1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
//! A Rust library providing memory allocation on the stack.
//!
//! # Initializing memory
//!
//! In order to allocate values on the stack, [`Rack`](trait.Rack.html) needs to
//! be initialized first. A `Rack` is initialized with a type of values it can
//! store and with a maximum number of values it can store. The `Rack` will
//! occupy its full size in the memory, so choose the capacity wisely. Unlike
//! [`Box`](https://doc.rust-lang.org/std/boxed/index.html), a `Rack` can store
//! only values of a single type. In case you want to store different types,
//! define multiple instances of `Rack`. There are several implementations of
//! `Rack` available with capacities of powers of 2, up to 1024:
//! [`Rack1`](struct.Rack1.html), [`Rack2`](struct.Rack2.html),
//! [`Rack4`](struct.Rack4.html), [`Rack8`](struct.Rack8.html),
//! [`Rack16`](struct.Rack16.html), [`Rack32`](struct.Rack32.html), ... ,
//! [`Rack1024`](struct.Rack1024.html).
//!
//! Learn more in the [documentation of the Rack trait](trait.Rack.html).
//!
//! # Storing and accessing values
//!
//! After the `Rack` is initalized, it is possible to store values on it. When a
//! value is stored, a [`Unit`](struct.Unit.html) struct is returned. A `Unit`
//! provides an ownership of the value. Moreover, the value can be accessed
//! through it, both mutably and immutably. Once `Unit` gets out of scope, it
//! will make sure that the stored value gets dropped.
//!
//! Learn more in the [documentation of the Unit struct](struct.Unit.html).
//!
//! # Examples
//!
//! Store a numeric value on the `Rack` and access it through the `Unit`:
//!
//! ```
//! # use heapnotize::*;
//! let rack = Rack64::new();
//! let five = rack.must_add(5);
//! assert_eq!(*five, 5);
//! ```
//! Use `Unit` to compose a recursive type:
//!
//! ```
//! # use heapnotize::*;
//! enum List<'a> {
//!     Cons(i32, Unit<'a, List<'a>>),
//!     Nil,
//! }
//!
//! use List::{Cons, Nil};
//!
//! let rack = Rack64::new();
//! let list = Cons(1, rack.must_add(Cons(2, rack.must_add(Cons(3, rack.must_add(Nil))))));
//! ```
//!
//! See more examples in the documentation of the [`Rack`](trait.Rack.html)
//! trait and the [`Unit`](struct.Unit.html) struct.

#![no_std]

mod data_array;

use core::cell::{RefCell, RefMut};
use core::fmt;
use core::mem::MaybeUninit;
use core::ops::Drop;
use core::ops::{Deref, DerefMut};
use core::ptr;

/// An enumeration of possible errors which can happen when adding a new value
/// to a [Rack](trait.Rack.html).
#[derive(Debug)]
pub enum AddUnitError {
    /// The [Rack](trait.Rack.html) is on its full capacity and cannot accept
    /// more values.
    FullRack,
}

impl fmt::Display for AddUnitError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match *self {
            Self::FullRack => write!(f, "the rack is full"),
        }
    }
}

/// A trait specifying functions and methods for initialization of a `Rack` and
/// for storing values in it.
///
/// # Capacity
///
/// A `Rack` keep an allocated memory on the stack for values to be stored in.
/// It has several implementations varying in the capacity they provide:
/// [`Rack1`](struct.Rack1.html), [`Rack2`](struct.Rack2.html),
/// [`Rack4`](struct.Rack4.html), [`Rack8`](struct.Rack8.html),
/// [`Rack16`](struct.Rack16.html), [`Rack32`](struct.Rack32.html), ... ,
/// [`Rack1024`](struct.Rack1024.html).
///
/// # Stored type
///
/// It can store only a single type of values it is initialized with. The type
/// can be specified during initialization `Rack64::<i32>`, but Rust is usually
/// able to deduce the type on its own based on the code adding values to the
/// `Rack`.
///
/// # Memory requirements
///
/// Unlike a basic array, `Rack` is not zero-cost when it comes to memory
/// requirements. The formula for the memory requirements of a rack is
/// following:
///
/// **`capacity_of_the_rack * (round_up_to_the_closest_multiple_of_8(size_of(value)) + 8)`**
pub trait Rack<T> {
    /// Add a value to the `Rack` and return an error if it is full.
    ///
    /// # Errors
    ///
    /// This method will return an error in case the `Rack` is fully populated.
    /// If you don't expect it to ever fail, use
    /// [`must_add`](trait.Rack.html#tymethod.must_add) instead.
    ///
    /// # Examples
    ///
    /// Initialize the Rack and add an integer to it. Notice that since Rust can
    /// deduce the `T` of `Rack<T>` based on the value in `add`, there is no
    /// need to specify the type during the initialization:
    ///
    /// ```
    /// # use heapnotize::*;
    /// let rack = Rack64::new();
    /// let five = rack.must_add(5);
    /// ```
    fn add(&self, value: T) -> Result<Unit<T>, AddUnitError>;

