1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
//! Holmes
//!
//! Holmes is a Datalog inspired system for binding codependent analyses
//! together.
//!
//! # Tutorial
//!
//! ## Basic Datalog
//! If you are already familiar with logic languages, this section will likely
//! be straightforwards for you, but it may still be useful to provide an
//! overview of basic functions and syntax.
//!
//! Datalog is a forward-chaining logic language. This means that a program
//! written in Datalog consists of a set of rules which "fire" whenever their
//! requirements are met which operate on a database of facts.
//!
//! ### Predicates
//!
//! A predicate represents a property on a list of typed values. For example,
//! to express the distance between two cities in miles, we might write
//!
//! ```
//! # #[macro_use]
//! # extern crate holmes;
//! # extern crate tokio_core;
//! # use holmes::{Engine, MemDB, Result};
//! # use tokio_core::reactor::Core;
//! # fn f () -> Result<()> {
//! # let mut core = Core::new().unwrap();
//! # let mut holmes = Engine::new(MemDB::new(), core.handle());
//! # let b = &mut holmes;
//! # holmes_exec!(b, {
//! predicate!(distance(string, string, uint64))
//! # });
//! # Ok(())
//! # }
//! # fn main () {f().unwrap()}
//! ```
//!
//! N.B. while this code is being built via doctests, there are a few lines of
//! support code above and below being hidden for clarity. See the complete
//! example at the end of the section for a template.
//!
//! ### Facts
//!
//! Facts are formed by the application of predicates to values. Continuing
//! with the example from before, we can add a fact to the database for the
//! predicate we defined
//!
//! ```
//! # #[macro_use]
//! # extern crate holmes;
//! # extern crate tokio_core;
//! # use holmes::{Engine, MemDB, Result};
//! # use tokio_core::reactor::Core;
//! # fn f () -> Result<()> {
//! # let mut core = Core::new().unwrap();
//! # let mut holmes = Engine::new(MemDB::new(), core.handle());
//! # let b = &mut holmes;
//! # holmes_exec!(b, {
//! predicate!(distance(string, string, uint64));
//! fact!(distance("New York", "Albuquerque", 1810))
//! # });
//! # Ok(())
//! # }
//! # fn main () {f().unwrap()}
//! ```
//!
//! ### Rules
//!
//! Rules are formed from a body clause and a head clause.
//! When the rule body matches, variable assignments from the match are
//! substituted into the head clause, which is then added to the database.
//! Here, we might want to add the symmetry property to our previous example,
//! e.g. "If the distance from A to B is N, then the distance from B to A is
//! also N".
//!
//! ```
//! # #[macro_use]
//! # extern crate holmes;
//! # extern crate tokio_core;
//! # use holmes::{Engine, MemDB, Result};
//! # use tokio_core::reactor::Core;
//! # fn f () -> Result<()> {
//! # let mut core = Core::new().unwrap();
//! # let mut holmes = Engine::new(MemDB::new(), core.handle());
//! # let b = &mut holmes;
//! # holmes_exec!(b, {
//! predicate!(distance(string, string, uint64));
//! fact!(distance("New York", "Albuquerque", 1810));
//! rule!(distance(B, A, N) <= distance(A, B, N))
//! # });
//! # Ok(())
//! # }
//! # fn main () {f().unwrap()}
//! ```
//!
//! In a rule or a query (in the next section), the possible restrictions on
//! each slot are:
//!
//!   * Unbound: `[_]`
//!   * Constant Equality: `(value)`
//!   * Variable unification `var`
//!
//! ### Queries
//!
//! Now that the database has more facts in it than we started with, it makes
//! sense to be able to query the database and see what is inside.
//!
//! ```
//! # #[macro_use]
//! # extern crate holmes;
//! # extern crate tokio_core;
//! # use holmes::{Engine, MemDB, Result};
//! # use tokio_core::reactor::Core;
//! # use holmes::pg::dyn::values::ToValue;
//! # fn f () -> Result<()> {
//! # let mut core = Core::new().unwrap();
//! # let mut holmes_own = Engine::new(MemDB::new(), core.handle());
//! # let holmes = &mut holmes_own;
//! holmes_exec!(holmes, {
//!   predicate!(distance(string, string, uint64));
//!   fact!(distance("New York", "Albuquerque", 1810));
//!   rule!(distance(B, A, N) <= distance(A, B, N))
//! });
//!
