1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
// Bitcoin secp256k1 bindings
// Written in 2014 by
//   Dawid Ciężarkiewicz
//   Andrew Poelstra
// 2018 The Grin Developers
//
// To the extent possible under law, the author(s) have dedicated all
// copyright and related and neighboring rights to this software to
// the public domain worldwide. This software is distributed without
// any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication
// along with this software.
// If not, see <http://creativecommons.org/publicdomain/zero/1.0/>.
//

//! # Pedersen commitments and related range proofs

use libc::size_t;
use std::cmp::min;
use std::fmt;
use std::mem;
use std::ptr;
use std::u64;

use crate::ContextFlag;
use crate::Error::{self, InvalidPublicKey, InvalidCommit};
use crate::Secp256k1;

use super::{Message, Signature};
use crate::aggsig::ZERO_256;
use crate::constants;
use crate::ffi;
use crate::key::{self, PublicKey, SecretKey};
use rand::{thread_rng, Rng};
use serde::{de, ser};

const MAX_WIDTH: usize = 1 << 20;
const SCRATCH_SPACE_SIZE: size_t = 256 * MAX_WIDTH;
const MAX_GENERATORS: size_t = 256;

/// Shared Bullet Proof Generators (avoid recreating every time)
static mut SHARED_BULLETGENERATORS: Option<*mut ffi::BulletproofGenerators> = None;

// TODO: Check whether this matters if this is used with a different context; don't think it does
fn shared_generators(ctx: *mut ffi::Context) -> *mut ffi::BulletproofGenerators {
	unsafe {
		match SHARED_BULLETGENERATORS.clone() {
			Some(s) => s,
			None => {
				SHARED_BULLETGENERATORS = Some(ffi::secp256k1_bulletproof_generators_create(
					ctx,
					constants::GENERATOR_G.as_ptr(),
					MAX_GENERATORS,
				));
				SHARED_BULLETGENERATORS.unwrap()
			}
		}
	}
}

/// underling lib's representation of a commit, which is now a full 64 bytes
pub struct CommitmentInternal(pub [u8; constants::PEDERSEN_COMMITMENT_SIZE_INTERNAL]);
impl Copy for CommitmentInternal {}
impl_array_newtype!(CommitmentInternal, u8, constants::PEDERSEN_COMMITMENT_SIZE_INTERNAL);
impl_pretty_debug!(CommitmentInternal);


impl CommitmentInternal {
	/// Uninitialized commitment, use with caution
	pub unsafe fn blank() -> CommitmentInternal {
		mem::MaybeUninit::uninit().assume_init()
	}
}

/// A Pedersen commitment
pub struct Commitment(pub [u8; constants::PEDERSEN_COMMITMENT_SIZE]);
impl Copy for Commitment {}
impl_array_newtype!(Commitment, u8, constants::PEDERSEN_COMMITMENT_SIZE);
impl_pretty_debug!(Commitment);

impl Commitment {
	/// Builds a Hash from a byte vector. If the vector is too short, it will be
	/// completed by zeroes. If it's too long, it will be truncated.
	pub fn from_vec(v: Vec<u8>) -> Commitment {
		let mut h = [0; constants::PEDERSEN_COMMITMENT_SIZE];
		for i in 0..min(v.len(), constants::PEDERSEN_COMMITMENT_SIZE) {
			h[i] = v[i];
		}
		Commitment(h)
	}

	/// Uninitialized commitment, use with caution
	unsafe fn blank() -> Commitment {
		mem::MaybeUninit::uninit().assume_init()
	}

	/// Creates from a pubkey
	pub fn from_pubkey(secp: &Secp256k1, pk: &key::PublicKey) -> Result<Self, Error> {
		unsafe {
			let mut commit_i = [0; constants::PEDERSEN_COMMITMENT_SIZE_INTERNAL];
			if ffi::secp256k1_pubkey_to_pedersen_commitment(secp.ctx, commit_i.as_mut_ptr(), &pk.0 as *const _) == 1 {
				Ok(secp.commit_ser(commit_i)?)
			} else {
				Err(InvalidCommit)
			}
		}
	}

	/// Converts a commitment to a public key
	pub fn to_pubkey(&self, secp: &Secp256k1) -> Result<key::PublicKey, Error> {
		let mut pk = unsafe { ffi::PublicKey::blank() };
		unsafe {
			let commit = secp.commit_parse(self.0.clone())?;
			if ffi::secp256k1_pedersen_commitment_to_pubkey(secp.ctx, &mut pk, commit.as_ptr()) == 1 {
				Ok(key::PublicKey::from_secp256k1_pubkey(pk))
			} else {
				Err(InvalidPublicKey)
			}
		}
	}

}

/// A range proof. Typically much larger in memory that the above (~5k).
#[derive(Clone, Copy)]
pub struct RangeProof {
	/// The proof itself, at most 5134 bytes long
	pub proof: [u8; constants::MAX_PROOF_SIZE],
	/// The length of the proof
	pub plen: usize,
}

impl PartialEq for RangeProof {
	fn eq(&self, other: &Self) -> bool {
		self.proof.as_ref() == other.proof.as_ref()
	}
}

impl ser::Serialize for RangeProof {
	fn serialize<S>(&self, s: S) -> Result<S::Ok, S::Error>
	where
		S: ser::Serializer,
	{
		(&self.proof[..self.plen]).serialize(s)
	}
}

struct Visitor;

impl<'di> de::Visitor<'di> for Visitor {
	type Value = RangeProof;

	fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
		formatter.write_str("an array of bytes")
	}

	#[inline]
	fn visit_seq<V>(self, mut v: V) -> Result<RangeProof, V::Error>
	where
		V: de::SeqAccess<'di>,
	{
		unsafe {
			let mut ret: [u8; constants::MAX_PROOF_SIZE] = mem::MaybeUninit::uninit().assume_init();
			let mut i = 0;
			while let Some(val) = v.next_element()? {
				ret[i] = val;
				i += 1;
			}
			Ok(RangeProof {
				proof: ret,
				plen: i,
			})
		}
	}
}

impl<'de> de::Deserialize<'de> for RangeProof {
	fn deserialize<D>(d: D) -> Result<RangeProof, D::Error>
	where
		D: de::Deserializer<'de>,
	{
		// Begin actual function
		d.deserialize_seq(Visitor)
	}
}

impl AsRef<[u8]> for RangeProof {
	fn as_ref(&self) -> &[u8] {
		&self.proof[..self.plen as usize]
	}
}

