1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
//! A [`HashVec`] is a hash map / dictionary whose key-value pairs are stored (and can be iterated over) in a fixed order, by default the order in which they were inserted into the hashvec. It's essentially a vector whose values can be inserted/retrieved with keys.
//! # Example
//! ```
//! use hashvec::*;
//! 
//! // Create a new hashvec containing pairs of animal names and species
//! // The hashvec! macro acts like vec!, but with key-value tuple pairs
//! let mut hashvec: HashVec<&'static str, &'static str> = hashvec![
//!     ("Doug", "Kobold"),
//!     ("Skye", "Hyena"),
//!     ("Lee", "Shiba"),
//!     ("Sock", "Man"),
//!     ("Salad", "Wolf"),
//!     ("Finn", "Human")
//! ];
//! 
//! // Insert a value into the hashvec (HashMap-style)
//! // Inserting overwrites existing keys' entries in-place
//! hashvec.insert("Jake", "Dog");
//! 
//! // Push a value onto the hashvec (Vector-style)
//! // Pushing overwrites existing keys' entries and moves them to the end
//! hashvec.push(("Susie", "Squid"));
//! 
//! // Access a value by key
//! match hashvec.get(&"Finn") {
//!     Some(value) => {
//!         assert_eq!(*value, "Human");
//!     },
//!     None => {}
//! }
//! 
//! // Access an entry by index
//! let lee_value = hashvec[2];
//! assert_eq!(lee_value, ("Lee", "Shiba"));
//! 
//! // Get the index of a key
//! let lee_index = hashvec.index(&"Lee").unwrap();
//! assert_eq!(lee_index, 2);
//! 
//! // Get the length of the hashvec
//! let hashvec_length = hashvec.len();
//! assert_eq!(hashvec_length, 8);
//! 
//! // Change an entry's key in-place
//! hashvec.rename(&"Salad", "Caesar");
//! assert_eq!(hashvec[4], ("Caesar", "Dog"));
//! 
//! // Mutate a value
//! match hashvec.get_mut(&"Sock") {
//!     Some(value) => {
//!         *value = "Guinea Pig";
//!     },
//!     None => {}
//! }
//! assert_eq!(*hashvec.get(&"Sock").unwrap(), "Guinea Pig");
//! 
//! // Remove an entry
//! hashvec.remove_key(&"Doug");
//! assert_eq!(hashvec.get(&"Doug"), None);
//! 
//! // Swap the locations of two entries by their keys
//! hashvec.swap_keys(&"Lee", &"Skye");
//! assert_eq!(hashvec.index(&"Lee").unwrap(), 0);
//! assert_eq!(hashvec.index(&"Skye").unwrap(), 1);
//! 
//! // Now swap them again, by their indices
//! hashvec.swap_indices(0, 1);
//! assert_eq!(hashvec[0], ("Skye", "Hyena"));
//! assert_eq!(hashvec[1], ("Lee", "Shiba"));
//! 
//! // Iterate over each of the key-value pairs in the hashvec
//! for (k, v) in hashvec.into_iter() {
//!     println!("{} is a {}!", k, v);
//! }
//! 
//! // Remove an entry from the end of the hashvec
//! let last_entry = hashvec.pop();
//! assert_eq!(last_entry.unwrap(), ("Susie", "Squid"));
//! 
//! // Clear the hashvec
//! hashvec.clear();
//! ```

use std::collections::HashMap;
use std::collections::hash_map::DefaultHasher;
use std::hash::{Hash, Hasher};
use core::ops::Index;

#[derive(Debug)]
pub struct HashVec<K: Eq + Hash, V> {
    entries: Vec<(K, V)>,
    order: HashMap<u64, usize>
}

impl<K: Eq + Hash, V> HashVec<K, V> {
    /// Creates a new, empty map.
    pub fn new() -> HashVec<K, V> {
        HashVec {
            entries: Vec::new(),
            order: HashMap::new()
        }
    }

    /// Creates a new, empty hashvec with the specified capacity.
    pub fn with_capacity(capacity: usize) -> HashVec<K, V> {
        HashVec {
            entries: Vec::with_capacity(capacity),
            order: HashMap::with_capacity(capacity)
        }
    }

    /// Creates a hashvec from a vector of key-value pairs.
    /// 
    /// Internally, this uses [`HashVec::append_vec()`], which means that redundant keys' entries will be overwritten and moved to the end of the hashvec sequentially.
    pub fn from_vec(v: Vec<(K, V)>) -> HashVec<K, V> {
        let mut new_hashvec = HashVec::with_capacity(v.len());
        new_hashvec.append_vec(v);
        new_hashvec
    }

    /// Returns the number of elements the hashvec can hold without reallocating.
    pub fn capacity(&self) -> usize {
        self.entries.capacity().min(self.order.capacity())
    }

    /// Returns the number of elements in the hashvec.
    pub fn len(&self) -> usize {
        self.entries.len()
    }