    /// Add a value to the `Rack` and panic if it is full.
    ///
    /// # Panics
    ///
    /// This method will panic in case the `Rack` is fully populated. If you
    /// would rather receive an error, use [`add`](trait.Rack.html#tymethod.add)
    /// instead.
    ///
    /// # Examples
    ///
    /// Initialize the Rack and add an integer to it. Notice that since Rust can
    /// deduce the `T` of `Rack<T>` based on the value in `add`, there is no
    /// need to specify the type during the initialization:
    ///
    /// ```
    /// # use heapnotize::*;
    /// let rack = Rack64::new();
    /// let five = rack.add(5).unwrap();
    /// ```
    fn must_add(&self, value: T) -> Unit<T>;
}

macro_rules! rack {
    ($name:ident, $size:expr, $data_initializer:expr) => {
        /// Implementation of [`Rack`](trait.Rack.html) trait holding up to N
        /// values of a type T.
        ///
        /// See more in the [documentation of the `Rack`](trait.Rack.html) trait.
        pub struct $name<T> {
            // All the stored units are kept inside `RefCell` to allow us to
            // keep a mutable reference to the data in multiple `Unit`s while
            // keeping the `Rack` immutable. That way we avoid issues with
            // borrow checking. The carried type is then enclosed in
            // `MaybeUnit`, the reason for that we don't need to require carried
            // type to implement `Copy` and `Default` to populate the whole
            // array during `Rack`'s initialization.
            data: [RefCell<MaybeUninit<T>>; $size],
        }

        impl<T> $name<T> {
            /// Initialize a new Rack with a capacity based on the given implementation.
            ///
            /// # Examples
            ///
            /// Initialize a `Rack` holding up to 64 values of type `i32`:
            ///
            /// ```
            /// # use heapnotize::*;
            /// let rack = Rack64::<i32>::new();
            /// ```
            pub fn new() -> Self {
                Self {
                    data: $data_initializer,
                }
            }
        }

        impl<T> Rack<T> for $name<T> {
            fn add(&self, value: T) -> Result<Unit<T>, AddUnitError> {
                for cell in self.data.iter() {
                    // If we can borrow it, nobody has a mutable reference, it is free
                    // to take.
                    if cell.try_borrow().is_ok() {
                        cell.replace(MaybeUninit::new(value));
                        return Ok(Unit {
                            cell: cell.borrow_mut(),
                        });
                    }
                }
                Err(AddUnitError::FullRack)
            }

            fn must_add(&self, value: T) -> Unit<T> {
                self.add(value).expect("The rack is full")
            }
        }

        impl<T> Default for $name<T> {
            fn default() -> Self {
                Self::new()
            }
        }
    };
}
rack!(Rack1, 1, data_array::init_1());
rack!(Rack2, 2, data_array::init_2());
rack!(Rack4, 4, data_array::init_4());
rack!(Rack8, 8, data_array::init_8());
rack!(Rack16, 16, data_array::init_16());
rack!(Rack32, 32, data_array::init_32());
rack!(Rack64, 64, data_array::init_64());
rack!(Rack128, 128, data_array::init_128());
rack!(Rack256, 256, data_array::init_256());
rack!(Rack512, 512, data_array::init_512());
rack!(Rack1024, 1024, data_array::init_1024());