// This is a macro that check zero public key
macro_rules! is_zero_pubkey {
	(retnone => $e:expr) => {
		match $e {
			Some(n) => {
				if (n.0).0.starts_with(&ZERO_256) {
					return None;
					}
				n.as_mut_ptr()
				}
			None => ptr::null_mut(),
			}
	};
	(ignore => $e:expr) => {
		match $e {
			Some(n) => n.as_mut_ptr(),
			None => ptr::null_mut(),
			}
	};
}

impl RangeProof {
	/// Create the zero range proof
	pub fn zero() -> RangeProof {
		RangeProof {
			proof: [0; constants::MAX_PROOF_SIZE],
			plen: 0,
		}
	}
	/// The range proof as a byte slice.
	pub fn bytes(&self) -> &[u8] {
		&self.proof[..self.plen as usize]
	}
	/// Length of the range proof in bytes.
	pub fn len(&self) -> usize {
		self.plen
	}
}

/// A message included in a range proof.
/// The message is recoverable by rewinding a range proof
/// passing in the same nonce that was used to originally create the range proof.
#[derive(Clone)]
pub struct ProofMessage(Vec<u8>);

impl ProofMessage {
	/// Creates an empty message.
	pub fn empty() -> ProofMessage {
		ProofMessage(vec![])
	}

	/// Creates a message from a byte slice.
	pub fn from_bytes(array: &[u8]) -> ProofMessage {
		let mut msg = vec![];
		for &value in array {
			msg.push(value);
		}
		ProofMessage(msg)
	}

	/// Converts the message to a byte slice.
	pub fn as_bytes(&self) -> &[u8] {
		self.0.iter().as_slice()
	}

	/// Converts the message to a raw pointer.
	pub fn as_ptr(&self) -> *const u8 {
		self.0.as_ptr()
	}

	/// The length of the message.
	/// This will be PROOF_MSG_SIZE unless the message has been truncated.
	pub fn len(&self) -> usize {
		self.0.len()
	}

	/// Message in the range proof is the first len bytes of the fixed PROOF_MSG_SIZE.
	/// We can truncate it to the correct size if we know how many bytes we care about.
	/// This probably implies the message will take a known format.
	pub fn truncate(&mut self, len: usize) {
		self.0.truncate(len)
	}

	/// Push a byte onto the message
	pub fn push(&mut self, value: u8) {
		self.0.push(value);
	}
}

impl ::std::cmp::PartialEq for ProofMessage {
	fn eq(&self, other: &ProofMessage) -> bool {
		self.0[..] == other.0[..]
	}
}
impl ::std::cmp::Eq for ProofMessage {}

impl ::std::fmt::Debug for ProofMessage {
	fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
		write!(f, "{}(", stringify!(ProofMessage))?;
		for i in self.0.iter().cloned() {
			write!(f, "{:02x}", i)?;
		}
		write!(f, ")")
	}
}

/// The range that was proven
#[derive(Debug)]
pub struct ProofRange {
	/// Min value that was proven
	pub min: u64,
	/// Max value that was proven
	pub max: u64,
}

/// Information about a valid proof after rewinding it.
#[derive(Debug)]
pub struct ProofInfo {
	/// Whether the proof is valid or not
	pub success: bool,
	/// Value that was used by the commitment
	pub value: u64,
	/// Blinding factor that was used (Bulletproofs)
	pub blinding: SecretKey,
	/// Message embedded in the proof
	pub message: ProofMessage,
	/// Length of the embedded message (message is "padded" with garbage to fixed number of bytes)
	pub mlen: usize,
	/// Min value that was proven
	pub min: u64,
	/// Max value that was proven
	pub max: u64,
	/// Exponent used by the proof
	pub exp: i32,
	/// Mantissa used by the proof
	pub mantissa: i32,
}

impl ::std::fmt::Debug for RangeProof {
	fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
		write!(f, "{}(", stringify!(RangeProof))?;
		for i in self.proof[..self.plen].iter().cloned() {
			write!(f, "{:02x}", i)?;
		}
		write!(f, ")[{}]", self.plen)
	}
}

impl Secp256k1 {
	/// verify commitment
	pub fn verify_from_commit(
		&self,
		msg: &Message,
		sig: &Signature,
		commit: &Commitment,
	) -> Result<(), Error> {
		if self.caps != ContextFlag::Commit {
			return Err(Error::IncapableContext);
		}

		let pubkey = commit.to_pubkey(&self).unwrap();

		let result = self.verify(msg, sig, &pubkey);
		match result {
			Ok(x) => Ok(x),
			Err(_) => result,
		}
	}

	/// Parse a commit into an internal representation
	fn commit_parse(&self, c_in: [u8;constants::PEDERSEN_COMMITMENT_SIZE])
	-> Result<CommitmentInternal, Error> {
		let c_out = unsafe {
			let mut c_out = CommitmentInternal::blank();
			ffi::secp256k1_pedersen_commitment_parse(
				self.ctx,
				c_out.as_mut_ptr(),
				c_in.as_ptr(),
			);
			c_out
		};
		Ok(c_out)
	}

	/// Parse a commit into an internal representation
	fn commit_ser(&self, c_in: [u8;constants::PEDERSEN_COMMITMENT_SIZE_INTERNAL])
	-> Result<Commitment, Error> {
		let c_out = unsafe {
			let mut c_out = Commitment::blank();
			ffi:: secp256k1_pedersen_commitment_serialize(
				self.ctx,
				c_out.as_mut_ptr(),
				c_in.as_ptr(),
			);
			c_out
		};
		Ok(c_out)
	}

	/// Creates a pedersen commitment from a value and a blinding factor
	pub fn commit(&self, value: u64, blind: SecretKey) -> Result<Commitment, Error> {
		if self.caps != ContextFlag::Commit {
			return Err(Error::IncapableContext);
		}
		let mut commit_i = [0; constants::PEDERSEN_COMMITMENT_SIZE_INTERNAL];
		unsafe {
			ffi::secp256k1_pedersen_commit(
				self.ctx,
				commit_i.as_mut_ptr(),
				blind.as_ptr(),
				value,
				constants::GENERATOR_H.as_ptr(),
				constants::GENERATOR_G.as_ptr(),
			)
		};
		Ok(self.commit_ser(commit_i)?)
	}

