1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243

use std::f64;
use std::cmp;


/// Vector is just Rust Vec
#[derive(Debug, PartialEq, Clone)]
pub struct Vector {
    data: Vec<f64>
}

/// 2 dimensional matrix
#[derive(Debug, PartialEq)]
pub struct Matrix {
    rows: usize,
    cols: usize,
    data: Vec<Vec<f64>>
}


impl Vector {

    /// Vector constructor
    pub fn new(v: Vec<f64>) -> Vector {
        Vector { data: v }
    }

    /// Vector length
    pub fn len(&self) -> usize { self.data.len() }

    /// Item at given index
    pub fn get(&self, i: usize) -> f64 { self.data[i] }

    /// Positive matrix has all its entries >= 0
    pub fn is_positive(&self) -> bool {
        let has_neg = self.data.iter().any(|&item| item < 0.);
        !has_neg
    }

    /// Ad 2 vectors. If the have different size, they output vector will have minimal size
    pub fn add_vector(&self, u: &Vector) -> Vector {
        let data = self.data.iter().zip(&u.data).map(|(x, y)| x + y).collect();
        Vector::new(data)
    }

    /// Ad scalar to the vector.
    pub fn add_scalar(&self, u: &Vector) -> Vector {
        let data = self.data.iter().zip(&u.data).map(|(x,y)| x+y).collect();
        Vector::new(data)
    }

    /// Apply -log2 for each element
    pub fn minus_log(&self) -> Vector {
        Vector::new(self.data.iter().map(|i| -i.log2()).collect())
    }

    /// get index with minimal value
    pub fn argmin(&self) -> usize {
        let mut min_index = 0;
        let mut min_value = self.data[0];

        for (i,v) in self.data.iter().enumerate() {
            if v < &min_value {
                min_value = v.clone();
                min_index = i.clone();
            }
        }
        min_index
    }
}


impl Matrix {
    /// Create new matrix
    pub fn new(data: Vec<Vec<f64>>) -> Option<Matrix> {
        // Validate input
        if data.len() < 1 { return None }
        let cols = data[0].len();
        if data.iter().any(|r| r.len() != cols) { return None }

        Some(Matrix { rows: data.len(), cols: cols, data: data })
    }

//    pub fn rows(&self) -> usize { self.rows }
    pub fn cols(&self) -> usize { self.cols }

    /// Positive matrix has all its entries >= 0
    pub fn is_positive(&self) -> bool {
        let has_neg = self.data.iter().any(|r| r.iter().any(|&item| item < 0.));
        !has_neg
    }

    /// Apply -log2 for each element
    // Maybe it would be better to add function apply() with closure instead?
    pub fn minus_log(&self) -> Matrix {
        Matrix { rows: self.rows,
                 cols: self.cols,
                 data: self.data.iter().map(|r| r.iter().map(|i| -i.log2()).collect()).collect()}
    }

    /// Get copy of a given column
    pub fn column(&self, index: usize) -> Option<Vector> {
        // Validate input
        if index >= self.cols { return None }
        let data = self.data.iter().map(|r| r[index]).collect();
        Some(Vector::new(data))
    }

    /// Add vector to each column
    pub fn add_to_columns(&self, v: &Vector) -> Matrix {
        let n = cmp::min(self.rows, v.len());
        let mut data = self.data.clone();

        for i in 0..n {
            for j in 0..self.cols {
                data[i][j] += v.get(i)
            }
        }
        Matrix { rows: self.rows,
                 cols: self.cols,
                 data: data}
    }

    /// Maximum by column
    pub fn min_by_column(&self) -> Vector {
        let mut v = vec![f64::MAX; self.cols];
        for row in &self.data {
            for (i, &item) in row.iter().enumerate() {
                if item < v[i] { v[i] = item}
            }
        }
        Vector::new(v)
    }

    /// Argmax by column
    pub fn argmin_by_column(&self) -> Vec<usize> {
        let mut v = vec![f64::MAX; self.cols];
        let mut args = vec![0; self.cols];

        for (i, ref row) in self.data.iter().enumerate() {
            for (j, &item) in row.iter().enumerate() {
                if item < v[j] {
                    v[j] = item;
                    args[j] = i;
                }
            }
        }
        args
    }
}



/// ------------------------------------------------------------------------------------------------
/// Module unit tests
/// ------------------------------------------------------------------------------------------------
#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_new() {
        let d = vec![vec![0.75, 0.25],
                     vec![0.25, 0.75]];
        assert!(Matrix::new(d).is_some());
    }

    #[test]
    fn test_new_none1() {
        let d = vec![];
        assert!(Matrix::new(d).is_none());
    }

    #[test]
    fn test_none2() {
        let d = vec![vec![0.75, 0.25],
                     vec![0.25, 0.75, 1.]];
        assert!(Matrix::new(d).is_none());
    }

    #[test]
    fn test_positive() {
        let mat = Matrix::new(vec![vec![0.75, 0.25],
                                   vec![0.25, 0.75]]).unwrap();
        assert!(mat.is_positive());
    }

    #[test]
    fn test_negative() {
        let mat = Matrix::new(vec![vec![0.75, 0.25],
                                   vec![0.25, -0.75]]).unwrap();
        assert!(mat.is_positive() == false);
    }

    #[test]
    fn test_get_column() {
        let mat = Matrix::new(vec![vec![1., 2.],
                                   vec![3., 4.]]).unwrap();
        let expected = Vector::new(vec![2., 4.]);
        assert!(mat.column(1) == Some(expected));
    }

    #[test]
    fn test_add_vectors() {
        let v = Vector::new(vec![1., 2.]);
        let u = Vector::new(vec![3., 4.]);
        let expected = Vector::new(vec![4., 6.]);
        assert!(v.add_vector(&u) == expected);
    }

    #[test]
    fn test_add_to_column() {
        let mat = Matrix::new(vec![vec![1., 2.],
                                   vec![3., 4.]]).unwrap();
        let v = Vector::new(vec![3., 4.]);
        let expected = Matrix::new(vec![vec![4., 5.],
                                        vec![7., 8.]]).unwrap();
        assert!(mat.add_to_columns(&v) == expected);
    }

    #[test]
    fn test_min_by_column() {
        let mat = Matrix::new(vec![vec![1., 4.],
                                   vec![3., 2.]]).unwrap();
        let expected = Vector::new(vec![1., 2.]);
        assert!(mat.min_by_column() == expected);
    }

    #[test]
    fn test_argmin_by_column() {
        let mat = Matrix::new(vec![vec![1., 4.],
                                   vec![3., 2.]]).unwrap();
        let expected = vec![0, 1];
        assert!(mat.argmin_by_column() == expected);
    }

    #[test]
    fn test_argmin() {
        let v = Vector::new(vec![1., 4., 0.34, 12.]);
        assert!(v.argmin() == 2);
    }

}