/// A type serving as an owner of a value stored on the
/// [`Rack`](trait.Rack.html).
///
/// A `Unit` can be obtained by adding a value to the `Rack`. After that, it can
/// be used to access the value, both mutably and immutably. Once the `Unit`
/// gets out of the scope, the value that it holds gets dropped.
#[derive(Debug)]
pub struct Unit<'a, T> {
    cell: RefMut<'a, MaybeUninit<T>>,
}

impl<T> Unit<'_, T> {
    /// Get a reference to the data stored on the Rack.
    ///
    /// # Examples
    ///
    /// Reference to the stored value can be accessed using this method:
    ///
    /// ```
    /// # use heapnotize::*;
    /// let rack = Rack64::new();
    /// let five = rack.must_add(5);
    /// assert_eq!(*five.get_ref(), 5);
    /// ```
    ///
    /// The stored value can be also accessed using a dereference `*`:
    ///
    /// ```
    /// # use heapnotize::*;
    /// let rack = Rack64::new();
    /// let five = rack.must_add(5);
    /// assert_eq!(*five, 5);
    /// ```
    ///
    /// Finally, this allows users to use defer coercion and pass `&Unit<T>` to
    /// functions accepting `&T`:
    ///
    /// ```
    /// # use heapnotize::*;
    /// fn add_one(num: &i32) -> i32 {
    ///     num + 1
    /// }
    ///
    /// let rack = Rack64::new();
    /// let five = rack.must_add(5);
    ///
    /// assert_eq!(add_one(&five), 6)
    /// ```
    pub fn get_ref(&self) -> &T {
        // This code is safe since we always populate the `MaybeUninit` with a
        // value on `add` call before an `Unit` is returned.
        unsafe { &*self.cell.as_ptr() }
    }

    /// Get a mutable reference to the data stored on the Rack.
    ///
    /// # Examples
    ///
    /// Mutable reference to the stored value can be obtained using this method:
    ///
    /// ```
    /// # use heapnotize::*;
    /// let rack = Rack64::new();
    ///
    /// let mut number = rack.must_add(5);
    /// *number.get_mut() = 10;
    ///
    /// assert_eq!(*number.get_ref(), 10);
    /// ```
    ///
    /// The stored value can be also changed directly using a dereference `*`:
    ///
    /// ```
    /// # use heapnotize::*;
    /// let rack = Rack64::new();
    ///
    /// let mut number = rack.must_add(5);
    /// *number = 10;
    ///
    /// assert_eq!(*number, 10);
    /// ```
    ///
    /// Finally, this allows users to use defer coercion and pass `&mut Unit<T>`
    /// to functions accepting `&mut T`:
    ///
    /// ```
    /// # use heapnotize::*;
    /// fn set_to_ten(num: &mut i32) {
    ///     *num = 10;
    /// }
    ///
    /// let rack = Rack64::new();
    ///
    /// let mut number = rack.must_add(5);
    /// set_to_ten(&mut number);
    ///
    /// assert_eq!(*number, 10)
    /// ```
    pub fn get_mut(&mut self) -> &mut T {
        // This code is safe since we always populate the `MaybeUninit` with a
        // value on `add` call before an `Unit` is returned.
        unsafe { &mut *self.cell.as_mut_ptr() }
    }
}

/// When the Unit gets out of scope, it will deallocate its space on the Rack
/// and make sure that the stored value gets properly dropped.
// Unit's value is carried inside `MaybeUninit`. `Drop` on `MaybeUninit` does
// not do anything. Therefore, we have to implement the `Drop` trait, making
// sure that a destructor is called on the carried payload.
impl<T> Drop for Unit<'_, T> {
    fn drop(&mut self) {
        // This is safe since the Unit was the only owner of the stored data.
        unsafe {
            ptr::drop_in_place(self.cell.as_mut_ptr());
        }
    }
}

impl<T> Deref for Unit<'_, T> {
    type Target = T;

    fn deref(&self) -> &Self::Target {
        self.get_ref()
    }
}

impl<T> DerefMut for Unit<'_, T> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        self.get_mut()
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn initialize_rack() {
        let _rack: Rack2<_> = Rack2::<i32>::new();
    }

    #[test]
    fn add_unit_to_rack() {
        let rack = Rack2::<i32>::new();

        let _unit: Unit<_> = rack.must_add(10);
    }

    #[test]
    fn get_immutable_reference_to_unit_value() {
        let rack = Rack2::new();

        let unit = rack.must_add(10);

        assert_eq!(*unit.get_ref(), 10);
    }

    #[test]
    fn get_multiple_immutable_references_to_unit_value() {
        let rack = Rack2::new();

        let unit = rack.must_add(10);

        let ref_1 = unit.get_ref();
        let ref_2 = unit.get_ref();

        assert_eq!(ref_1, ref_2);
    }

    #[test]
    fn get_mutable_reference_to_unit_value() {
        let rack = Rack2::new();

        let mut unit = rack.must_add(10);