	/// Creates a pedersen commitment from a two blinding factors
	pub fn commit_blind(&self, value: SecretKey, blind: SecretKey) -> Result<Commitment, Error> {
		if self.caps != ContextFlag::Commit {
			return Err(Error::IncapableContext);
		}
		let mut commit_i = [0; constants::PEDERSEN_COMMITMENT_SIZE_INTERNAL];
		unsafe {
			ffi::secp256k1_pedersen_blind_commit(
				self.ctx,
				commit_i.as_mut_ptr(),
				blind.as_ptr(),
				value.as_ptr(),
				constants::GENERATOR_H.as_ptr(),
				constants::GENERATOR_G.as_ptr(),
			)
		};
		Ok(self.commit_ser(commit_i)?)
	}

	/// Convenience method to Create a pedersen commitment only from a value,
	/// with a zero blinding factor
	pub fn commit_value(&self, value: u64) -> Result<Commitment, Error> {
		if self.caps != ContextFlag::Commit {
			return Err(Error::IncapableContext);
		}
		let mut commit_i = [0; constants::PEDERSEN_COMMITMENT_SIZE_INTERNAL];
		let zblind = [0u8; 32];

		unsafe {
			ffi::secp256k1_pedersen_commit(
				self.ctx,
				commit_i.as_mut_ptr(),
				zblind.as_ptr(),
				value,
				constants::GENERATOR_H.as_ptr(),
				constants::GENERATOR_G.as_ptr(),
			)
		};
		Ok(self.commit_ser(commit_i)?)
	}

	/// Taking vectors of positive and negative commitments as well as an
	/// expected excess, verifies that it all sums to zero.
	pub fn verify_commit_sum(&self, positive: Vec<Commitment>, negative: Vec<Commitment>) -> bool {
		let pos = map_vec!(positive, |p| { self.commit_parse(p.0).unwrap() });
		let neg = map_vec!(negative, |n| self.commit_parse(n.0).unwrap());
		let pos = map_vec!(pos, |p| p.0.as_ptr());
		let neg = map_vec!(neg, |n| n.0.as_ptr());
		unsafe {
			ffi::secp256k1_pedersen_verify_tally(
				self.ctx,
				pos.as_ptr(),
				pos.len() as size_t,
				neg.as_ptr(),
				neg.len() as size_t,
			) == 1
		}
	}

	/// Computes the sum of multiple positive and negative pedersen commitments.
	pub fn commit_sum(
		&self,
		positive: Vec<Commitment>,
		negative: Vec<Commitment>,
	) -> Result<Commitment, Error> {
		let pos = map_vec!(positive, |p| self.commit_parse(p.0).unwrap());
		let neg = map_vec!(negative, |n| self.commit_parse(n.0).unwrap());
		let pos = map_vec!(pos, |p| p.0.as_ptr());
		let neg = map_vec!(neg, |n| n.0.as_ptr());
		let mut ret_i = unsafe { CommitmentInternal::blank() };
		let err = unsafe {
			ffi::secp256k1_pedersen_commit_sum(
				self.ctx,
				ret_i.as_mut_ptr(),
				pos.as_ptr(),
				pos.len() as size_t,
				neg.as_ptr(),
				neg.len() as size_t,
			)
		};
		if err == 1 {
			Ok(self.commit_ser(ret_i.0)?)
		} else {
			Err(Error::IncorrectCommitSum)
		}
	}

	/// Computes the sum of multiple positive and negative blinding factors.
	pub fn blind_sum(
		&self,
		positive: Vec<SecretKey>,
		negative: Vec<SecretKey>,
	) -> Result<SecretKey, Error> {
		let mut neg = map_vec!(negative, |n| n.as_ptr());
		let mut all = map_vec!(positive, |p| p.as_ptr());
		all.append(&mut neg);
		let mut ret: [u8; 32] = unsafe { mem::MaybeUninit::uninit().assume_init() };
		unsafe {
			assert_eq!(
				ffi::secp256k1_pedersen_blind_sum(
					self.ctx,
					ret.as_mut_ptr(),
					all.as_ptr(),
					all.len() as size_t,
					positive.len() as size_t,
				),
				1
			);
		}
		// secp256k1 should never return an invalid private
		SecretKey::from_slice(self, &ret)
	}

	/// Compute a blinding factor using a switch commitment
	pub fn blind_switch(&self, value: u64, blind: SecretKey) -> Result<SecretKey, Error> {
		if self.caps != ContextFlag::Commit {
			return Err(Error::IncapableContext);
		}
		let mut ret: [u8; 32] = unsafe { mem::MaybeUninit::uninit().assume_init() };
		unsafe {
			assert_eq!(
				ffi::secp256k1_blind_switch(
					self.ctx,
					ret.as_mut_ptr(),
					blind.as_ptr(),
					value,
					constants::GENERATOR_H.as_ptr(),
					constants::GENERATOR_G.as_ptr(),
					constants::GENERATOR_PUB_J_RAW.as_ptr(),
				),
				1
			)
		}
		SecretKey::from_slice(self, &ret)
	}

	/// Convenience function for generating a random nonce for a range proof.
	/// We will need the nonce later if we want to rewind the range proof.
	pub fn nonce(&self) -> [u8; 32] {
		thread_rng().gen::<[u8; 32]>()
	}

	/// Produces a range proof for the provided value, using min and max
	/// bounds, relying
	/// on the blinding factor and commitment.
	pub fn range_proof(
		&self,
		min: u64,
		value: u64,
		blind: SecretKey,
		commit: Commitment,
		message: ProofMessage,
	) -> RangeProof {
		let mut retried = false;
		let mut proof = [0; constants::MAX_PROOF_SIZE];
		let mut plen = constants::MAX_PROOF_SIZE as size_t;

		// use a "known key" as the nonce, specifically the blinding factor
		// of the commitment for which we are generating the range proof
		// so we can later recover the value and the message by unwinding the range proof
		// with the same nonce
		let nonce = blind.clone();

		let extra_commit = [0u8; 33];

		let commit = self.commit_parse(commit.0).unwrap();

		// TODO - confirm this reworked retry logic works as expected
		// pretty sure the original approach retried on success (so twice in total)
		// and just kept looping forever on error
		loop {
			let success = unsafe {
				// because: "This can randomly fail with probability around one in 2^100.
				// If this happens, buy a lottery ticket and retry."
				ffi::secp256k1_rangeproof_sign(
					self.ctx,
					proof.as_mut_ptr(),
					&mut plen,
					min,
					commit.as_ptr(),
					blind.as_ptr(),
					nonce.as_ptr(),
					0,
					64,
					value,
					message.as_ptr(),
					message.len(),
					extra_commit.as_ptr(),
					0 as size_t,
					constants::GENERATOR_H.as_ptr(),
				) == 1
			};
			// break out of the loop immediately on success or
			// or on the 2nd attempt if we retried
			if success || retried {
				break;
			} else {
				retried = true;
			}
		}
		RangeProof {
			proof: proof,
			plen: plen as usize,
		}
	}

