hacl-sys 0.0.0

HACL*, a formally verified cryptographic library for Rust. (binding to hacl-c)
Documentation
/* MIT License
 *
 * Copyright (c) 2016-2017 INRIA and Microsoft Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#ifndef __KREMLIB_H
#define __KREMLIB_H

#include "kremlib_base.h"


/* For tests only: we might need this function to be forward-declared, because
 * the dependency on WasmSupport appears very late, after SimplifyWasm, and
 * sadly, after the topological order has been done. */
void WasmSupport_check_buffer_size(uint32_t s);

/******************************************************************************/
/* Stubs to ease compilation of non-Low* code                                 */
/******************************************************************************/

/* Some types that KreMLin has no special knowledge of; many of them appear in
 * signatures of ghost functions, meaning that it suffices to give them (any)
 * definition. */
typedef void *FStar_Seq_Base_seq, *Prims_prop, *FStar_HyperStack_mem,
    *FStar_Set_set, *Prims_st_pre_h, *FStar_Heap_heap, *Prims_all_pre_h,
    *FStar_TSet_set, *Prims_list, *FStar_Map_t, *FStar_UInt63_t_,
    *FStar_Int63_t_, *FStar_UInt63_t, *FStar_Int63_t, *FStar_UInt_uint_t,
    *FStar_Int_int_t, *FStar_HyperStack_stackref, *FStar_Bytes_bytes,
    *FStar_HyperHeap_rid, *FStar_Heap_aref, *FStar_Monotonic_Heap_heap,
    *FStar_Monotonic_Heap_aref, *FStar_Monotonic_HyperHeap_rid,
    *FStar_Monotonic_HyperStack_mem, *FStar_Char_char_;

typedef const char *Prims_string;

/* For "bare" targets that do not have a C stdlib, the user might want to use
 * [-add-include '"mydefinitions.h"'] and override these. */
#ifndef KRML_HOST_PRINTF
#  define KRML_HOST_PRINTF printf
#endif

#ifndef KRML_HOST_EXIT
#  define KRML_HOST_EXIT exit
#endif

#ifndef KRML_HOST_MALLOC
#  define KRML_HOST_MALLOC malloc
#endif

/* In statement position, exiting is easy. */
#define KRML_EXIT                                                              \
  do {                                                                         \
    KRML_HOST_PRINTF("Unimplemented function at %s:%d\n", __FILE__, __LINE__); \
    KRML_HOST_EXIT(254);                                                       \
  } while (0)

/* In expression position, use the comma-operator and a malloc to return an
 * expression of the right size. KreMLin passes t as the parameter to the macro.
 */
#define KRML_EABORT(t, msg)                                                    \
  (KRML_HOST_PRINTF("KreMLin abort at %s:%d\n%s\n", __FILE__, __LINE__, msg),  \
   KRML_HOST_EXIT(255), *((t *)KRML_HOST_MALLOC(sizeof(t))))

/* In FStar.Buffer.fst, the size of arrays is uint32_t, but it's a number of
 * *elements*. Do an ugly, run-time check (some of which KreMLin can eliminate).
 */
#define KRML_CHECK_SIZE(elt, size)                                             \
  if (((size_t)size) > SIZE_MAX / sizeof(elt)) {                               \
    KRML_HOST_PRINTF(                                                          \
        "Maximum allocatable size exceeded, aborting before overflow at "      \
        "%s:%d\n",                                                             \
        __FILE__, __LINE__);                                                   \
    KRML_HOST_EXIT(253);                                                       \
  }

/* A series of GCC atrocities to trace function calls (kremlin's [-d c-calls]
 * option). Useful when trying to debug, say, Wasm, to compare traces. */
/* clang-format off */
#ifdef __GNUC__
#define KRML_FORMAT(X) _Generic((X),                                           \
  uint8_t : "0x%08" PRIx8,                                                     \
  uint16_t: "0x%08" PRIx16,                                                    \
  uint32_t: "0x%08" PRIx32,                                                    \
  uint64_t: "0x%08" PRIx64,                                                    \
  int8_t  : "0x%08" PRIx8,                                                     \
  int16_t : "0x%08" PRIx16,                                                    \
  int32_t : "0x%08" PRIx32,                                                    \
  int64_t : "0x%08" PRIx64,                                                    \
  default : "%s")

#define KRML_FORMAT_ARG(X) _Generic((X),                                       \
  uint8_t : X,                                                                 \
  uint16_t: X,                                                                 \
  uint32_t: X,                                                                 \
  uint64_t: X,                                                                 \
  int8_t  : X,                                                                 \
  int16_t : X,                                                                 \
  int32_t : X,                                                                 \
  int64_t : X,                                                                 \
  default : "unknown")
/* clang-format on */

