::<3>(1).copy_from(&third);
        grad
    }

    /// Using the same notation as above,
    /// given a 4d vector lagrange multiplier `c`, this function returns the matrix
    ///
    /// ```verbatim
    /// ∇(∇(Aⱼ(p)βⱼ)'c)'
    /// ```
    ///
    /// where βⱼ are taken from `self.betas`
    fn hess_fit_prod_block(&self, p: Point3<T>, c: Vector4<T>, j: usize) -> Matrix3<T> {
        let x = p - self.sites[j];
        let l = x.norm();

        let c3 = c.fixed_rows::<3>(1);
        let a = self.betas[j][0];
        let b = self.betas[j].fixed_rows::<3>(1);

        // Compute in blocks
        Self::hess_phi(&self.kernel, x, l, j) * c[0] * a
            + self.third_deriv_prod_phi(x, l, &b, j) * c[0]
            + self.third_deriv_prod_phi(x, l, &c3, j) * a
            + self.fourth_deriv_prod_phi(x, l, &b, &c3, j)
    }

    /// Sum of hess_fit_prod_block evaluated at all sites.
    pub fn hess_fit_prod(&self, p: Point3<T>, c: Vector4<T>) -> Matrix3<T> {
        (0..self.sites.len()).fold(Matrix3::zero(), |sum, j| {
            sum + self.hess_fit_prod_block(p, c, j)
        })
    }
}