	/// Verify a proof that a committed value is within a range.
	pub fn verify_range_proof(
		&self,
		commit: Commitment,
		proof: RangeProof,
	) -> Result<ProofRange, Error> {
		let mut min: u64 = 0;
		let mut max: u64 = 0;

		let extra_commit = [0u8; 33];

		let commit = self.commit_parse(commit.0)?;

		let success = unsafe {
			ffi::secp256k1_rangeproof_verify(
				self.ctx,
				&mut min,
				&mut max,
				commit.as_ptr(),
				proof.proof.as_ptr(),
				proof.plen as size_t,
				extra_commit.as_ptr(),
				0 as size_t,
				constants::GENERATOR_H.as_ptr(),
			) == 1
		};

		if success {
			Ok(ProofRange { min: min, max: max })
		} else {
			Err(Error::InvalidRangeProof)
		}
	}

	/// Verify a range proof and rewind the proof to recover information
	/// sent by its author.
	pub fn rewind_range_proof(
		&self,
		commit: Commitment,
		proof: RangeProof,
		nonce: SecretKey,
	) -> ProofInfo {
		let mut value: u64 = 0;
		let mut blind: [u8; 32] = unsafe { mem::MaybeUninit::uninit().assume_init() };
		let mut message: [u8; constants::PROOF_MSG_SIZE] = unsafe { mem::MaybeUninit::uninit().assume_init() };
		let mut mlen: usize = constants::PROOF_MSG_SIZE;
		let mut min: u64 = 0;
		let mut max: u64 = 0;

		let extra_commit = [0u8; 33];

		let commit = self.commit_parse(commit.0).unwrap();

		let success = unsafe {
			ffi::secp256k1_rangeproof_rewind(
				self.ctx,
				blind.as_mut_ptr(),
				&mut value,
				message.as_mut_ptr(),
				&mut mlen,
				nonce.as_ptr(),
				&mut min,
				&mut max,
				commit.as_ptr(),
				proof.proof.as_ptr(),
				proof.plen as size_t,
				extra_commit.as_ptr(),
				0 as size_t,
				constants::GENERATOR_H.as_ptr(),
			) == 1
		};

		ProofInfo {
			success: success,
			value: value,
			message: ProofMessage::from_bytes(&message),
			blinding: SecretKey([0; constants::SECRET_KEY_SIZE]),
			mlen: mlen,
			min: min,
			max: max,
			exp: 0,
			mantissa: 0,
		}
	}

	/// General information extracted from a range proof. Does not provide any
	/// information about the value or the message (see rewind).
	pub fn range_proof_info(&self, proof: RangeProof) -> ProofInfo {
		let mut exp: i32 = 0;
		let mut mantissa: i32 = 0;
		let mut min: u64 = 0;
		let mut max: u64 = 0;

		let success = unsafe {
			ffi::secp256k1_rangeproof_info(
				self.ctx,
				&mut exp,
				&mut mantissa,
				&mut min,
				&mut max,
				proof.proof.as_ptr(),
				proof.plen as size_t,
			) == 1
		};
		ProofInfo {
			success: success,
			value: 0,
			message: ProofMessage::empty(),
			blinding: SecretKey([0; constants::SECRET_KEY_SIZE]),
			mlen: 0,
			min: min,
			max: max,
			exp: exp,
			mantissa: mantissa,
		}
	}

	/// Produces a bullet proof for the provided value, using min and max
	/// bounds, relying on the blinding factor and value. If a message is passed,
	/// it will be truncated or padded to exactly BULLET_PROOF_MSG_SIZE bytes
	pub fn bullet_proof(
		&self,
		value: u64,
		blind: SecretKey,
		rewind_nonce: SecretKey,
		private_nonce: SecretKey,
		extra_data_in: Option<Vec<u8>>,
		message: Option<ProofMessage>,
	) -> RangeProof {
		let mut proof = [0; constants::MAX_PROOF_SIZE];
		let mut plen = constants::MAX_PROOF_SIZE as size_t;

		let blind_vec: Vec<SecretKey> = vec![blind];
		let blind_vec = map_vec!(blind_vec, |p| p.0.as_ptr());
		let n_bits = 64;

		let (extra_data_len, extra_data) = match extra_data_in.as_ref() {
			Some(d) => (d.len(), d.as_ptr()),
			None => (0, ptr::null()),
		};

		let mut message = message;
		let message_ptr = match message.as_mut() {
			Some(m) => {
				while m.len() < constants::BULLET_PROOF_MSG_SIZE {
					m.push(0u8);
				}
				m.truncate(constants::BULLET_PROOF_MSG_SIZE);
				m.as_ptr()
			},
			None => ptr::null(),
		};

		// This api is not for multi-party range proof, so all null for these 4 parameters.
		let tau_x = ptr::null_mut();
		let t_one = ptr::null_mut();
		let t_two = ptr::null_mut();
		let commits = ptr::null_mut();

		let _success = unsafe {
			let scratch = ffi::secp256k1_scratch_space_create(self.ctx, SCRATCH_SPACE_SIZE);
			let result = ffi::secp256k1_bulletproof_rangeproof_prove(
				self.ctx,
				scratch,
				shared_generators(self.ctx),
				proof.as_mut_ptr(),
				&mut plen,
				tau_x,
				t_one,
				t_two,
				&value,
				ptr::null(), // min_values: NULL for all-zeroes minimum values to prove ranges above
				blind_vec.as_ptr(),
				commits,
				1,
				constants::GENERATOR_H.as_ptr(),
				n_bits as size_t,
				rewind_nonce.as_ptr(),
				private_nonce.as_ptr(),
				extra_data,
				extra_data_len as size_t,
				message_ptr,
			);

			//			ffi::secp256k1_bulletproof_generators_destroy(self.ctx, *gens);
			ffi::secp256k1_scratch_space_destroy(scratch);

			result == 1
		};

