1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
// Copyright 2019 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use crate::alloc::vec::Vec;
use core::any::TypeId;
use core::convert::TryFrom;
use core::{fmt, mem, ptr};

#[cfg(feature = "std")]
use std::error::Error;

use hashbrown::{HashMap, HashSet};

use crate::archetype::Archetype;
use crate::entities::{Entities, Location};
use crate::{
    Bundle, DynamicBundle, Entity, EntityRef, MissingComponent, NoSuchEntity, Query, QueryBorrow,
    QueryOne, Ref, RefMut,
};

/// An unordered collection of entities, each having any number of distinctly typed components
///
/// Similar to `HashMap<Entity, Vec<Box<dyn Any>>>` where each `Vec` never contains two of the same
/// type, but far more efficient to traverse.
///
/// The components of entities who have the same set of component types are stored in contiguous
/// runs, allowing for extremely fast, cache-friendly iteration.
pub struct World {
    entities: Entities,
    index: HashMap<Vec<TypeId>, u32>,
    archetypes: Vec<Archetype>,
    archetype_generation: u64,
}

impl World {
    /// Create an empty world
    pub fn new() -> Self {
        // `flush` assumes archetype 0 always exists, representing entities with no components.
        let mut archetypes = Vec::new();
        archetypes.push(Archetype::new(Vec::new()));
        let mut index = HashMap::default();
        index.insert(Vec::new(), 0);
        Self {
            entities: Entities::default(),
            index,
            archetypes,
            archetype_generation: 0,
        }
    }

    /// Create an entity with certain components
    ///
    /// Returns the ID of the newly created entity.
    ///
    /// Arguments can be tuples, structs annotated with `#[derive(Bundle)]`, or the result of
    /// calling `build` on an `EntityBuilder`, which is useful if the set of components isn't
    /// statically known. To spawn an entity with only one component, use a one-element tuple like
    /// `(x,)`.
    ///
    /// Any type that satisfies `Send + Sync + 'static` can be used as a component.
    ///
    /// # Example
    /// ```
    /// # use hecs::*;
    /// let mut world = World::new();
    /// let a = world.spawn((123, "abc"));
    /// let b = world.spawn((456, true));
    /// ```
    pub fn spawn(&mut self, components: impl DynamicBundle) -> Entity {
        // Ensure all entity allocations are accounted for so `self.entities` can realloc if
        // necessary
        self.flush();

        let entity = self.entities.alloc();
        let archetype_id = components.with_ids(|ids| {
            self.index.get(ids).copied().unwrap_or_else(|| {
                let x = self.archetypes.len() as u32;
                self.archetypes.push(Archetype::new(components.type_info()));
                self.index.insert(ids.to_vec(), x);
                self.archetype_generation += 1;
                x
            })
        });

        let archetype = &mut self.archetypes[archetype_id as usize];
        unsafe {
            let index = archetype.allocate(entity.id);
            components.put(|ptr, ty, size| {
                archetype.put_dynamic(ptr, ty, size, index);
                true
            });
            self.entities.meta[entity.id as usize].location = Location {
                archetype: archetype_id,
                index,
            };
        }
        entity
    }

    /// Efficiently spawn a large number of entities with the same components
    ///
    /// Faster than calling `spawn` repeatedly with the same components.
    ///
    /// # Example
    /// ```
    /// # use hecs::*;
    /// let mut world = World::new();
    /// let entities = world.spawn_batch((0..1_000).map(|i| (i, "abc"))).collect::<Vec<_>>();
    /// for i in 0..1_000 {
    ///     assert_eq!(*world.get::<i32>(entities[i]).unwrap(), i as i32);
    /// }
    /// ```
    pub fn spawn_batch<I>(&mut self, iter: I) -> SpawnBatchIter<'_, I::IntoIter>
    where
        I: IntoIterator,
        I::Item: Bundle,
    {
        // Ensure all entity allocations are accounted for so `self.entities` can realloc if
        // necessary
        self.flush();

        let iter = iter.into_iter();
        let (lower, upper) = iter.size_hint();
        let archetype_id = self.reserve_inner::<I::Item>(
            u32::try_from(upper.unwrap_or(lower)).expect("iterator too large"),
        );

        SpawnBatchIter {
            inner: iter,
            entities: &mut self.entities,
            archetype_id,
            archetype: &mut self.archetypes[archetype_id as usize],
        }
    }