//! # core.run(holmes.quiesce()).unwrap();
//!
//! let mut res = try!(query!(holmes, distance(A, [_], [_])));
//!
//! # res.sort_by(|x, y| x.partial_cmp(y).unwrap_or(
//! #   ::std::cmp::Ordering::Greater));
//! assert_eq!(res,
//!            vec![vec!["Albuquerque".to_value()],
//!                 vec!["New York".to_value()]]);
//! # Ok(())
//! # }
//! # fn main () {f().unwrap()}
//! ```
//!
//! ### Recursive Rules
//!
//! Let's go one step further, and use a rule to check connectivity between
//! cities, based on the facts in the database. We want to express "If A
//! connects to B, and B connects to C, then A connects to C".
//!
//! ```
//! # #[macro_use]
//! # extern crate holmes;
//! # extern crate tokio_core;
//! # use holmes::{Engine, MemDB, Result};
//! # use tokio_core::reactor::Core;
//! # use holmes::pg::dyn::values::ToValue;
//! # fn f () -> Result<()> {
//! # let mut core = Core::new().unwrap();
//! # let mut holmes_own = Engine::new(MemDB::new(), core.handle());
//! # let holmes = &mut holmes_own;
//! holmes_exec!(holmes, {
//!   predicate!(distance(string, string, uint64));
//!   fact!(distance("New York", "Albuquerque", 1810));
//!   fact!(distance("New York", "Las Vegas", 2225));
//!   fact!(distance("Las Vegas", "Palo Alto", 542));
//!   fact!(distance("Rome", "Florence", 173));
//!   rule!(distance(B, A, N) <= distance(A, B, N));
//!   predicate!(connected(string, string));
//!   rule!(connected(A, B) <= distance(A, B, [_]));
//!   rule!(connected(A, C) <= connected(A, B) & connected(B, C))
//! });
//! # core.run(holmes.quiesce()).unwrap();
//! assert_eq!(try!(query!(holmes, connected(("Rome"), ("Las Vegas")))).len(),
//!            0);
//! let mut res = try!(query!(holmes, connected(("Palo Alto"), x)));
//! # res.sort_by(|x, y| x.partial_cmp(y).unwrap_or(
//! #   ::std::cmp::Ordering::Greater));
//! assert_eq!(res,
//!            vec![vec!["Albuquerque".to_value()],
//!                 vec!["Las Vegas".to_value()],
//!                 vec!["New York".to_value()],
//!                 vec!["Palo Alto".to_value()]]);
//! # Ok(())
//! # }
//! # fn main () {f().unwrap()}
//! ```
//!
//! ### Complete Example
//!
//! Finally, just for reference (so you can actually write your own program
//! using this) here's the unredacted version of that last example:
//!
//! ```
//! #[macro_use]
//! extern crate holmes;
//! extern crate tokio_core;
//! use holmes::{Engine, MemDB, Result};
//! use tokio_core::reactor::Core;
//! use holmes::pg::dyn::values::ToValue;
//! fn f () -> Result<()> {
//!   // Holmes uses the `tokio_core` event loop in order to schedule work
//!   // amongst various rules and enable asynchronous processing.
//!   // Unless you specifically want to do something async, this just
//!   // means you need to pass in a handle as shown here, and call
//!   // `core.run(holmes.quiesce())` before any queries to wait for
//!   // the engine to finish running.
//!   let mut core = Core::new().unwrap();
//!   let mut holmes_own = Engine::new(MemDB::new(), core.handle());
//!   // For the moment, the `holmes_exec` macro needs a &mut ident. I'll
//!   // try to make this more flexible in the future.