		RangeProof {
			proof: proof,
			plen: plen as usize,
		}
	}

	/// Produces a bullet proof for multi-party commitment
	pub fn bullet_proof_multisig(
		&self,
		value: u64,
		blind: SecretKey,
		nonce: SecretKey,
		extra_data_in: Option<Vec<u8>>,
		message: Option<ProofMessage>,
		tau_x: Option<&mut SecretKey>,
		t_one: Option<&mut PublicKey>,
		t_two: Option<&mut PublicKey>,
		commits: Vec<Commitment>,
		private_nonce: Option<&SecretKey>,
		step: u8, // 0 for last step. 1 for first step.
	) -> Option<RangeProof> {
		let last_step = if 0 == step { true } else { false };
		let first_step = if 1 == step { true } else { false };

		let mut proof = [0; constants::MAX_PROOF_SIZE];
		let mut plen = constants::MAX_PROOF_SIZE as size_t;

		let blind_vec: Vec<SecretKey> = vec![blind];
		let blind_vec = map_vec!(blind_vec, |p| p.0.as_ptr());
		let n_bits = 64;

		let (extra_data_len, extra_data) = match extra_data_in.as_ref() {
			Some(d) => (d.len(), d.as_ptr()),
			None => (0, ptr::null()),
		};

		let mut message = message;
		let message_ptr = match message.as_mut() {
			Some(m) => {
				while m.len() < constants::BULLET_PROOF_MSG_SIZE {
					m.push(0u8);
				}
				m.truncate(constants::BULLET_PROOF_MSG_SIZE);
				m.as_ptr()
			},
			None => ptr::null(),
		};

		let tau_x = match tau_x {
			Some(n) => n.0.as_mut_ptr(),
			None => ptr::null_mut(),
		};

		let t_one_ptr;
		let t_two_ptr;
		if first_step {
			t_one_ptr = is_zero_pubkey!(ignore  => t_one);
			t_two_ptr = is_zero_pubkey!(ignore  => t_two);
		} else {
			t_one_ptr = is_zero_pubkey!(retnone => t_one);
			t_two_ptr = is_zero_pubkey!(retnone => t_two);
		};

		let commit_vec;
		let commit_ptr_vec;
		let commit_ptr_vec_ptr = if commits.len() > 0 {
			commit_vec = map_vec!(commits, |c| self.commit_parse(c.0).unwrap());
			commit_ptr_vec = map_vec!(commit_vec, |c| c.as_ptr());
			commit_ptr_vec.as_ptr()
		} else {
			ptr::null()
		};

		let private_nonce = match private_nonce {
			Some(n) => n.as_ptr(),
			None => ptr::null(),
		};

		let _success = unsafe {
			let scratch = ffi::secp256k1_scratch_space_create(self.ctx, SCRATCH_SPACE_SIZE);
			let result = ffi::secp256k1_bulletproof_rangeproof_prove(
				self.ctx,
				scratch,
				shared_generators(self.ctx),
				if last_step {
					proof.as_mut_ptr()
				} else {
					ptr::null_mut()
				},
				if last_step {
					&mut plen
				} else {
					ptr::null_mut()
				},
				tau_x,
				t_one_ptr,
				t_two_ptr,
				&value,
				ptr::null(), // min_values: NULL for all-zeroes minimum values to prove ranges above
				blind_vec.as_ptr(),
				commit_ptr_vec_ptr,
				1,
				constants::GENERATOR_H.as_ptr(),
				n_bits as size_t,
				nonce.as_ptr(),
				private_nonce,
				extra_data,
				extra_data_len as size_t,
				message_ptr,
			);

			ffi::secp256k1_scratch_space_destroy(scratch);

			result == 1
		};

		if last_step {
			Some(RangeProof {
				proof: proof,
				plen: plen as usize,
			})
		} else {
			None
		}
	}

	/// Verify with bullet proof that a committed value is positive
	pub fn verify_bullet_proof(
		&self,
		commit: Commitment,
		proof: RangeProof,
		extra_data_in: Option<Vec<u8>>,
	) -> Result<ProofRange, Error> {
		let n_bits = 64;

		let extra_data;
		let (extra_data_len, extra_data) = match extra_data_in {
			Some(d) => {
				extra_data = d;
				(extra_data.len(), extra_data.as_ptr())
			},
			None => (0, ptr::null()),
		};

		let commit = self.commit_parse(commit.0).unwrap();

		let success = unsafe {
			let scratch = ffi::secp256k1_scratch_space_create(self.ctx, SCRATCH_SPACE_SIZE);
			let result = ffi::secp256k1_bulletproof_rangeproof_verify(
				self.ctx,
				scratch,
				shared_generators(self.ctx),
				proof.proof.as_ptr(),
				proof.plen as size_t,
				ptr::null(), // min_values: NULL for all-zeroes minimum values to prove ranges above
				commit.0.as_ptr(),
				1,
				n_bits as size_t,
				constants::GENERATOR_H.as_ptr(),
				extra_data,
				extra_data_len as size_t,
			);
			//			ffi::secp256k1_bulletproof_generators_destroy(self.ctx, gens);
			ffi::secp256k1_scratch_space_destroy(scratch);
			result == 1
		};

		if success {
			Ok(ProofRange {
				min: 0,
				max: u64::MAX,
			})
		} else {
			Err(Error::InvalidRangeProof)
		}
	}

	/// Verify with bullet proof that a committed value is positive
	pub fn verify_bullet_proof_multi(
		&self,
		commits: Vec<Commitment>,
		proofs: Vec<RangeProof>,
		extra_data_in: Option<Vec<Vec<u8>>>,
	) -> Result<ProofRange, Error> {
		let n_bits = 64;

		let proof_size = if proofs.len() > 0 {
			proofs[0].plen
		} else {
			constants::SINGLE_BULLET_PROOF_SIZE
		};

		let commit_vec = map_vec!(commits, |c| self.commit_parse(c.0).unwrap());
		let commit_vec = map_vec!(commit_vec, |c| c.as_ptr());
		let proof_vec = map_vec!(proofs, |p| p.proof.as_ptr());
		//		let min_values = vec![0; proofs.len()];

		// array of generator multiplied by value in pedersen commitments (cannot be NULL)
		let value_gen_vec = {
			let min_len = if proof_vec.len() > 0 {
				proof_vec.len()
			} else {
				1
			};
			let gen_size = constants::GENERATOR_SIZE;
			let mut value_gen_vec = vec![0; min_len * gen_size];
			for i in 0..min_len {
				value_gen_vec[i * gen_size..(i + 1) * gen_size]
					.clone_from_slice(&constants::GENERATOR_H[..]);
			}
			value_gen_vec
		};

