1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
//! Contains utilities for performing arithmetic over univariate polynomials in
//! various forms, including computing commitments to them and provably opening
//! the committed polynomials at arbitrary points.

use crate::arithmetic::parallelize;
use crate::plonk::Assigned;

use group::ff::{BatchInvert, Field};

use std::fmt::Debug;
use std::marker::PhantomData;
use std::ops::{Add, Deref, DerefMut, Index, IndexMut, Mul, RangeFrom, RangeFull};

pub mod commitment;
mod domain;
mod evaluator;
pub mod multiopen;

pub use domain::*;
pub(crate) use evaluator::*;

/// This is an error that could occur during proving or circuit synthesis.
// TODO: these errors need to be cleaned up
#[derive(Debug)]
pub enum Error {
    /// OpeningProof is not well-formed
    OpeningError,
    /// Caller needs to re-sample a point
    SamplingError,
}

/// The basis over which a polynomial is described.
pub trait Basis: Copy + Debug + Send + Sync {}

/// The polynomial is defined as coefficients
#[derive(Clone, Copy, Debug)]
pub struct Coeff;
impl Basis for Coeff {}

/// The polynomial is defined as coefficients of Lagrange basis polynomials
#[derive(Clone, Copy, Debug)]
pub struct LagrangeCoeff;
impl Basis for LagrangeCoeff {}

/// The polynomial is defined as coefficients of Lagrange basis polynomials in
/// an extended size domain which supports multiplication
#[derive(Clone, Copy, Debug)]
pub struct ExtendedLagrangeCoeff;
impl Basis for ExtendedLagrangeCoeff {}

/// Represents a univariate polynomial defined over a field and a particular
/// basis.
#[derive(Clone, Debug)]
pub struct Polynomial<F, B> {
    values: Vec<F>,
    _marker: PhantomData<B>,
}

impl<F, B> Index<usize> for Polynomial<F, B> {
    type Output = F;

    fn index(&self, index: usize) -> &F {
        self.values.index(index)
    }
}

impl<F, B> IndexMut<usize> for Polynomial<F, B> {
    fn index_mut(&mut self, index: usize) -> &mut F {
        self.values.index_mut(index)
    }
}

impl<F, B> Index<RangeFrom<usize>> for Polynomial<F, B> {
    type Output = [F];

    fn index(&self, index: RangeFrom<usize>) -> &[F] {
        self.values.index(index)
    }
}

impl<F, B> IndexMut<RangeFrom<usize>> for Polynomial<F, B> {
    fn index_mut(&mut self, index: RangeFrom<usize>) -> &mut [F] {
        self.values.index_mut(index)
    }
}

impl<F, B> Index<RangeFull> for Polynomial<F, B> {
    type Output = [F];

    fn index(&self, index: RangeFull) -> &[F] {
        self.values.index(index)
    }
}

impl<F, B> IndexMut<RangeFull> for Polynomial<F, B> {
    fn index_mut(&mut self, index: RangeFull) -> &mut [F] {
        self.values.index_mut(index)
    }
}

impl<F, B> Deref for Polynomial<F, B> {
    type Target = [F];

    fn deref(&self) -> &[F] {
        &self.values[..]
    }
}

impl<F, B> DerefMut for Polynomial<F, B> {
    fn deref_mut(&mut self) -> &mut [F] {
        &mut self.values[..]
    }
}

impl<F, B> Polynomial<F, B> {
    /// Iterate over the values, which are either in coefficient or evaluation
    /// form depending on the basis `B`.
    pub fn iter(&self) -> impl Iterator<Item = &F> {
        self.values.iter()
    }

    /// Iterate over the values mutably, which are either in coefficient or
    /// evaluation form depending on the basis `B`.
    pub fn iter_mut(&mut self) -> impl Iterator<Item = &mut F> {
        self.values.iter_mut()
    }

    /// Gets the size of this polynomial in terms of the number of
    /// coefficients used to describe it.
    pub fn num_coeffs(&self) -> usize {
        self.values.len()
    }
}

pub(crate) fn batch_invert_assigned<F: Field>(
    assigned: Vec<Polynomial<Assigned<F>, LagrangeCoeff>>,
) -> Vec<Polynomial<F, LagrangeCoeff>> {
    let mut assigned_denominators: Vec<_> = assigned
        .iter()
        .map(|f| {
            f.iter()
                .map(|value| value.denominator())
                .collect::<Vec<_>>()
        })
        .collect();

    assigned_denominators
        .iter_mut()
        .flat_map(|f| {
            f.iter_mut()
                // If the denominator is trivial, we can skip it, reducing the
                // size of the batch inversion.
                .filter_map(|d| d.as_mut())
        })
        .batch_invert();

    assigned
        .iter()
        .zip(assigned_denominators.into_iter())
        .map(|(poly, inv_denoms)| poly.invert(inv_denoms.into_iter().map(|d| d.unwrap_or(F::ONE))))
        .collect()
}

impl<F: Field> Polynomial<Assigned<F>, LagrangeCoeff> {
    pub(crate) fn invert(
        &self,
        inv_denoms: impl Iterator<Item = F> + ExactSizeIterator,
    ) -> Polynomial<F, LagrangeCoeff> {
        assert_eq!(inv_denoms.len(), self.values.len());
        Polynomial {
            values: self
                .values
                .iter()
                .zip(inv_denoms.into_iter())
                .map(|(a, inv_den)| a.numerator() * inv_den)
                .collect(),
            _marker: self._marker,
        }
    }
}