    /// Allocate an entity ID concurrently
    ///
    /// Unlike `spawn`, this can be called simultaneously to other operations on the `World` such as
    /// queries, but does not immediately create an entity. Reserved entities are not visible to
    /// queries or world iteration, but can be otherwise operated on freely. Operations that
    /// uniquely borrow the world, such as `insert` or `despawn`, will cause all outstanding
    /// reserved entities to become real entities before proceeding. This can also be done
    /// explicitly by calling `flush`.
    ///
    /// Useful for reserving an ID that will later have components attached to it with `insert`.
    pub fn reserve_entity(&self) -> Entity {
        self.entities.reserve_entity()
    }

    /// Destroy an entity and all its components
    pub fn despawn(&mut self, entity: Entity) -> Result<(), NoSuchEntity> {
        self.flush();
        let loc = self.entities.free(entity)?;
        if let Some(moved) = unsafe { self.archetypes[loc.archetype as usize].remove(loc.index) } {
            self.entities.meta[moved as usize].location.index = loc.index;
        }
        Ok(())
    }

    /// Ensure `additional` entities with exact components `T` can be spawned without reallocating
    pub fn reserve<T: Bundle>(&mut self, additional: u32) {
        self.reserve_inner::<T>(additional);
    }

    fn reserve_inner<T: Bundle>(&mut self, additional: u32) -> u32 {
        self.flush();
        self.entities.reserve(additional);

        let archetype_id = T::with_static_ids(|ids| {
            self.index.get(ids).copied().unwrap_or_else(|| {
                let x = self.archetypes.len() as u32;
                self.archetypes.push(Archetype::new(T::static_type_info()));
                self.index.insert(ids.to_vec(), x);
                self.archetype_generation += 1;
                x
            })
        });

        self.archetypes[archetype_id as usize].reserve(additional);
        archetype_id
    }

    /// Despawn all entities
    ///
    /// Preserves allocated storage for reuse.
    pub fn clear(&mut self) {
        for x in &mut self.archetypes {
            x.clear();
        }
        self.entities.clear();
    }

    /// Whether `entity` still exists
    pub fn contains(&self, entity: Entity) -> bool {
        self.entities.contains(entity)
    }

    /// Efficiently iterate over all entities that have certain components
    ///
    /// Calling `iter` on the returned value yields `(Entity, Q)` tuples, where `Q` is some query
    /// type. A query type is `&T`, `&mut T`, a tuple of query types, or an `Option` wrapping a
    /// query type, where `T` is any component type. Components queried with `&mut` must only appear
    /// once. Entities which do not have a component type referenced outside of an `Option` will be
    /// skipped.
    ///
    /// Entities are yielded in arbitrary order.
    ///
    /// The returned `QueryBorrow` can be further transformed with combinator methods; see its
    /// documentation for details.
    ///
    /// Iterating a query will panic if it would violate an existing unique reference or construct
    /// an invalid unique reference. This occurs when two simultaneously-active queries could expose
    /// the same entity. Simultaneous queries can access the same component type if and only if the
    /// world contains no entities that have all components required by both queries, assuming no
    /// other component borrows are outstanding.
    ///
    /// Iterating a query yields references with lifetimes bound to the `QueryBorrow` returned
    /// here. To ensure those are invalidated, the return value of this method must be dropped for
    /// its dynamic borrows from the world to be released. Similarly, lifetime rules ensure that
    /// references obtained from a query cannot outlive the `QueryBorrow`.
    ///
    /// # Example
    /// ```
    /// # use hecs::*;
    /// let mut world = World::new();
    /// let a = world.spawn((123, true, "abc"));
    /// let b = world.spawn((456, false));
    /// let c = world.spawn((42, "def"));
    /// let entities = world.query::<(&i32, &bool)>()
    ///     .iter()
    ///     .map(|(e, (&i, &b))| (e, i, b)) // Copy out of the world
    ///     .collect::<Vec<_>>();
    /// assert_eq!(entities.len(), 2);
    /// assert!(entities.contains(&(a, 123, true)));
    /// assert!(entities.contains(&(b, 456, false)));
    /// ```
    pub fn query<Q: Query>(&self) -> QueryBorrow<'_, Q> {
        QueryBorrow::new(&self.entities.meta, &self.archetypes)
    }