//!   let holmes = &mut holmes_own;
//!   holmes_exec!(holmes, {
//!     predicate!(distance(string, string, uint64));
//!     fact!(distance("New York", "Albuquerque", 1810));
//!     fact!(distance("New York", "Las Vegas", 2225));
//!     fact!(distance("Las Vegas", "Palo Alto", 542));
//!     fact!(distance("Rome", "Florence", 173));
//!     rule!(distance(B, A, N) <= distance(A, B, N));
//!     predicate!(connected(string, string));
//!     rule!(connected(A, B) <= distance(A, B, [_]));
//!     rule!(connected(A, C) <= connected(A, B) & connected(B, C))
//!   });
//!
//!   // Now we force the database to compute until quiescence. Otherwise,
//!   // any query results may be partial.
//!   core.run(holmes.quiesce()).unwrap();
//!
//!   assert_eq!(try!(query!(holmes, connected(("Rome"), ("Las Vegas")))).len(),
//!              0);
//!   let mut res = try!(query!(holmes, connected(("Palo Alto"), x)));
//!   // Order is not gauranteed when it comes back from the query, so I
//!   // sort it in the example to get the doctest to pass. `Value` only has
//!   // `PartialOrd` implemented for it, since there isn't a clean comparison
//!   // between `Value`s of different types, so I just default to `Greater`.
//!   res.sort_by(|x, y| x.partial_cmp(y).unwrap_or(
//!     ::std::cmp::Ordering::Greater));
//!   assert_eq!(res,
//!              vec![vec!["Albuquerque".to_value()],
//!                   vec!["Las Vegas".to_value()],
//!                   vec!["New York".to_value()],
//!                   vec!["Palo Alto".to_value()]]);
//!   Ok(())
//! }
//! fn main () {f().unwrap()}
//! ```
//!
//! ## Extensions
//!
//! While Datalog itself is interesting, writing yet-another-datalog engine
//! is not the goal of this project. Next, we'll go over some of the new
//! features of this system.
//!
//! ### Functions
//! Normally, logic languages expect the computation to be encoded as rules
//! only (or in special cases, as external predicates). In order to allow
//! the user to write things which make more sense as traditional code, we
//! allow the binding of functions:
//!
//! ```
//! # #[macro_use]
//! # extern crate holmes;
//! # extern crate tokio_core;
//! # use holmes::{Engine, MemDB, Result};
//! # use tokio_core::reactor::Core;
//! # fn f () -> Result<()> {
//! # let mut core = Core::new().unwrap();
//! # let mut holmes_own = Engine::new(MemDB::new(), core.handle());
//! # let holmes = &mut holmes_own;
//! # try!(holmes_exec!(holmes, {
//! func!(let f : uint64 -> uint64 = |x : &u64| {
//!   x * 3
//! })
//! # }));
//! # Ok(())
//! # }
//! # fn main () {f().unwrap()}
//! ```
//!
//! In this case, we have declared a function called `f`, said that it takes
//! as input a `uint64`, and should output a `uint64`.
//! The type of the input to the function should be the output of the `.get()`
//! call of the relevant value, which will usually be a reference to the rust
//! equivalent of the type.
//! The output should be a value which `.to_value()` will convert to a
//! correctly typed `Value`.
//!
//! Additionally, the type system allows for tuples and lists. Tuple types
//! are denoted `(t1, t2)`, and list types are denoted `[t]`. Lists and tuples
//! will be unpacked through by the `func!` macro, so a function with a
//! `[uint64]` input would expect to take a `Vec<&u64>`, and a function taking
//! `(string, uint64)` would expect to take a (&String, &u64).
//! For example:
//!
//! ```
//! # #[macro_use]
//! # extern crate holmes;
//! # extern crate tokio_core;
//! # use holmes::{Engine, MemDB, Result};
//! # use tokio_core::reactor::Core;
//! # fn f () -> Result<()> {
//! # let mut core = Core::new().unwrap();
//! # let mut holmes_own = Engine::new(MemDB::new(), core.handle());
//! # let holmes = &mut holmes_own;
//! # holmes_exec!(holmes, {
//! func!(let replicate : (string, uint64) -> [string] =
//!   |(s, n) : (&String, &u64)| {
//!     let mut vec : Vec<String> = Vec::new();
//!     for i in 0..*n {
//!       vec.push(s.clone());
//!     };
//!     vec
//!   }
//! )
//! # });
//! # Ok(())
//! # }
//! # fn main () {f().unwrap()}
//! ```
//!