impl<'a, F: Field, B: Basis> Add<&'a Polynomial<F, B>> for Polynomial<F, B> {
    type Output = Polynomial<F, B>;

    fn add(mut self, rhs: &'a Polynomial<F, B>) -> Polynomial<F, B> {
        parallelize(&mut self.values, |lhs, start| {
            for (lhs, rhs) in lhs.iter_mut().zip(rhs.values[start..].iter()) {
                *lhs += *rhs;
            }
        });

        self
    }
}

impl<F: Field> Polynomial<F, LagrangeCoeff> {
    /// Rotates the values in a Lagrange basis polynomial by `Rotation`
    pub fn rotate(&self, rotation: Rotation) -> Polynomial<F, LagrangeCoeff> {
        let mut values = self.values.clone();
        if rotation.0 < 0 {
            values.rotate_right((-rotation.0) as usize);
        } else {
            values.rotate_left(rotation.0 as usize);
        }
        Polynomial {
            values,
            _marker: PhantomData,
        }
    }

    /// Gets the specified chunk of the rotated version of this polynomial.
    ///
    /// Equivalent to:
    /// ```ignore
    /// self.rotate(rotation)
    ///     .chunks(chunk_size)
    ///     .nth(chunk_index)
    ///     .unwrap()
    ///     .to_vec()
    /// ```
    pub(crate) fn get_chunk_of_rotated(
        &self,
        rotation: Rotation,
        chunk_size: usize,
        chunk_index: usize,
    ) -> Vec<F> {
        self.get_chunk_of_rotated_helper(
            rotation.0 < 0,
            rotation.0.unsigned_abs() as usize,
            chunk_size,
            chunk_index,
        )
    }
}

impl<F: Clone + Copy, B> Polynomial<F, B> {
    pub(crate) fn get_chunk_of_rotated_helper(
        &self,
        rotation_is_negative: bool,
        rotation_abs: usize,
        chunk_size: usize,
        chunk_index: usize,
    ) -> Vec<F> {
        // Compute the lengths such that when applying the rotation, the first `mid`
        // coefficients move to the end, and the last `k` coefficients move to the front.
        // The coefficient previously at `mid` will be the first coefficient in the
        // rotated polynomial, and the position from which chunk indexing begins.
        #[allow(clippy::branches_sharing_code)]
        let (mid, k) = if rotation_is_negative {
            let k = rotation_abs;
            assert!(k <= self.len());
            let mid = self.len() - k;
            (mid, k)
        } else {
            let mid = rotation_abs;
            assert!(mid <= self.len());
            let k = self.len() - mid;
            (mid, k)
        };

        // Compute [chunk_start..chunk_end], the range of the chunk within the rotated
        // polynomial.
        let chunk_start = chunk_size * chunk_index;
        let chunk_end = self.len().min(chunk_size * (chunk_index + 1));

        if chunk_end < k {
            // The chunk is entirely in the last `k` coefficients of the unrotated
            // polynomial.
            self.values[mid + chunk_start..mid + chunk_end].to_vec()
        } else if chunk_start >= k {
            // The chunk is entirely in the first `mid` coefficients of the unrotated
            // polynomial.
            self.values[chunk_start - k..chunk_end - k].to_vec()
        } else {
            // The chunk falls across the boundary between the last `k` and first `mid`
            // coefficients of the unrotated polynomial. Splice the halves together.
            let chunk = self.values[mid + chunk_start..]
                .iter()
                .chain(&self.values[..chunk_end - k])
                .copied()
                .collect::<Vec<_>>();
            assert!(chunk.len() <= chunk_size);
            chunk
        }
    }
}

impl<F: Field, B: Basis> Mul<F> for Polynomial<F, B> {
    type Output = Polynomial<F, B>;

    fn mul(mut self, rhs: F) -> Polynomial<F, B> {
        parallelize(&mut self.values, |lhs, _| {
            for lhs in lhs.iter_mut() {
                *lhs *= rhs;
            }
        });

        self
    }
}

/// Describes the relative rotation of a vector. Negative numbers represent
/// reverse (leftmost) rotations and positive numbers represent forward (rightmost)
/// rotations. Zero represents no rotation.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub struct Rotation(pub i32);

impl Rotation {
    /// The current location in the evaluation domain
    pub fn cur() -> Rotation {
        Rotation(0)
    }

    /// The previous location in the evaluation domain
    pub fn prev() -> Rotation {
        Rotation(-1)
    }

    /// The next location in the evaluation domain
    pub fn next() -> Rotation {
        Rotation(1)
    }
}

#[cfg(test)]
mod tests {
    use ff::Field;
    use pasta_curves::pallas;
    use rand_core::OsRng;

    use super::{EvaluationDomain, Rotation};

    #[test]
    fn test_get_chunk_of_rotated() {
        let k = 11;
        let domain = EvaluationDomain::<pallas::Base>::new(1, k);

        // Create a random polynomial.
        let mut poly = domain.empty_lagrange();
        for coefficient in poly.iter_mut() {
            *coefficient = pallas::Base::random(OsRng);
        }

        // Pick a chunk size that is guaranteed to not be a multiple of the polynomial
        // length.
        let chunk_size = 7;

        for rotation in [
            Rotation(-6),
            Rotation::prev(),
            Rotation::cur(),
            Rotation::next(),
            Rotation(12),
        ] {
            for (chunk_index, chunk) in poly.rotate(rotation).chunks(chunk_size).enumerate() {
                assert_eq!(
                    poly.get_chunk_of_rotated(rotation, chunk_size, chunk_index),
                    chunk
                );
            }
        }
    }
}