		// converting vec of vecs to expected pointer
		let (extra_data_vec, extra_data_lengths) = match extra_data_in.as_ref() {
			Some(ed) => {
				let extra_data_vec = map_vec!(ed, |d| d.as_ptr());
				let extra_data_lengths = map_vec![ed, |d| d.len()];
				(extra_data_vec, extra_data_lengths)
			}
			None => {
				let extra_data_vec = vec![ptr::null(); proof_vec.len()];
				let extra_data_lengths = vec![0; proof_vec.len()];
				(extra_data_vec, extra_data_lengths)
			}
		};

		let success = unsafe {
			let scratch = ffi::secp256k1_scratch_space_create(self.ctx, SCRATCH_SPACE_SIZE);
			let result = ffi::secp256k1_bulletproof_rangeproof_verify_multi(
				self.ctx,
				scratch,
				shared_generators(self.ctx),
				proof_vec.as_ptr(),
				proof_vec.len(),
				proof_size,
				ptr::null(), // min_values: NULL for all-zeroes minimum values to prove ranges above
				commit_vec.as_ptr(),
				1,
				n_bits as size_t,
				value_gen_vec.as_ptr(),
				extra_data_vec.as_ptr(),
				extra_data_lengths.as_ptr(),
			);
			//			ffi::secp256k1_bulletproof_generators_destroy(self.ctx, gens);
			ffi::secp256k1_scratch_space_destroy(scratch);
			result == 1
		};

		if success {
			Ok(ProofRange {
				min: 0,
				max: u64::MAX,
			})
		} else {
			Err(Error::InvalidRangeProof)
		}
	}

	/// Rewind a bullet proof to get the value and Blinding factor back out
	pub fn rewind_bullet_proof(
		&self,
		commit: Commitment,
		nonce: SecretKey,
		extra_data_in: Option<Vec<u8>>,
		proof: RangeProof,
	) -> Result<ProofInfo, Error> {
		let (extra_data_len, extra_data) = match extra_data_in.as_ref() {
			Some(d) => (d.len(), d.as_ptr()),
			None => (0, ptr::null()),
		};

		let mut blind_out = [0u8; constants::SECRET_KEY_SIZE];
		let mut value_out = 0;
		let mut message_out = [0u8; 20];
		let commit = self.commit_parse(commit.0)?;

		let success = unsafe {
			let scratch = ffi::secp256k1_scratch_space_create(self.ctx, SCRATCH_SPACE_SIZE);
			let result = ffi::secp256k1_bulletproof_rangeproof_rewind(
				self.ctx,
				&mut value_out,
				blind_out.as_mut_ptr(),
				proof.proof.as_ptr(),
				proof.plen as size_t,
				0,
				commit.as_ptr(),
				constants::GENERATOR_H.as_ptr(),
				nonce.as_ptr(),
				extra_data,
				extra_data_len as size_t,
				message_out.as_mut_ptr(),
			);
			//			ffi::secp256k1_bulletproof_generators_destroy(self.ctx, gens);
			ffi::secp256k1_scratch_space_destroy(scratch);
			result == 1
		};

		if success {
			Ok(ProofInfo {
				success: true,
				value: value_out,
				blinding: SecretKey(blind_out),
				message: ProofMessage::from_bytes(&message_out),
				mlen: 0,
				min: 0,
				max: u64::MAX,
				exp: 0,
				mantissa: 0,
			})
		} else {
			Err(Error::InvalidRangeProof)
		}
	}
}

#[cfg(test)]
mod tests {
	extern crate chrono;
	use super::{Commitment, Error, Message, ProofMessage, ProofRange, RangeProof, Secp256k1};
	use crate::key::{PublicKey, SecretKey, ONE_KEY, ZERO_KEY};
	use crate::ContextFlag;
	use crate::constants;

	use rand::{thread_rng, Rng};

	use crate::pedersen::tests::chrono::prelude::*;

	#[test]
	fn commit_parse_ser() {
		fn commit(value: u64) -> Commitment {
			let secp = Secp256k1::with_caps(ContextFlag::Commit);
			let blinding = ZERO_KEY;
			secp.commit(value, blinding).unwrap()
		}
		let two_g:[u8; 33] = [ 0x09,
			0xc6, 0x04, 0x7f, 0x94, 0x41, 0xed, 0x7d, 0x6d, 0x30, 0x45, 0x40, 0x6e, 0x95, 0xc0, 0x7c, 0xd8,
			0x5c, 0x77, 0x8e, 0x4b, 0x8c, 0xef, 0x3c, 0xa7, 0xab, 0xac, 0x09, 0xb9, 0x5c, 0x70, 0x9e, 0xe5
		];
		let secp = Secp256k1::with_caps(ContextFlag::Commit);
		let commit_i = secp.commit_parse(two_g).unwrap();
		let comm = secp.commit_ser(commit_i.0).unwrap();
		assert_eq!(comm, Commitment(two_g));

		let c5 = commit(5);
		let commit_i = secp.commit_parse(c5.0).unwrap();
		let comm = secp.commit_ser(commit_i.0).unwrap();
		assert_eq!(comm, c5);

	}

	#[test]
	fn test_verify_commit_sum_zero_keys() {
		fn commit(value: u64) -> Commitment {
			let secp = Secp256k1::with_caps(ContextFlag::Commit);
			let blinding = ZERO_KEY;
			secp.commit(value, blinding).unwrap()
		}

		let secp = Secp256k1::with_caps(ContextFlag::Commit);

		assert!(secp.verify_commit_sum(vec![], vec![],));

		assert!(secp.verify_commit_sum(vec![commit(5)], vec![commit(5)],));

		assert!(secp.verify_commit_sum(vec![commit(3), commit(2)], vec![commit(5)]));

		assert!(secp.verify_commit_sum(vec![commit(2), commit(4)], vec![commit(1), commit(5)]));
	}

	#[test]
	fn test_verify_commit_sum_one_keys() {
		let secp = Secp256k1::with_caps(ContextFlag::Commit);

		fn commit(value: u64, blinding: SecretKey) -> Commitment {
			let secp = Secp256k1::with_caps(ContextFlag::Commit);
			secp.commit(value, blinding).unwrap()
		}

		assert!(secp.verify_commit_sum(vec![commit(5, ONE_KEY)], vec![commit(5, ONE_KEY)]));

		// we expect this not to verify
		// even though the values add up to 0
		// the keys themselves do not add to 0
		assert_eq!(
			secp.verify_commit_sum(
				vec![commit(3, ONE_KEY), commit(2, ONE_KEY)],
				vec![commit(5, ONE_KEY)],
			),
			false
		);