    /// Returns `true` if the hashvec contains no elements.
    pub fn is_empty(&self) -> bool {
        self.entries.is_empty()
    }

    /// Clears the hashvec, removing all entries.
    /// 
    /// Keep in mind this will not reallocate memory.
    pub fn clear(&mut self) {
        self.entries.clear();
        self.order.clear();
    }

    /// Inserts an entry into the hashvec, or replaces an existing one.
    pub fn insert(&mut self, k: K, v: V) {
        match self.order.get(&calculate_hash(&k)) {
            Some(index) => {
                // If the key was already in the hashvec, update its entry in-place
                self.entries[*index].1 = v;
            },
            None => {
                // If the entry wasn't in the hashvec already, add it
                self.order.insert(calculate_hash(&k), self.entries.len());
                self.entries.push((k, v));
            }
        }
    }

    /// Appends an entry to the back of the hashvec.
    /// 
    /// If an entry with an identical key was already in the hashvec, it is removed before the new entry is inserted.
    /// 
    /// # Panics
    /// Panics if the new capacity either overflows `usize` or exceeds `isize::MAX` bytes.
    pub fn push(&mut self, entry: (K, V)) {
        if self.contains_key(&entry.0) {
            self.remove_key(&entry.0);
        }

        let key_hash = calculate_hash(&entry.0);
        self.order.insert(key_hash, self.entries.len());
        self.entries.push(entry);
    }

    /// Removes the last entry from the hashvec and returns it (or `None` if the hashvec is empty).
    pub fn pop(&mut self) -> Option<(K, V)> {
        let last_entry = self.entries.pop();

        match last_entry {
            Some(entry) => {
                let key_hash = calculate_hash(&entry.0);

                // Stop tracking the popped entry's key
                self.order.remove(&key_hash);

                Some(entry)
            },
            None => None
        }
    }

    /// Appends all entries of `other` into `Self`, leaving `other` empty.
    /// 
    /// # Panics
    /// Panics if the number of elements in the hashvec either overflows `usize` or exceeds `isize::MAX` bytes
    pub fn append(&mut self, other: &mut HashVec<K, V>) {
        let mut other_entries: Vec<(K, V)> = Vec::new();
        other_entries.append(&mut other.entries);
        for (k, v) in other_entries {
            self.push((k, v));
        }
        other.clear();
    }

    /// Appends a vector of key-value pairs onto the hashvec.
    /// 
    /// Internally, this uses [`HashVec::push()`], which means that redundant keys' entries will be overwritten and moved to the end of the hashvec sequentially.
    pub fn append_vec(&mut self, v: Vec<(K, V)>) {
        for entry in v {
            self.push(entry);
        }
    }

    /// Swaps the location of the provided keys' entries
    /// 
    /// If either one of the keys is not already in the hashvec, this is a no-op.
    pub fn swap_keys(&mut self, key_a: &K, key_b: &K) {
        let key_hash_a = calculate_hash(&key_a);
        let key_hash_b = calculate_hash(&key_b);
        let op_valid = self.order.contains_key(&key_hash_a) && self.order.contains_key(&key_hash_b);

        if op_valid {
            // Swap the tracked order
            let old_index_a = *self.order.get(&key_hash_a).unwrap();
            let old_index_b = *self.order.get(&key_hash_b).unwrap();
            self.order.insert(key_hash_a, old_index_b);
            self.order.insert(key_hash_b, old_index_a);

            // Swap the actual entries
            self.entries.swap(old_index_a, old_index_b);
        }
    }

    /// Swaps the location of the entries at the provided indices
    /// 
    /// If either one of the indices exceeds the current length of the hashvec, this is a no-op.
    pub fn swap_indices(&mut self, index_a: usize, index_b: usize) {
        if index_a.max(index_b) < self.len() {
            let key_hash_a = calculate_hash(&self.entries[index_a].0);
            let key_hash_b = calculate_hash(&self.entries[index_b].0);
    
            // Swap the tracked order
            let old_index_a = *self.order.get(&key_hash_a).unwrap();
            let old_index_b = *self.order.get(&key_hash_b).unwrap();
            self.order.insert(key_hash_a, old_index_b);
            self.order.insert(key_hash_b, old_index_a);

            // Swap the actual entries
            self.entries.swap(old_index_a, old_index_b);
        }
    }

    /// Returns `true` if the hashvec contains an entry corresponding to the provided key.
    pub fn contains_key(&self, k: &K) -> bool {
        self.order.contains_key(&calculate_hash(k))
    }

    /// Returns a reference to the value corresponding to the key, if it exists.
    pub fn get(&self, k: &K) -> Option<&V> {
        match self.order.get(&calculate_hash(&k)) {
            Some(index) => Some(&self.entries[*index].1),
            None => None
        }
    }

    /// Returns a mutable reference to the value corresponding to the key, if it exists.
    pub fn get_mut(&mut self, k: &K) -> Option<&mut V> {
        match self.order.get(&calculate_hash(&k)) {
            Some(index) => Some(&mut self.entries[*index].1),
            None => None
        }
    }