    /// Prepare a query against a single entity
    ///
    /// Call `get` on the resulting `QueryOne` to actually execute the query. The `QueryOne` value
    /// is responsible for releasing the dynamically-checked borrow made by `get`, so it can't be
    /// dropped while references returned by `get` are live.
    ///
    /// Handy for accessing multiple components simultaneously.
    ///
    /// # Example
    /// ```
    /// # use hecs::*;
    /// let mut world = World::new();
    /// let a = world.spawn((123, true, "abc"));
    /// // The returned query must outlive the borrow made by `get`
    /// let mut query = world.query_one::<(&mut i32, &bool)>(a).unwrap();
    /// let (number, flag) = query.get().unwrap();
    /// if *flag { *number *= 2; }
    /// assert_eq!(*number, 246);
    /// ```
    pub fn query_one<Q: Query>(&self, entity: Entity) -> Result<QueryOne<'_, Q>, NoSuchEntity> {
        let loc = self.entities.get(entity)?;
        Ok(unsafe { QueryOne::new(&self.archetypes[loc.archetype as usize], loc.index) })
    }

    /// Borrow the `T` component of `entity`
    ///
    /// Panics if the component is already uniquely borrowed from another entity with the same
    /// components.
    pub fn get<T: Component>(&self, entity: Entity) -> Result<Ref<'_, T>, ComponentError> {
        let loc = self.entities.get(entity)?;
        if loc.archetype == 0 {
            return Err(MissingComponent::new::<T>().into());
        }
        Ok(unsafe { Ref::new(&self.archetypes[loc.archetype as usize], loc.index)? })
    }

    /// Uniquely borrow the `T` component of `entity`
    ///
    /// Panics if the component is already borrowed from another entity with the same components.
    pub fn get_mut<T: Component>(&self, entity: Entity) -> Result<RefMut<'_, T>, ComponentError> {
        let loc = self.entities.get(entity)?;
        if loc.archetype == 0 {
            return Err(MissingComponent::new::<T>().into());
        }
        Ok(unsafe { RefMut::new(&self.archetypes[loc.archetype as usize], loc.index)? })
    }

    /// Access an entity regardless of its component types
    ///
    /// Does not immediately borrow any component.
    pub fn entity(&self, entity: Entity) -> Result<EntityRef<'_>, NoSuchEntity> {
        Ok(match self.entities.get(entity)? {
            Location { archetype: 0, .. } => EntityRef::empty(),
            loc => unsafe { EntityRef::new(&self.archetypes[loc.archetype as usize], loc.index) },
        })
    }

    /// Iterate over all entities in the world
    ///
    /// Entities are yielded in arbitrary order. Prefer `World::query` for better performance when
    /// components will be accessed in predictable patterns.
    ///
    /// # Example
    /// ```
    /// # use hecs::*;
    /// let mut world = World::new();
    /// let a = world.spawn(());
    /// let b = world.spawn(());
    /// let ids = world.iter().map(|(id, _)| id).collect::<Vec<_>>();
    /// assert_eq!(ids.len(), 2);
    /// assert!(ids.contains(&a));
    /// assert!(ids.contains(&b));
    /// ```
    pub fn iter(&self) -> Iter<'_> {
        Iter::new(&self.archetypes, &self.entities)
    }

    /// Add `components` to `entity`
    ///
    /// Computational cost is proportional to the number of components `entity` has. If an entity
    /// already has a component of a certain type, it is dropped and replaced.
    ///
    /// When inserting a single component, see `insert_one` for convenience.
    ///
    /// # Example
    /// ```
    /// # use hecs::*;
    /// let mut world = World::new();
    /// let e = world.spawn((123, "abc"));
    /// world.insert(e, (456, true));
    /// assert_eq!(*world.get::<i32>(e).unwrap(), 456);
    /// assert_eq!(*world.get::<bool>(e).unwrap(), true);
    /// ```
    pub fn insert(
        &mut self,
        entity: Entity,
        components: impl DynamicBundle,
    ) -> Result<(), NoSuchEntity> {
        use hashbrown::hash_map::Entry;

        self.flush();
        let loc = self.entities.get_mut(entity)?;
        unsafe {
            // Assemble Vec<TypeInfo> for the final entity
            let arch = &mut self.archetypes[loc.archetype as usize];
            let mut info = arch.types().to_vec();
            for ty in components.type_info() {
                if let Some(ptr) = arch.get_dynamic(ty.id(), ty.layout().size(), loc.index) {
                    ty.drop(ptr.as_ptr());
                } else {
                    info.push(ty);
                }
            }
            info.sort();