#  define KRML_DEBUG_RETURN(X)                                                 \
    ({                                                                         \
      __auto_type _ret = (X);                                                  \
      KRML_HOST_PRINTF("returning: ");                                         \
      KRML_HOST_PRINTF(KRML_FORMAT(_ret), KRML_FORMAT_ARG(_ret));              \
      KRML_HOST_PRINTF(" \n");                                                 \
      _ret;                                                                    \
    })
#endif

#define FStar_Buffer_eqb(b1, b2, n)                                            \
  (memcmp((b1), (b2), (n) * sizeof((b1)[0])) == 0)

/* Stubs to make ST happy. Important note: you must generate a use of the macro
 * argument, otherwise, you may have FStar_ST_recall(f) as the only use of f;
 * KreMLin will think that this is a valid use, but then the C compiler, after
 * macro expansion, will error out. */
#define FStar_HyperHeap_root 0
#define FStar_Pervasives_Native_fst(x) (x).fst
#define FStar_Pervasives_Native_snd(x) (x).snd
#define FStar_Seq_Base_createEmpty(x) 0
#define FStar_Seq_Base_create(len, init) 0
#define FStar_Seq_Base_upd(s, i, e) 0
#define FStar_Seq_Base_eq(l1, l2) 0
#define FStar_Seq_Base_length(l1) 0
#define FStar_Seq_Base_append(x, y) 0
#define FStar_Seq_Base_slice(x, y, z) 0
#define FStar_Seq_Properties_snoc(x, y) 0
#define FStar_Seq_Properties_cons(x, y) 0
#define FStar_Seq_Base_index(x, y) 0
#define FStar_HyperStack_is_eternal_color(x) 0
#define FStar_Monotonic_HyperHeap_root 0
#define FStar_Buffer_to_seq_full(x) 0
#define FStar_Buffer_recall(x)
#define FStar_HyperStack_ST_op_Colon_Equals(x, v) KRML_EXIT
#define FStar_HyperStack_ST_op_Bang(x) 0
#define FStar_HyperStack_ST_salloc(x) 0
#define FStar_HyperStack_ST_ralloc(x, y) 0
#define FStar_HyperStack_ST_new_region(x) (0)
#define FStar_Monotonic_RRef_m_alloc(x)                                        \
  { 0 }

#define FStar_HyperStack_ST_recall(x)                                          \
  do {                                                                         \
    (void)(x);                                                                 \
  } while (0)

#define FStar_HyperStack_ST_recall_region(x)                                   \
  do {                                                                         \
    (void)(x);                                                                 \
  } while (0)

#define FStar_Monotonic_RRef_m_recall(x1, x2)                                  \
  do {                                                                         \
    (void)(x1);                                                                \
    (void)(x2);                                                                \
  } while (0)

#define FStar_Monotonic_RRef_m_write(x1, x2, x3, x4, x5)                       \
  do {                                                                         \
    (void)(x1);                                                                \
    (void)(x2);                                                                \
    (void)(x3);                                                                \
    (void)(x4);                                                                \
    (void)(x5);                                                                \
  } while (0)

/******************************************************************************/
/* Endian-ness macros that can only be implemented in C                       */
/******************************************************************************/

/* ... for Linux */
#if defined(__linux__) || defined(__CYGWIN__)
#  include <endian.h>

/* ... for OSX */
#elif defined(__APPLE__)
#  include <libkern/OSByteOrder.h>
#  define htole64(x) OSSwapHostToLittleInt64(x)
#  define le64toh(x) OSSwapLittleToHostInt64(x)
#  define htobe64(x) OSSwapHostToBigInt64(x)
#  define be64toh(x) OSSwapBigToHostInt64(x)

#  define htole16(x) OSSwapHostToLittleInt16(x)
#  define le16toh(x) OSSwapLittleToHostInt16(x)
#  define htobe16(x) OSSwapHostToBigInt16(x)
#  define be16toh(x) OSSwapBigToHostInt16(x)

#  define htole32(x) OSSwapHostToLittleInt32(x)
#  define le32toh(x) OSSwapLittleToHostInt32(x)
#  define htobe32(x) OSSwapHostToBigInt32(x)
#  define be32toh(x) OSSwapBigToHostInt32(x)

/* ... for Solaris */
#elif defined(__sun__)
#  include <sys/byteorder.h>
#  define htole64(x) LE_64(x)
#  define le64toh(x) LE_64(x)
#  define htobe64(x) BE_64(x)
#  define be64toh(x) BE_64(x)