    /// Changes an entry's key, preserving and returning a reference to the associated value.
    /// 
    /// If the hashvec did not have an entry corresponding to the old key, `None` is returned.
    pub fn rename(&mut self, old_key: &K, new_key: K) -> Option<&V> {
        let old_key_hash = calculate_hash(old_key);

        let index_opt = match self.order.get(&old_key_hash) {
            Some(index) => Some(*index),
            None => None
        };

        match index_opt {
            Some(index) => {
                let new_key_hash = calculate_hash(&new_key);

                // Change the entry's key
                self.entries[index].0 = new_key;

                // Stop tracking the old key hash
                self.order.remove(&old_key_hash);

                // Start tracking the new key hash
                self.order.insert(new_key_hash, index);

                // Return the corresponding value
                Some(&self.entries[index].1)
            },
            None => None
        }
    }

    /// Removes a key from the hashvec, returning the stored key and value if the key was previously in the hashvec.
    pub fn remove_key_entry(&mut self, k: &K) -> Option<(K, V)> {
        let key_hash = calculate_hash(k);
        
        let index_opt = match self.order.get(&key_hash) {
            Some(index) => Some(*index),
            None => None
        };

        match index_opt {
            Some(index) => {
                // Get the entry and then remove it from the hashvec entirely before returning the value
                let value = self.entries.remove(index);
                
                // Remove the corresponding entry from the order hashmap
                self.order.remove(&key_hash);

                // Update the index on all the remaining entries which followed the one we just removed
                for (i, (k, v)) in self.entries.iter().enumerate() {
                    if i >= index {
                        self.order.insert(calculate_hash(&self.entries[i].0), i);
                    }
                }

                // Now return the value we retained earlier
                Some(value)
            },
            None => None
        }
    }
    
    // Swaps the positions of entries `a` and `b` within the hashvec.
    //pub fn swap(&mut self, a: K, b: K) {
        //
    //}

    /// Returns the index of the provided key, if the key exists.
    pub fn index(&self, k: &K) -> Option<usize> {
        match self.order.get(&calculate_hash(k)) {
            Some(index) => Some(*index),
            None => None
        }
    }

    /// Removes a key from the hashvec, returning the stored value if the key was previously in the hashvec.
    pub fn remove_key(&mut self, k: &K) -> Option<V> {
        match self.remove_key_entry(k) {
            Some((_, v)) => Some(v),
            None => None
        }
    }

    /// Reserves capacity for at least `additional` more elements to be inserted in the `HashVec`. The collection may reserve more space to avoid frequent reallocations.
    /// 
    /// # Panics
    /// Panics if the new capacity either overflows `usize` or exceeds `isize::MAX` bytes.
    pub fn reserve(&mut self, additional: usize) {
        self.entries.reserve(additional);
        self.order.reserve(additional);
    }

    /// Shrinks the capacity of the hashvec with a lower limit.
    /// 
    /// The capacity will remain at least as large as both the length and the supplied value.
    /// 
    /// If the current capacity is less than the lower limit, this is a no-op.
    pub fn shrink_to(&mut self, min_capacity: usize) {
        self.entries.shrink_to(min_capacity);
        self.order.shrink_to(min_capacity);
    }

    /// Shrinks the capacity of the hashvec as much as possible, according to internal rules.
    pub fn shrink_to_fit(&mut self) {
        self.entries.shrink_to_fit();
        self.order.shrink_to_fit();
    }
}

impl<K: Eq + Hash, V> Index<usize> for HashVec<K, V> {
    type Output = (K, V);
    fn index(&self, i: usize) -> &(K, V) {
        &self.entries[i]
    }
}

impl<'a, K: Eq + Hash, V> IntoIterator for &'a HashVec<K, V> {
    type Item = (&'a K, &'a V);
    type IntoIter = HashVecIter<'a, K, V>;
    fn into_iter(self) -> Self::IntoIter {
        HashVecIter {
            ordered_map: self,
            index: 0
        }
    }
}

// Wrapping iterator struct
pub struct HashVecIter<'a, K: Eq + Hash, V> {
    ordered_map: &'a HashVec<K, V>,
    index: usize
}

impl<'a, K: Eq + Hash, V> Iterator for HashVecIter<'a, K, V> {
    type Item = (&'a K, &'a V);
    fn next(&mut self) -> Option<Self::Item> {
        let result = match self.ordered_map.entries.get(self.index) {
            Some((k, v)) => Some((k, v)),
            None => None
        };
        self.index += 1;
        result
    }
}

fn calculate_hash<K: Hash>(k: &K)-> u64 {
    let mut hasher = DefaultHasher::new();
    k.hash(&mut hasher);
    hasher.finish()
}

#[macro_export]
macro_rules! hashvec {
    ($($x:expr),+ $(,)?) => (
        HashVec::from_vec(vec![$($x),+])
    );
}