            // Find the archetype it'll live in
            let elements = info.iter().map(|x| x.id()).collect::<Vec<_>>();
            let target = match self.index.entry(elements) {
                Entry::Occupied(x) => *x.get(),
                Entry::Vacant(x) => {
                    let index = self.archetypes.len() as u32;
                    self.archetypes.push(Archetype::new(info));
                    x.insert(index);
                    self.archetype_generation += 1;
                    index
                }
            };

            if target == loc.archetype {
                // Update components in the current archetype
                let arch = &mut self.archetypes[loc.archetype as usize];
                components.put(|ptr, ty, size| {
                    arch.put_dynamic(ptr, ty, size, loc.index);
                    true
                });
                return Ok(());
            }

            // Move into a new archetype
            let (source_arch, target_arch) = index2(
                &mut self.archetypes,
                loc.archetype as usize,
                target as usize,
            );
            let target_index = target_arch.allocate(entity.id);
            loc.archetype = target;
            let old_index = mem::replace(&mut loc.index, target_index);
            if let Some(moved) = source_arch.move_to(old_index, |ptr, ty, size| {
                target_arch.put_dynamic(ptr, ty, size, target_index);
            }) {
                self.entities.meta[moved as usize].location.index = old_index;
            }
            components.put(|ptr, ty, size| {
                target_arch.put_dynamic(ptr, ty, size, target_index);
                true
            });
        }
        Ok(())
    }

    /// Add `component` to `entity`
    ///
    /// See `insert`.
    pub fn insert_one(
        &mut self,
        entity: Entity,
        component: impl Component,
    ) -> Result<(), NoSuchEntity> {
        self.insert(entity, (component,))
    }

    /// Remove components from `entity`
    ///
    /// Computational cost is proportional to the number of components `entity` has. The entity
    /// itself is not removed, even if no components remain; use `despawn` for that. If any
    /// component in `T` is not present in `entity`, no components are removed and an error is
    /// returned.
    ///
    /// When removing a single component, see `remove_one` for convenience.
    ///
    /// # Example
    /// ```
    /// # use hecs::*;
    /// let mut world = World::new();
    /// let e = world.spawn((123, "abc", true));
    /// assert_eq!(world.remove::<(i32, &str)>(e), Ok((123, "abc")));
    /// assert!(world.get::<i32>(e).is_err());
    /// assert!(world.get::<&str>(e).is_err());
    /// assert_eq!(*world.get::<bool>(e).unwrap(), true);
    /// ```
    pub fn remove<T: Bundle>(&mut self, entity: Entity) -> Result<T, ComponentError> {
        use hashbrown::hash_map::Entry;

        self.flush();
        let loc = self.entities.get_mut(entity)?;
        unsafe {
            let removed = T::with_static_ids(|ids| ids.iter().copied().collect::<HashSet<_>>());
            let info = self.archetypes[loc.archetype as usize]
                .types()
                .iter()
                .cloned()
                .filter(|x| !removed.contains(&x.id()))
                .collect::<Vec<_>>();
            let elements = info.iter().map(|x| x.id()).collect::<Vec<_>>();
            let target = match self.index.entry(elements) {
                Entry::Occupied(x) => *x.get(),
                Entry::Vacant(x) => {
                    self.archetypes.push(Archetype::new(info));
                    let index = (self.archetypes.len() - 1) as u32;
                    x.insert(index);
                    self.archetype_generation += 1;
                    index
                }
            };
            let old_index = loc.index;
            let source_arch = &self.archetypes[loc.archetype as usize];
            let bundle = T::get(|ty, size| source_arch.get_dynamic(ty, size, old_index))?;
            let (source_arch, target_arch) = index2(
                &mut self.archetypes,
                loc.archetype as usize,
                target as usize,
            );
            let target_index = target_arch.allocate(entity.id);
            loc.archetype = target;
            loc.index = target_index;
            if let Some(moved) = source_arch.move_to(old_index, |src, ty, size| {
                // Only move the components present in the target archetype, i.e. the non-removed ones.
                if let Some(dst) = target_arch.get_dynamic(ty, size, target_index) {
                    ptr::copy_nonoverlapping(src, dst.as_ptr(), size);
                }
            }) {
                self.entities.meta[moved as usize].location.index = old_index;
            }
            Ok(bundle)
        }
    }

    /// Remove the `T` component from `entity`
    ///
    /// See `remove`.
    pub fn remove_one<T: Component>(&mut self, entity: Entity) -> Result<T, ComponentError> {
        self.remove::<(T,)>(entity).map(|(x,)| x)
    }