#  define htole16(x) LE_16(x)
#  define le16toh(x) LE_16(x)
#  define htobe16(x) BE_16(x)
#  define be16toh(x) BE_16(x)

#  define htole32(x) LE_32(x)
#  define le32toh(x) LE_32(x)
#  define htobe32(x) BE_32(x)
#  define be32toh(x) BE_32(x)

/* ... for the BSDs */
#elif defined(__FreeBSD__) || defined(__NetBSD__) || defined(__DragonFly__)
#  include <sys/endian.h>
#elif defined(__OpenBSD__)
#  include <endian.h>

/* ... for Windows (MSVC)... not targeting XBOX 360! */
#elif defined(_MSC_VER)

#  include <stdlib.h>
#  define htobe16(x) _byteswap_ushort(x)
#  define htole16(x) (x)
#  define be16toh(x) _byteswap_ushort(x)
#  define le16toh(x) (x)

#  define htobe32(x) _byteswap_ulong(x)
#  define htole32(x) (x)
#  define be32toh(x) _byteswap_ulong(x)
#  define le32toh(x) (x)

#  define htobe64(x) _byteswap_uint64(x)
#  define htole64(x) (x)
#  define be64toh(x) _byteswap_uint64(x)
#  define le64toh(x) (x)

/* ... for Windows (GCC-like, e.g. mingw or clang) */
#elif (defined(_WIN32) || defined(_WIN64)) &&                                  \
    (defined(__GNUC__) || defined(__clang__))

#  define htobe16(x) __builtin_bswap16(x)
#  define htole16(x) (x)
#  define be16toh(x) __builtin_bswap16(x)
#  define le16toh(x) (x)

#  define htobe32(x) __builtin_bswap32(x)
#  define htole32(x) (x)
#  define be32toh(x) __builtin_bswap32(x)
#  define le32toh(x) (x)

#  define htobe64(x) __builtin_bswap64(x)
#  define htole64(x) (x)
#  define be64toh(x) __builtin_bswap64(x)
#  define le64toh(x) (x)

/* ... generic big-endian fallback code */
#elif defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__

/* byte swapping code inspired by:
 * https://github.com/rweather/arduinolibs/blob/master/libraries/Crypto/utility/EndianUtil.h
 * */

#  define htobe32(x) (x)
#  define be32toh(x) (x)
#  define htole32(x)                                                           \
    (__extension__({                                                           \
      uint32_t _temp = (x);                                                    \
      ((_temp >> 24) & 0x000000FF) | ((_temp >> 8) & 0x0000FF00) |             \
          ((_temp << 8) & 0x00FF0000) | ((_temp << 24) & 0xFF000000);          \
    }))
#  define le32toh(x) (htole32((x)))

#  define htobe64(x) (x)
#  define be64toh(x) (x)
#  define htole64(x)                                                           \
    (__extension__({                                                           \
      uint64_t __temp = (x);                                                   \
      uint32_t __low = htobe32((uint32_t)__temp);                              \
      uint32_t __high = htobe32((uint32_t)(__temp >> 32));                     \
      (((uint64_t)__low) << 32) | __high;                                      \
    }))
#  define le64toh(x) (htole64((x)))

/* ... generic little-endian fallback code */
#elif defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__

#  define htole32(x) (x)
#  define le32toh(x) (x)
#  define htobe32(x)                                                           \
    (__extension__({                                                           \
      uint32_t _temp = (x);                                                    \
      ((_temp >> 24) & 0x000000FF) | ((_temp >> 8) & 0x0000FF00) |             \
          ((_temp << 8) & 0x00FF0000) | ((_temp << 24) & 0xFF000000);          \
    }))
#  define be32toh(x) (htobe32((x)))

#  define htole64(x) (x)
#  define le64toh(x) (x)
#  define htobe64(x)                                                           \
    (__extension__({                                                           \
      uint64_t __temp = (x);                                                   \
      uint32_t __low = htobe32((uint32_t)__temp);                              \
      uint32_t __high = htobe32((uint32_t)(__temp >> 32));                     \
      (((uint64_t)__low) << 32) | __high;                                      \
    }))
#  define be64toh(x) (htobe64((x)))

/* ... couldn't determine endian-ness of the target platform */
#else
#  error "Please define __BYTE_ORDER__!"