//! ## Where Clauses
//!
//! Telling Holmes about functions isn't useful without a way to use them.
//! Where clauses are a way to perform a transformation on the data after the
//! map, but before the head clause is produced and sent to the database.
//!
//! Extending the example from earlier, we might want to generate a distances
//! for the connection paths we found.
//!
//! ```
//! # #[macro_use]
//! # extern crate holmes;
//! # extern crate tokio_core;
//! # use holmes::{Engine, MemDB, Result};
//! # use tokio_core::reactor::Core;
//! # fn f () -> Result<()> {
//! # let mut core = Core::new().unwrap();
//! # let mut holmes_own = Engine::new(MemDB::new(), core.handle());
//! # let holmes = &mut holmes_own;
//! holmes_exec!(holmes, {
//!   predicate!(distance(string, string, uint64));
//!   fact!(distance("New York", "Albuquerque", 1810));
//!   fact!(distance("New York", "Las Vegas", 2225));
//!   fact!(distance("Las Vegas", "Palo Alto", 542));
//!   fact!(distance("Rome", "Florence", 173));
//! //rule!(distance(B, A, N) <= distance(A, B, N));
//!   predicate!(path(string, string, uint64));
//!   rule!(path(A, B, N) <= distance(A, B, N));
//!   func!(let add : (uint64, uint64) -> uint64 = |(x, y) : (&u64, &u64)| {
//!     x + y
//!   });
//!   rule!(path(A, C, NSum) <= path(A, B, N1) & path(B, C, N2), {
//!     let NSum = {add([N1], [N2])}
//!   })
//! });
//! # Ok(())
//! # }
//! # fn main () {f().unwrap()}
//! ```
//!
//! The astute reader will notice there is something wrong with this example.
//! It builds, and it runs, I'm not trying to mess with you while teaching.
//! However, the last rule we added (which does the sum of the distances) will
//! loop forever if there is any cycle in the `distance` predicate.
//! This is why I commented out the rule flipping the distance direction
//! around, as this would cause this example to run infinitely.
//!
//! Normally in Datalog, we have a termination property - no matter what
//! rules or facts you add, the database will always eventually stop growing.
//! This proof follows from the inability of a rule firing to introduce a new
//! value, which means there are only a finite number of derivable facts. With
//! the addition of where clauses, we lose this property, because new values
//! can appear, as per the `add` function above.
//!
//! However, we also add other kinds of binds to the where clause that
//! can help the programmer control this kind of situation.
//!
//!
//! N.B. the postgres backend doesn't currently support list persistence, so
//! if you wanted to use a list in a predicate, you'd actually need to make a
//! custom `Path` type and value that knew how to store itself.
//!
//! ### Binds
//!
//! #### Variable binding
//! This is as in the inital example. They are written `let x = expression`,
//! and simply bind the expression to the variable.
//!
//! #### Destructuring
//! This kind of bind is basically just shorthand to prevent the need for
//! functions like `access_tuple_field_1`, `access_tuple_field_2`.
//! It is written `let (x, y, z) = expression`
//!
//! #### Value binding
//! This is the first unusual kind of binding, and the one we can use to fix
//! up the previous example. Value binds are written `let (expr) = expr2`.
//! If `expr` and `expr2` evaluate to the same value, this expression has no
//! effect. However, if `expr` and `expr2` differ, the variable assignment
//! currently generated by the where clause will stop.
//!
//! To fix the previous example, we can track the path we've gone through thus
//! far, and store it in an additional slot in the `path` predicate.
//! Then, in the where clause for adding a new step to the path, we can check
//! for membership in the existing path. If it is present, we can use a value
//! binding to stop pursuing this avenue. If it is not present, then we can
//! proceed as before.
//!