		// to get these to verify we need to
		// use the same "sum" of blinding factors on both sides
		let two_key = secp.blind_sum(vec![ONE_KEY, ONE_KEY], vec![]).unwrap();
		assert!(secp.verify_commit_sum(
			vec![commit(3, ONE_KEY), commit(2, ONE_KEY)],
			vec![commit(5, two_key)],
		));
	}

	#[test]
	fn test_verify_commit_sum_random_keys() {
		let secp = Secp256k1::with_caps(ContextFlag::Commit);

		fn commit(value: u64, blinding: SecretKey) -> Commitment {
			let secp = Secp256k1::with_caps(ContextFlag::Commit);
			secp.commit(value, blinding).unwrap()
		}

		let blind_pos = SecretKey::new(&secp, &mut thread_rng());
		let blind_neg = SecretKey::new(&secp, &mut thread_rng());

		// now construct blinding factor to net out appropriately
		let blind_sum = secp.blind_sum(vec![blind_pos.clone()], vec![blind_neg.clone()]).unwrap();

		assert!(secp.verify_commit_sum(
			vec![commit(101, blind_pos)],
			vec![commit(75, blind_neg), commit(26, blind_sum)],
		));
	}

	#[test]
	fn test_verify_commit_sum_random_keys_switch() {
		let secp = Secp256k1::with_caps(ContextFlag::Commit);

		fn commit(value: u64, blinding: SecretKey) -> Commitment {
			let secp = Secp256k1::with_caps(ContextFlag::Commit);
			secp.commit(value, blinding).unwrap()
		}

		let pos_value = 101;
		let neg_value = 75;

		let blind_pos = secp.blind_switch(pos_value, SecretKey::new(&secp, &mut thread_rng())).unwrap();
		let blind_neg = secp.blind_switch(neg_value, SecretKey::new(&secp, &mut thread_rng())).unwrap();

		// now construct blinding factor to net out appropriately
		let blind_sum = secp.blind_sum(vec![blind_pos.clone()], vec![blind_neg.clone()]).unwrap();
		let diff = pos_value - neg_value;

		assert!(secp.verify_commit_sum(
			vec![commit(pos_value, blind_pos)],
			vec![commit(neg_value, blind_neg), commit(diff, blind_sum)],
		));
	}

	#[test]
	// to_pubkey() is not currently working as secp does currently
	// provide an api to extract a public key from a commitment
	fn test_to_pubkey() {
		let secp = Secp256k1::with_caps(ContextFlag::Commit);
		let blinding = SecretKey::new(&secp, &mut thread_rng());
		let commit = secp.commit(5, blinding).unwrap();
		let pubkey = commit.to_pubkey(&secp);
		match pubkey {
			Ok(_) => {
				// this is good
			}
			Err(_) => {
				panic!("this is not good");
			}
		}
	}

	#[test]
	fn test_from_pubkey() {
		for _ in 0..100 {
			let secp = Secp256k1::with_caps(ContextFlag::Commit);
			let blinding = SecretKey::new(&secp, &mut thread_rng());
			let commit = secp.commit(1, blinding).unwrap();
			let pubkey = commit.to_pubkey(&secp);
			let p = match pubkey {
				Ok(p) => {
					// this is good
					p
				}
				Err(e) => {
					panic!("Creating pubkey: {}", e);
				}
			};
			//println!("Pre Commit is: {:?}", commit);
			//println!("Pre Pubkey is: {:?}", p);
			let new_commit = Commitment::from_pubkey(&secp, &p);
			let commit2 = match new_commit {
				Ok(c) => {
					// this is good
					c
				}
				Err(e) => {
					panic!("Creating commit from Pubkey: {}", e);
				}
			};
			//println!("Post Commit is: {:?}", commit2);
			//println!("Post Pubkey is: {:?}", p);
			assert_eq!(commit, commit2);
		}
	}

	#[test]
	fn test_sign_with_pubkey_from_commitment() {
		let secp = Secp256k1::with_caps(ContextFlag::Commit);
		let blinding = SecretKey::new(&secp, &mut thread_rng());
		let commit = secp.commit(0u64, blinding.clone()).unwrap();

		let mut msg = [0u8; 32];
		thread_rng().fill(&mut msg);
		let msg = Message::from_slice(&msg).unwrap();

		let sig = secp.sign(&msg, &blinding).unwrap();

		let pubkey = commit.to_pubkey(&secp).unwrap();

		// check that we can successfully verify the signature with the public key
		if let Ok(_) = secp.verify(&msg, &sig, &pubkey) {
			// this is good
		} else {
			panic!("this is not good");
		}
	}

	#[test]
	fn test_commit_sum() {
		let secp = Secp256k1::with_caps(ContextFlag::Commit);

		fn commit(value: u64, blinding: SecretKey) -> Commitment {
			let secp = Secp256k1::with_caps(ContextFlag::Commit);
			secp.commit(value, blinding).unwrap()
		}

		let blind_a = SecretKey::new(&secp, &mut thread_rng());
		let blind_b = SecretKey::new(&secp, &mut thread_rng());

		let commit_a = commit(3, blind_a.clone());
		let commit_b = commit(2, blind_b.clone());

		let blind_c = secp.blind_sum(vec![blind_a.clone(), blind_b.clone()], vec![]).unwrap();

		let commit_c = commit(3 + 2, blind_c);

		let commit_d = secp.commit_sum(vec![commit_a.clone(), commit_b.clone()], vec![]).unwrap();
		assert_eq!(commit_c, commit_d);

		let blind_e = secp.blind_sum(vec![blind_a.clone()], vec![blind_b.clone()]).unwrap();

		let commit_e = commit(3 - 2, blind_e);

		let commit_f = secp.commit_sum(vec![commit_a], vec![commit_b]).unwrap();
		assert_eq!(commit_e, commit_f);
	}

	#[test]
	fn test_blind_commit() {
		let secp = Secp256k1::with_caps(ContextFlag::Commit);
		let rng = &mut thread_rng();
		let value: u64 = 1;
		let blind = SecretKey::new(&secp, rng);
		let blind2 = ONE_KEY;
		assert_eq!(secp.commit(value, blind.clone()).unwrap(), secp.commit_blind(blind2.clone(), blind.clone()).unwrap());
		let value: u64 = 2;
		let blind = SecretKey::new(&secp, rng);
		assert_ne!(secp.commit(value, blind.clone()).unwrap(), secp.commit_blind(blind2, blind.clone()).unwrap());
		let blind = SecretKey::new(&secp, rng);
		let mut blind2 = ZERO_KEY;
		blind2.0[30] = rng.gen::<u8>();
		blind2.0[31] = rng.gen::<u8>();
		let value: u64 = blind2[30] as u64*256 + blind2[31] as u64;
		assert_eq!(secp.commit(value, blind.clone()).unwrap(), secp.commit_blind(blind2, blind.clone()).unwrap());
	}