#endif /* defined(__linux__) || ... */

/* Loads and stores. These avoid undefined behavior due to unaligned memory
 * accesses, via memcpy. */

inline static uint16_t load16(uint8_t *b) {
  uint16_t x;
  memcpy(&x, b, 2);
  return x;
}

inline static uint32_t load32(uint8_t *b) {
  uint32_t x;
  memcpy(&x, b, 4);
  return x;
}

inline static uint64_t load64(uint8_t *b) {
  uint64_t x;
  memcpy(&x, b, 8);
  return x;
}

inline static void store16(uint8_t *b, uint16_t i) { memcpy(b, &i, 2); }

inline static void store32(uint8_t *b, uint32_t i) { memcpy(b, &i, 4); }

inline static void store64(uint8_t *b, uint64_t i) { memcpy(b, &i, 8); }

#define load16_le(b) (le16toh(load16(b)))
#define store16_le(b, i) (store16(b, htole16(i)))
#define load16_be(b) (be16toh(load16(b)))
#define store16_be(b, i) (store16(b, htobe16(i)))

#define load32_le(b) (le32toh(load32(b)))
#define store32_le(b, i) (store32(b, htole32(i)))
#define load32_be(b) (be32toh(load32(b)))
#define store32_be(b, i) (store32(b, htobe32(i)))

#define load64_le(b) (le64toh(load64(b)))
#define store64_le(b, i) (store64(b, htole64(i)))
#define load64_be(b) (be64toh(load64(b)))
#define store64_be(b, i) (store64(b, htobe64(i)))

/******************************************************************************/
/* Checked integers to ease the compilation of non-Low* code                  */
/******************************************************************************/

typedef int32_t Prims_pos, Prims_nat, Prims_nonzero, Prims_int,
    krml_checked_int_t;

inline static bool Prims_op_GreaterThanOrEqual(int32_t x, int32_t y) {
  return x >= y;
}

inline static bool Prims_op_LessThanOrEqual(int32_t x, int32_t y) {
  return x <= y;
}

inline static bool Prims_op_GreaterThan(int32_t x, int32_t y) { return x > y; }

inline static bool Prims_op_LessThan(int32_t x, int32_t y) { return x < y; }

#define RETURN_OR(x)                                                           \
  do {                                                                         \
    int64_t __ret = x;                                                         \
    if (__ret < INT32_MIN || INT32_MAX < __ret) {                              \
      KRML_HOST_PRINTF("Prims.{int,nat,pos} integer overflow at %s:%d\n",      \
                       __FILE__, __LINE__);                                    \
      KRML_HOST_EXIT(252);                                                     \
    }                                                                          \
    return (int32_t)__ret;                                                     \
  } while (0)

inline static int32_t Prims_pow2(int32_t x) {
  RETURN_OR((int64_t)1 << (int64_t)x);
}

inline static int32_t Prims_op_Multiply(int32_t x, int32_t y) {
  RETURN_OR((int64_t)x * (int64_t)y);
}

inline static int32_t Prims_op_Addition(int32_t x, int32_t y) {
  RETURN_OR((int64_t)x + (int64_t)y);
}

inline static int32_t Prims_op_Subtraction(int32_t x, int32_t y) {
  RETURN_OR((int64_t)x - (int64_t)y);
}

inline static int32_t Prims_op_Division(int32_t x, int32_t y) {
  RETURN_OR((int64_t)x / (int64_t)y);
}

inline static int32_t Prims_op_Modulus(int32_t x, int32_t y) {
  RETURN_OR((int64_t)x % (int64_t)y);
}

inline static int8_t FStar_UInt8_uint_to_t(int8_t x) { return x; }
inline static int16_t FStar_UInt16_uint_to_t(int16_t x) { return x; }
inline static int32_t FStar_UInt32_uint_to_t(int32_t x) { return x; }
inline static int64_t FStar_UInt64_uint_to_t(int64_t x) { return x; }

inline static int8_t FStar_UInt8_v(int8_t x) { return x; }
inline static int16_t FStar_UInt16_v(int16_t x) { return x; }
inline static int32_t FStar_UInt32_v(int32_t x) { return x; }
inline static int64_t FStar_UInt64_v(int64_t x) { return x; }


/* Platform-specific 128-bit arithmetic. These are static functions in a header,
 * so that each translation unit gets its own copy and the C compiler can
 * optimize. */
#ifndef KRML_NOUINT128
typedef unsigned __int128 FStar_UInt128_t, FStar_UInt128_t_, uint128_t;

static inline void print128(const char *where, uint128_t n) {
  KRML_HOST_PRINTF("%s: [%" PRIu64 ",%" PRIu64 "]\n", where,
                   (uint64_t)(n >> 64), (uint64_t)n);
}

static inline uint128_t load128_le(uint8_t *b) {
  uint128_t l = (uint128_t)load64_le(b);
  uint128_t h = (uint128_t)load64_le(b + 8);
  return (h << 64 | l);
}

static inline void store128_le(uint8_t *b, uint128_t n) {
  store64_le(b, (uint64_t)n);
  store64_le(b + 8, (uint64_t)(n >> 64));
}

static inline uint128_t load128_be(uint8_t *b) {
  uint128_t h = (uint128_t)load64_be(b);
  uint128_t l = (uint128_t)load64_be(b + 8);
  return (h << 64 | l);
}

static inline void store128_be(uint8_t *b, uint128_t n) {
  store64_be(b, (uint64_t)(n >> 64));
  store64_be(b + 8, (uint64_t)n);
}