//! ```
//! # #[macro_use]
//! # extern crate holmes;
//! # extern crate tokio_core;
//! # use holmes::{Engine, MemDB, Result};
//! # use tokio_core::reactor::Core;
//! # use holmes::pg::dyn::values::ToValue;
//! # fn f () -> Result<()> {
//! # let mut core = Core::new().unwrap();
//! # let mut holmes_own = Engine::new(MemDB::new(), core.handle());
//! # let holmes = &mut holmes_own;
//! try!(holmes_exec!(holmes, {
//!   predicate!(distance(string, string, uint64));
//!   fact!(distance("New York", "Albuquerque", 1810));
//!   fact!(distance("New York", "Las Vegas", 2225));
//!   fact!(distance("Las Vegas", "Palo Alto", 542));
//!   fact!(distance("Rome", "Florence", 173));
//!   rule!(distance(B, A, N) <= distance(A, B, N));
//!   predicate!(path(string, string, [string], uint64));
//!   func!(let two_vec : (string, string) -> [string] =
//!     |(x, y) : (&String, &String)| { vec![x.clone(), y.clone()] });
//!   rule!(path(A, B, steps, N) <= distance(A, B, N), {
//!     let steps = {two_vec([A], [B])}});
//!   func!(let add : (uint64, uint64) -> uint64 = |(x, y) : (&u64, &u64)| {
//!     x + y
//!   });
//!   func!(let append : (string, [string]) -> [string] =
//!     |(x, y) : (&String, Vec<&String>)| {
//!       let mut out : Vec<String> = y.into_iter().cloned().collect();
//!       out.push(x.clone());
//!       out
//!     });
//!   func!(let mem : (string, [string]) -> bool =
//!     |(needle, haystack) : (&String, Vec<&String>)| {
//!       haystack.contains(&needle)
//!     });
//!   rule!(path(A, C, path2, NSum) <= path(A, B, path, N1)
//!                                  & distance(B, C, N2), {
//!     // If we've already walked over C, we aren't interested
//!     let (false) = {mem([C], [path])};
//!     let path2 = {append([C], [path])};
//!     let NSum = {add([N1], [N2])}
//!   })
//! }));
//! # core.run(holmes.quiesce()).unwrap();
//! let mut res = query!(holmes, path(("New York"), dest, [_], dist))?;
//! # res.sort_by(|x, y| x.partial_cmp(y).unwrap_or(
//! #   ::std::cmp::Ordering::Greater));
//!
//! assert_eq!(res,
//!            vec![
//!                 vec!["Albuquerque".to_value(), 1810.to_value()],
//!                 vec!["Las Vegas".to_value(), 2225.to_value()],
//!                 vec!["Palo Alto".to_value(), 2767.to_value()],
//!                ]);
//! # Ok(())
//! # }
//! # fn main () {f().unwrap()}
//! ```
//!
//! #### Iteration
//! The last kind of bind is the iterative bind. This works similarly to the
//! List monad in Haskell if you are familiar with it, but you don't need
//! to know anything about that to proceed.
//!
//! An iterative bind is written `let [x] = expr`, where the expression should
//! evaluate to a list-typed value. When this bind is run, the set of possible
//! answers splits into a different instance for each value in the list. So, if
//! we had
//!
//! ```c
//! rule!(q(x, y) <= p(y), {
//!   let [x] = f(y)
//! })
//! ```
//!
//! it would first find all `y` such that `p(y)`, and then for each of them,
//! it would apply `f` and get a list. Imagine that `f` just returns a list of
//! `y` and `y + 1`, and that `p` is only populated with `p(1)` and `p(2)`.
//!
//! The match would produce the possible assignment sets `y = 1` and `y = 2`.
//! After running the where clause, the first one would become `x = 1, y = 1`,
//! `x = 2, y = 1`, and the secould would become `x = 2, y = 2`, `x = 3, y = 2`
//! . This ends with the database containing `q(1, 1), q(2, 1), q(2, 2),
//! q(3, 2)`.
//!