        assert_eq!(*unit.get_mut(), 10);
    }

    #[test]
    fn access_unit_value_by_dereferencing() {
        let rack = Rack2::new();

        let unit = rack.must_add(10);

        assert_eq!(*unit, 10);
    }

    #[test]
    fn pass_immutable_unit_by_deref_coercion() {
        fn assert_ref_i32_eq_10(num: &i32) {
            assert_eq!(*num, 10)
        }

        let rack = Rack2::new();

        let unit = rack.must_add(10);

        assert_ref_i32_eq_10(&unit)
    }

    #[test]
    fn change_unit_value_through_mutable_reference() {
        let rack = Rack2::new();

        let mut unit = rack.must_add(10);

        let mut_ref = unit.get_mut();
        *mut_ref = 20;

        assert_eq!(*unit.get_ref(), 20);
    }

    #[test]
    fn change_unit_struct_field_through_mutable_reference() {
        struct Foo(i32);

        let rack = Rack2::new();

        let mut unit = rack.must_add(Foo(10));

        let mut_ref = unit.get_mut();
        mut_ref.0 = 20;

        assert_eq!(unit.get_ref().0, 20);
    }

    #[test]
    fn change_unit_value_by_mutable_dereferencing() {
        let rack = Rack2::new();

        let mut unit = rack.must_add(10);
        *unit = 20;

        assert_eq!(*unit.get_ref(), 20);
    }

    #[test]
    fn pass_mutable_unit_by_deref_coercion() {
        fn assert_mut_ref_i32_editable(num: &mut i32) {
            *num = 20;
            assert_eq!(*num, 20)
        }

        let rack = Rack2::new();

        let mut unit = rack.must_add(10);

        assert_mut_ref_i32_editable(&mut unit)
    }

    #[test]
    fn accept_up_to_the_limit() {
        let rack = Rack2::new();

        let _unit1 = rack.must_add(10);
        let _unit2 = rack.must_add(20);
    }

    #[test]
    #[should_panic(expected = "The rack is full")]
    fn rejects_over_the_limit_with_panic_on_must_add() {
        let rack = Rack2::new();

        let _unit1 = rack.must_add(10);
        let _unit2 = rack.must_add(20);
        let _unit3 = rack.must_add(30);
    }

    #[test]
    fn rejects_over_the_limit_with_error_on_add() {
        let rack = Rack2::new();

        let _unit1 = rack.add(10).unwrap();
        let _unit2 = rack.add(20).unwrap();

        // Allow unreachable patterns in case more error types are added to
        // AddUnitError, so the match would panic on the default arm.
        #[allow(unreachable_patterns)]
        match rack
            .add(30)
            .expect_err("Add to full stack should return an error")
        {
            AddUnitError::FullRack => (),
            _ => panic!("Adding over limit returned unexpected error"),
        };
    }

    #[test]
    fn accept_more_units_once_old_ones_get_out_of_scope() {
        let rack = Rack2::new();

        let _unit1 = rack.must_add(10);
        {
            let _unit2 = rack.must_add(20);
        }
        let _unit3 = rack.must_add(30);
    }

    #[test]
    fn measure_memory_overhead_of_rack() {
        // Rounds up to 8 bytes and takes another 8 for MaybeUninit keept in
        // RefCell.
        // https://doc.rust-lang.org/core/mem/union.MaybeUninit.html#layout

        use core::mem;

        fn round_up_to_8(x: usize) -> usize {
            x + 7 & !7
        }

        let item_size = mem::size_of::<[u8; 4]>();
        let rack_size = mem::size_of::<Rack2<[u8; 4]>>();

        assert_eq!(rack_size, 2 * (round_up_to_8(item_size) + 8));
    }

    #[test]
    #[allow(unused_variables)]
    fn exercise_basic_demo_from_readme() {
        fn main() {
            let rack = Rack64::new();
            let unit = rack.must_add(10);
            assert_eq!(*unit, 10);
        }

        main();
    }

    #[test]
    #[allow(unused_variables)]
    fn exercise_list_demo_from_readme() {
        enum List<'a> {
            Cons(i32, Unit<'a, List<'a>>),
            Nil,
        }

        use List::{Cons, Nil};

        fn main() {
            let rack = Rack64::new();
            let list = Cons(
                1,
                rack.must_add(Cons(2, rack.must_add(Cons(3, rack.must_add(Nil))))),
            );
        }

        main();
    }
}