#  define FStar_UInt128_add(x, y) ((x) + (y))
#  define FStar_UInt128_mul(x, y) ((x) * (y))
#  define FStar_UInt128_add_mod(x, y) ((x) + (y))
#  define FStar_UInt128_sub(x, y) ((x) - (y))
#  define FStar_UInt128_sub_mod(x, y) ((x) - (y))
#  define FStar_UInt128_logand(x, y) ((x) & (y))
#  define FStar_UInt128_logor(x, y) ((x) | (y))
#  define FStar_UInt128_logxor(x, y) ((x) ^ (y))
#  define FStar_UInt128_lognot(x) (~(x))
#  define FStar_UInt128_shift_left(x, y) ((x) << (y))
#  define FStar_UInt128_shift_right(x, y) ((x) >> (y))
#  define FStar_UInt128_uint64_to_uint128(x) ((uint128_t)(x))
#  define FStar_UInt128_uint128_to_uint64(x) ((uint64_t)(x))
#  define FStar_UInt128_mul_wide(x, y) ((uint128_t)(x) * (y))
#  define FStar_UInt128_op_Hat_Hat(x, y) ((x) ^ (y))

static inline uint128_t FStar_UInt128_eq_mask(uint128_t x, uint128_t y) {
  uint64_t mask =
      FStar_UInt64_eq_mask((uint64_t)(x >> 64), (uint64_t)(y >> 64)) &
      FStar_UInt64_eq_mask(x, y);
  return ((uint128_t)mask) << 64 | mask;
}

static inline uint128_t FStar_UInt128_gte_mask(uint128_t x, uint128_t y) {
  uint64_t mask =
      (FStar_UInt64_gte_mask(x >> 64, y >> 64) &
       ~(FStar_UInt64_eq_mask(x >> 64, y >> 64))) |
      (FStar_UInt64_eq_mask(x >> 64, y >> 64) & FStar_UInt64_gte_mask(x, y));
  return ((uint128_t)mask) << 64 | mask;
}



#  else /* !defined(KRML_NOUINT128) */

  /* This is a bad circular dependency... should fix it properly. */
#    include "FStar.h"

typedef FStar_UInt128_uint128 FStar_UInt128_t_, uint128_t;

/* A series of definitions written using pointers. */
static inline void print128_(const char *where, uint128_t *n) {
  KRML_HOST_PRINTF("%s: [0x%08" PRIx64 ",0x%08" PRIx64 "]\n", where, n->high, n->low);
}

static inline void load128_le_(uint8_t *b, uint128_t *r) {
  r->low = load64_le(b);
  r->high = load64_le(b + 8);
}

static inline void store128_le_(uint8_t *b, uint128_t *n) {
  store64_le(b, n->low);
  store64_le(b + 8, n->high);
}

static inline void load128_be_(uint8_t *b, uint128_t *r) {
  r->high = load64_be(b);
  r->low = load64_be(b + 8);
}

static inline void store128_be_(uint8_t *b, uint128_t *n) {
  store64_be(b, n->high);
  store64_be(b + 8, n->low);
}

#    ifndef KRML_NOSTRUCT_PASSING

static inline void print128(const char *where, uint128_t n) {
  print128_(where, &n);
}

static inline uint128_t load128_le(uint8_t *b) {
  uint128_t r;
  load128_le_(b, &r);
  return r;
}

static inline void store128_le(uint8_t *b, uint128_t n) { store128_le_(b, &n); }

static inline uint128_t load128_be(uint8_t *b) {
  uint128_t r;
  load128_be_(b, &r);
  return r;
}

static inline void store128_be(uint8_t *b, uint128_t n) { store128_be_(b, &n); }

#    else /* !defined(KRML_STRUCT_PASSING) */

#      define print128 print128_
#      define load128_le load128_le_
#      define store128_le store128_le_
#      define load128_be load128_be_
#      define store128_be store128_be_

#    endif /* KRML_STRUCT_PASSING */
#  endif   /* KRML_UINT128 */
#endif     /* __KREMLIB_H */