Struct half::f16 [] [src]

pub struct f16(_);

The 16-bit floating point type.

Methods

impl f16
[src]

fn from_bits(bits: u16) -> f16

Constructs a 16-bit floating point value from the raw bits.

fn from_f32(value: f32) -> f16

Constructs a 16-bit floating point value from a 32-bit floating point value.

If the 32-bit value is to large to fit in 16-bits, +/- infinity will result. NaN values are preserved. 32-bit subnormal values are too tiny to be represented in 16-bits and result in +/- 0. Exponents that underflow the minimum 16-bit exponent will result in 16-bit subnormals or +/- 0. All other values are truncated and rounded to the nearest representable 16-bit value.

fn from_f64(value: f64) -> f16

Constructs a 16-bit floating point value from a 64-bit floating point value.

If the 64-bit value is to large to fit in 16-bits, +/- infinity will result. NaN values are preserved. 64-bit subnormal values are too tiny to be represented in 16-bits and result in +/- 0. Exponents that underflow the minimum 16-bit exponent will result in 16-bit subnormals or +/- 0. All other values are truncated and rounded to the nearest representable 16-bit value.

fn as_bits(self) -> u16

Converts an f16 into the underlying bit representation.

fn is_nan(self) -> bool

Returns true if this value is NaN and false otherwise.

Examples

use half::f16;

let nan = half::consts::NAN;
let f = f16::from_f32(7.0_f32);

assert!(nan.is_nan());
assert!(!f.is_nan());

fn is_infinite(self) -> bool

Returns true if this value is positive infinity or negative infinity and false otherwise.

Examples

use half::f16;

let f = f16::from_f32(7.0f32);
let inf = half::consts::INFINITY;
let neg_inf = half::consts::NEG_INFINITY;
let nan = half::consts::NAN;

assert!(!f.is_infinite());
assert!(!nan.is_infinite());

assert!(inf.is_infinite());
assert!(neg_inf.is_infinite());

fn is_finite(self) -> bool

Returns true if this number is neither infinite nor NaN.

Examples

use half::f16;

let f = f16::from_f32(7.0f32);
let inf = half::consts::INFINITY;
let neg_inf = half::consts::NEG_INFINITY;
let nan = half::consts::NAN;

assert!(f.is_finite());

assert!(!nan.is_finite());
assert!(!inf.is_finite());
assert!(!neg_inf.is_finite());

fn is_normal(self) -> bool

Returns true if the number is neither zero, infinite, subnormal, or NaN.

Examples

use half::f16;

let min = half::consts::MIN_POSITIVE;
let max = half::consts::MAX;
let lower_than_min = f16::from_f32(1.0e-10_f32);
let zero = f16::from_f32(0.0_f32);

assert!(min.is_normal());
assert!(max.is_normal());

assert!(!zero.is_normal());
assert!(!half::consts::NAN.is_normal());
assert!(!half::consts::INFINITY.is_normal());
// Values between `0` and `min` are Subnormal.
assert!(!lower_than_min.is_normal());

fn classify(self) -> FpCategory

Returns the floating point category of the number.

If only one property is going to be tested, it is generally faster to use the specific predicate instead.

Examples

use std::num::FpCategory;
use half::f16;

let num = f16::from_f32(12.4_f32);
let inf = half::consts::INFINITY;

assert_eq!(num.classify(), FpCategory::Normal);
assert_eq!(inf.classify(), FpCategory::Infinite);

fn signum(self) -> f16

Returns a number that represents the sign of self.

  • 1.0 if the number is positive, +0.0 or INFINITY
  • -1.0 if the number is negative, -0.0 or NEG_INFINITY
  • NAN if the number is NAN

Examples

use half::f16;

let f = f16::from_f32(3.5_f32);

assert_eq!(f.signum(), f16::from_f32(1.0));
assert_eq!(half::consts::NEG_INFINITY.signum(), f16::from_f32(-1.0));

assert!(half::consts::NAN.signum().is_nan());

fn is_sign_positive(self) -> bool

Returns true if self's sign bit is positive, including +0.0 and INFINITY.

Examples

use half::f16;

let nan = half::consts::NAN;
let f = f16::from_f32(7.0_f32);
let g = f16::from_f32(-7.0_f32);

assert!(f.is_sign_positive());
assert!(!g.is_sign_positive());
// Requires both tests to determine if is `NaN`
assert!(!nan.is_sign_positive() && !nan.is_sign_negative());

fn is_sign_negative(self) -> bool

Returns true if self's sign is negative, including -0.0 and NEG_INFINITY.

Examples

use half::f16;

let nan = half::consts::NAN;
let f = f16::from_f32(7.0f32);
let g = f16::from_f32(-7.0f32);

assert!(!f.is_sign_negative());
assert!(g.is_sign_negative());
// Requires both tests to determine if is `NaN`.
assert!(!nan.is_sign_positive() && !nan.is_sign_negative());

Trait Implementations

impl Default for f16
[src]

fn default() -> f16

Returns the "default value" for a type. Read more

impl Copy for f16
[src]

impl Clone for f16
[src]

fn clone(&self) -> f16

Returns a copy of the value. Read more

fn clone_from(&mut self, source: &Self)
1.0.0

Performs copy-assignment from source. Read more

impl From<i8> for f16
[src]

fn from(x: i8) -> f16

Performs the conversion.

impl From<u8> for f16
[src]

fn from(x: u8) -> f16

Performs the conversion.

impl PartialEq for f16
[src]

fn eq(&self, other: &f16) -> bool

This method tests for self and other values to be equal, and is used by ==. Read more

fn ne(&self, other: &Rhs) -> bool
1.0.0

This method tests for !=.

impl PartialOrd for f16
[src]

fn partial_cmp(&self, other: &f16) -> Option<Ordering>

This method returns an ordering between self and other values if one exists. Read more

fn lt(&self, other: &f16) -> bool

This method tests less than (for self and other) and is used by the < operator. Read more

fn le(&self, other: &f16) -> bool

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more

fn gt(&self, other: &f16) -> bool

This method tests greater than (for self and other) and is used by the > operator. Read more

fn ge(&self, other: &f16) -> bool

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more

impl FromStr for f16
[src]

type Err = ParseFloatError

The associated error which can be returned from parsing.

fn from_str(src: &str) -> Result<f16ParseFloatError>

Parses a string s to return a value of this type. Read more

impl Debug for f16
[src]

fn fmt(&self, f: &mut Formatter) -> Result<()Error>

Formats the value using the given formatter.

impl Display for f16
[src]

fn fmt(&self, f: &mut Formatter) -> Result<()Error>

Formats the value using the given formatter.

impl LowerExp for f16
[src]

fn fmt(&self, f: &mut Formatter) -> Result<()Error>

Formats the value using the given formatter.

impl UpperExp for f16
[src]

fn fmt(&self, f: &mut Formatter) -> Result<()Error>

Formats the value using the given formatter.