    /// Borrow the `T` component of `entity` without safety checks
    ///
    /// Should only be used as a building block for safe abstractions.
    ///
    /// # Safety
    ///
    /// `entity` must have been previously obtained from this `World`, and no unique borrow of the
    /// same component of `entity` may be live simultaneous to the returned reference.
    pub unsafe fn get_unchecked<T: Component>(&self, entity: Entity) -> Result<&T, ComponentError> {
        let loc = self.entities.get(entity)?;
        if loc.archetype == 0 {
            return Err(MissingComponent::new::<T>().into());
        }
        Ok(&*self.archetypes[loc.archetype as usize]
            .get::<T>()
            .ok_or_else(MissingComponent::new::<T>)?
            .as_ptr()
            .add(loc.index as usize))
    }

    /// Uniquely borrow the `T` component of `entity` without safety checks
    ///
    /// Should only be used as a building block for safe abstractions.
    ///
    /// # Safety
    ///
    /// `entity` must have been previously obtained from this `World`, and no borrow of the same
    /// component of `entity` may be live simultaneous to the returned reference.
    pub unsafe fn get_unchecked_mut<T: Component>(
        &self,
        entity: Entity,
    ) -> Result<&mut T, ComponentError> {
        let loc = self.entities.get(entity)?;
        if loc.archetype == 0 {
            return Err(MissingComponent::new::<T>().into());
        }
        Ok(&mut *self.archetypes[loc.archetype as usize]
            .get::<T>()
            .ok_or_else(MissingComponent::new::<T>)?
            .as_ptr()
            .add(loc.index as usize))
    }

    /// Convert all reserved entities into empty entities that can be iterated and accessed
    ///
    /// Invoked implicitly by `spawn`, `despawn`, `insert`, and `remove`.
    pub fn flush(&mut self) {
        let arch = &mut self.archetypes[0];
        for id in self.entities.flush() {
            self.entities.meta[id as usize].location.index = unsafe { arch.allocate(id) };
        }
        for i in 0..self.entities.reserved_len() {
            let id = self.entities.reserved(i);
            self.entities.meta[id as usize].location.index = unsafe { arch.allocate(id) };
        }
        self.entities.clear_reserved();
    }

    /// Inspect the archetypes that entities are organized into
    ///
    /// Useful for dynamically scheduling concurrent queries by checking borrows in advance. Does
    /// not provide access to entities.
    pub fn archetypes(&self) -> impl ExactSizeIterator<Item = &'_ Archetype> + '_ {
        self.archetypes.iter()
    }

    /// Returns a distinct value after `archetypes` is changed
    ///
    /// Store the current value after deriving information from `archetypes`, then check whether the
    /// value returned by this function differs before attempting an operation that relies on its
    /// correctness. Useful for determining whether e.g. a concurrent query execution plan is still
    /// correct.
    ///
    /// The generation may be, but is not necessarily, changed as a result of adding or removing any
    /// entity or component.
    ///
    /// # Example
    /// ```
    /// # use hecs::*;
    /// let mut world = World::new();
    /// let initial_gen = world.archetypes_generation();
    /// world.spawn((123, "abc"));
    /// assert_ne!(initial_gen, world.archetypes_generation());
    /// ```
    pub fn archetypes_generation(&self) -> ArchetypesGeneration {
        ArchetypesGeneration(self.archetype_generation)
    }
}

unsafe impl Send for World {}
unsafe impl Sync for World {}

impl Default for World {
    fn default() -> Self {
        Self::new()
    }
}

impl<'a> IntoIterator for &'a World {
    type IntoIter = Iter<'a>;
    type Item = (Entity, EntityRef<'a>);
    fn into_iter(self) -> Iter<'a> {
        self.iter()
    }
}

fn index2<T>(x: &mut [T], i: usize, j: usize) -> (&mut T, &mut T) {
    assert!(i != j);
    assert!(i < x.len());
    assert!(j < x.len());
    let ptr = x.as_mut_ptr();
    unsafe { (&mut *ptr.add(i), &mut *ptr.add(j)) }
}

/// Errors that arise when accessing components
#[derive(Debug, Clone, Eq, PartialEq, Hash)]
pub enum ComponentError {
    /// The entity was already despawned
    NoSuchEntity,
    /// The entity did not have a requested component
    MissingComponent(MissingComponent),
}

#[cfg(feature = "std")]
impl Error for ComponentError {}

impl fmt::Display for ComponentError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        use ComponentError::*;
        match *self {
            NoSuchEntity => f.write_str("no such entity"),
            MissingComponent(ref x) => x.fmt(f),
        }
    }
}

impl From<NoSuchEntity> for ComponentError {
    fn from(NoSuchEntity: NoSuchEntity) -> Self {
        ComponentError::NoSuchEntity
    }
}

impl From<MissingComponent> for ComponentError {
    fn from(x: MissingComponent) -> Self {
        ComponentError::MissingComponent(x)
    }
}