//! That example is somewhat abstract, but hopefully it illustrates the
//! multiplicative effect of the iteration bind. The iteration bind can also
//! be used to terminate early a rule, similar to the value bind, by iterating
//! over an empty list. If an iteration bind is used multiple times in a where
//! clause, it will operate on each of the new answer sets from the previous
//! iteration bind individually.
//!
//! As a more concrete example, say we wanted to define a predicate
//! which contained all sities that might be used on a path from New York to
//! Palo Alto. We can take the example from earlier and add:
//!
//! ```
//! # #[macro_use]
//! # extern crate holmes;
//! # extern crate tokio_core;
//! # use holmes::{Engine, MemDB, Result};
//! # use tokio_core::reactor::Core;
//! # use holmes::pg::dyn::values::ToValue;
//! # fn f () -> Result<()> {
//! # let mut core = Core::new().unwrap();
//! # let mut holmes_own = Engine::new(MemDB::new(), core.handle());
//! # let holmes = &mut holmes_own;
//! # try!(holmes_exec!(holmes, {
//! #   predicate!(distance(string, string, uint64));
//! #   fact!(distance("New York", "Albuquerque", 1810));
//! #   fact!(distance("New York", "Las Vegas", 2225));
//! #   fact!(distance("Las Vegas", "Palo Alto", 542));
//! #   fact!(distance("Rome", "Florence", 173));
//! #   rule!(distance(B, A, N) <= distance(A, B, N));
//! #   predicate!(path(string, string, [string], uint64));
//! #   func!(let two_vec : (string, string) -> [string] =
//! #     |(x, y) : (&String, &String)| { vec![x.clone(), y.clone()] });
//! #   rule!(path(A, B, steps, N) <= distance(A, B, N), {
//! #     let steps = {two_vec([A], [B])}});
//! #   func!(let add : (uint64, uint64) -> uint64 = |(x, y) : (&u64, &u64)| {
//! #     x + y
//! #   });
//! #   func!(let append : (string, [string]) -> [string] =
//! #     |(x, y) : (&String, Vec<&String>)| {
//! #       let mut out : Vec<String> = y.into_iter().cloned().collect();
//! #       out.push(x.clone());
//! #       out
//! #     });
//! #   func!(let mem : (string, [string]) -> bool =
//! #     |(needle, haystack) : (&String, Vec<&String>)| {
//! #       haystack.contains(&needle)
//! #     });
//! #   rule!(path(A, C, path2, NSum) <= path(A, B, path, N1)
//! #                                  & distance(B, C, N2), {
//! #     // If we've already walked over C, we aren't interested
//! #     let (false) = {mem([C], [path])};
//! #     let path2 = {append([C], [path])};
//! #     let NSum = {add([N1], [N2])}
//! #   });
//! predicate!(on_the_road(string, string, string));
//! rule!(on_the_road(A, B, stop) <= path(A, B, path, [_]), {
//!   let [stop] = [path]
//! })
//! # }));
//! # core.run(holmes.quiesce()).unwrap();
//! let mut res = query!(holmes, on_the_road(("New York"), ("Palo Alto"),
//!                                          stop))?;
//! # res.sort_by(|x, y| x.partial_cmp(y).unwrap_or(
//! #   ::std::cmp::Ordering::Greater));
//!
//! assert_eq!(res,
//!            vec![
//!                 vec!["Las Vegas".to_value()],
//!                 vec!["New York".to_value()],
//!                 vec!["Palo Alto".to_value()],
//!                ]);
//! # Ok(())
//! # }
//! # fn main () {f().unwrap()}
//! ```
#![warn(missing_docs)]
extern crate postgres;
extern crate rustc_serialize;
#[macro_use]
extern crate log;
#[macro_use]
extern crate error_chain;
extern crate tokio_core;
extern crate futures;

extern crate env_logger;
extern crate url;

pub mod pg;
pub mod fact_db;
pub mod mem_db;
pub mod engine;
pub mod edsl;
pub mod simple;

pub use engine::{Engine, Result, Error, ErrorKind};
pub use pg::PgDB;
pub use mem_db::MemDB;