/// Types that can be components, implemented automatically for all `Send + Sync + 'static` types
///
/// This is just a convenient shorthand for `Send + Sync + 'static`, and never needs to be
/// implemented manually.
pub trait Component: Send + Sync + 'static {}
impl<T: Send + Sync + 'static> Component for T {}

/// Iterator over all of a world's entities
pub struct Iter<'a> {
    archetypes: core::slice::Iter<'a, Archetype>,
    entities: &'a Entities,
    current: Option<&'a Archetype>,
    index: u32,
}

impl<'a> Iter<'a> {
    fn new(archetypes: &'a [Archetype], entities: &'a Entities) -> Self {
        Self {
            archetypes: archetypes.iter(),
            entities,
            current: None,
            index: 0,
        }
    }
}

unsafe impl Send for Iter<'_> {}
unsafe impl Sync for Iter<'_> {}

impl<'a> Iterator for Iter<'a> {
    type Item = (Entity, EntityRef<'a>);
    fn next(&mut self) -> Option<Self::Item> {
        loop {
            match self.current {
                None => {
                    self.current = Some(self.archetypes.next()?);
                    self.index = 0;
                }
                Some(current) => {
                    if self.index == current.len() as u32 {
                        self.current = None;
                        continue;
                    }
                    let index = self.index;
                    self.index += 1;
                    let id = current.entity_id(index);
                    return Some((
                        Entity {
                            id,
                            generation: self.entities.meta[id as usize].generation,
                        },
                        unsafe { EntityRef::new(current, index) },
                    ));
                }
            }
        }
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        (0, Some(self.entities.meta.len()))
    }
}

impl<A: DynamicBundle> Extend<A> for World {
    fn extend<T>(&mut self, iter: T)
    where
        T: IntoIterator<Item = A>,
    {
        for x in iter {
            self.spawn(x);
        }
    }
}

impl<A: DynamicBundle> core::iter::FromIterator<A> for World {
    fn from_iter<I: IntoIterator<Item = A>>(iter: I) -> Self {
        let mut world = World::new();
        world.extend(iter);
        world
    }
}

/// Determines freshness of information derived from `World::archetypes`
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub struct ArchetypesGeneration(u64);

/// Entity IDs created by `World::spawn_batch`
pub struct SpawnBatchIter<'a, I>
where
    I: Iterator,
    I::Item: Bundle,
{
    inner: I,
    entities: &'a mut Entities,
    archetype_id: u32,
    archetype: &'a mut Archetype,
}

impl<I> Drop for SpawnBatchIter<'_, I>
where
    I: Iterator,
    I::Item: Bundle,
{
    fn drop(&mut self) {
        for _ in self {}
    }
}

impl<I> Iterator for SpawnBatchIter<'_, I>
where
    I: Iterator,
    I::Item: Bundle,
{
    type Item = Entity;

    fn next(&mut self) -> Option<Entity> {
        let components = self.inner.next()?;
        let entity = self.entities.alloc();
        unsafe {
            let index = self.archetype.allocate(entity.id);
            components.put(|ptr, ty, size| {
                self.archetype.put_dynamic(ptr, ty, size, index);
                true
            });
            self.entities.meta[entity.id as usize].location = Location {
                archetype: self.archetype_id,
                index,
            };
        }
        Some(entity)
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.inner.size_hint()
    }
}

impl<I, T> ExactSizeIterator for SpawnBatchIter<'_, I>
where
    I: ExactSizeIterator<Item = T>,
    T: Bundle,
{
    fn len(&self) -> usize {
        self.inner.len()
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn reuse_empty() {
        let mut world = World::new();
        let a = world.spawn(());
        world.despawn(a).unwrap();
        let b = world.spawn(());
        assert_eq!(a.id, b.id);
        assert_ne!(a.generation, b.generation);
    }

    #[test]
    fn reuse_populated() {
        let mut world = World::new();
        let a = world.spawn((42,));
        assert_eq!(*world.get::<i32>(a).unwrap(), 42);
        world.despawn(a).unwrap();
        let b = world.spawn((true,));
        assert_eq!(a.id, b.id);
        assert_ne!(a.generation, b.generation);
        assert!(world.get::<i32>(b).is_err());
        assert!(*world.get::<bool>(b).unwrap());
    }
}