	#[test]
	fn test_range_proof() {
		let secp = Secp256k1::with_caps(ContextFlag::Commit);
		let blinding = SecretKey::new(&secp, &mut thread_rng());
		let commit = secp.commit(7, blinding.clone()).unwrap();
		let msg = ProofMessage::empty();
		let range_proof = secp.range_proof(0, 7, blinding.clone(), commit, msg.clone());
		let proof_range = secp.verify_range_proof(commit, range_proof).unwrap();

		assert_eq!(proof_range.min, 0);

		let proof_info = secp.range_proof_info(range_proof);
		assert!(proof_info.success);
		assert_eq!(proof_info.min, 0);
		// check we get no information back for the value here
		assert_eq!(proof_info.value, 0);

		let proof_info = secp.rewind_range_proof(commit, range_proof, blinding.clone());
		assert!(proof_info.success);
		assert_eq!(proof_info.min, 0);
		assert_eq!(proof_info.value, 7);

		// check we cannot rewind a range proof without the original nonce
		let bad_nonce = SecretKey::new(&secp, &mut thread_rng());
		let bad_info = secp.rewind_range_proof(commit, range_proof, bad_nonce);
		assert_eq!(bad_info.success, false);
		assert_eq!(bad_info.value, 0);

		// check we can construct and verify a range proof on value 0
		let commit = secp.commit(0, blinding.clone()).unwrap();
		let range_proof = secp.range_proof(0, 0, blinding.clone(), commit, msg);
		secp.verify_range_proof(commit, range_proof).unwrap();
		let proof_info = secp.rewind_range_proof(commit, range_proof, blinding);
		assert!(proof_info.success);
		assert_eq!(proof_info.min, 0);
		assert_eq!(proof_info.value, 0);
	}

	#[test]
	fn test_bullet_proof_single() {
		// Test Bulletproofs without message
		let secp = Secp256k1::with_caps(ContextFlag::Commit);
		let blinding = SecretKey::new(&secp, &mut thread_rng());
		let value = 12345678;
		let commit = secp.commit(value, blinding.clone()).unwrap();
		let bullet_proof = secp.bullet_proof(value, blinding.clone(), blinding.clone(), blinding.clone(), None, None);

		// correct verification
		println!("Bullet proof len: {}", bullet_proof.plen);
		let proof_range = secp
			.verify_bullet_proof(commit, bullet_proof, None)
			.unwrap();
		assert_eq!(proof_range.min, 0);

		// wrong value committed to
		let value = 12345678;
		let wrong_commit = secp.commit(87654321, blinding.clone()).unwrap();
		let bullet_proof = secp.bullet_proof(value, blinding.clone(), blinding.clone(), blinding.clone(), None, None);
		if !secp
			.verify_bullet_proof(wrong_commit, bullet_proof, None)
			.is_err()
		{
			panic!("Bullet proof verify should have errored");
		}

		// wrong blinding
		let value = 12345678;
		let commit = secp.commit(value, blinding).unwrap();
		let blinding = SecretKey::new(&secp, &mut thread_rng());
		let bullet_proof = secp.bullet_proof(value, blinding.clone(), blinding.clone(), blinding.clone(), None, None);
		if !secp
			.verify_bullet_proof(commit, bullet_proof, None)
			.is_err()
		{
			panic!("Bullet proof verify should have errored");
		}

		// Commit to some extra data in the bulletproof
		let extra_data = [0u8; 32].to_vec();
		let blinding = SecretKey::new(&secp, &mut thread_rng());
		let value = 12345678;
		let commit = secp.commit(value, blinding.clone()).unwrap();
		let bullet_proof =
			secp.bullet_proof(value, blinding.clone(), blinding.clone(), blinding.clone(), Some(extra_data.clone()), None);
		if secp
			.verify_bullet_proof(commit, bullet_proof, Some(extra_data.clone()))
			.is_err()
		{
			panic!("Bullet proof verify should NOT have errored.");
		}
		// Check verify fails without extra commit data
		let mut malleated_extra_data = [0u8; 32];
		malleated_extra_data[0] = 1;
		let res = secp.verify_bullet_proof(
			commit,
			bullet_proof,
			Some(malleated_extra_data.clone().to_vec()),
		);
		if !res.is_err() {
			panic!("Bullet proof verify should have errored: {:?}", res);
		}

		// Ensure rewinding works

		let blinding = SecretKey::new(&secp, &mut thread_rng());
		let rewind_nonce = SecretKey::new(&secp, &mut thread_rng());
		let private_nonce = SecretKey::new(&secp, &mut thread_rng());
		let value = 12345678;
		let commit = secp.commit(value, blinding.clone()).unwrap();

		let bullet_proof =
			secp.bullet_proof(value, blinding.clone(), private_nonce.clone(), private_nonce.clone(), Some(extra_data.clone()), None);
		// Unwind message with same blinding factor
		let proof_info = secp
			.rewind_bullet_proof(commit, private_nonce.clone(), Some(extra_data.clone()), bullet_proof)
			.unwrap();
		assert_eq!(proof_info.value, value);
		assert_eq!(blinding, proof_info.blinding);

		// unwinding with wrong nonce data should puke
		let proof_info = secp.rewind_bullet_proof(
			commit,
			blinding.clone(),
			Some(extra_data.clone().to_vec()),
			bullet_proof,
		);
		if !proof_info.is_err() {
			panic!("Bullet proof verify with message should have errored.");
		}

		// unwinding with wrong extra data should puke
		let proof_info = secp.rewind_bullet_proof(commit, private_nonce.clone(), None, bullet_proof);
		if !proof_info.is_err() {
			panic!("Bullet proof verify with message should have errored.");
		}

		// Ensure including a message also works
		let message_bytes: [u8; 20] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20];
		let message = ProofMessage::from_bytes(&message_bytes);

		let bullet_proof = secp.bullet_proof(
			value,
			blinding.clone(),
			rewind_nonce.clone(),
			private_nonce.clone(),
			Some(extra_data.clone()),
			Some(message.clone()),
		);
		// Unwind message with same blinding factor
		let proof_info = secp
			.rewind_bullet_proof(commit, rewind_nonce, Some(extra_data.clone()), bullet_proof)
			.unwrap();
		assert_eq!(proof_info.value, value);
		assert_eq!(proof_info.message, message);
	}

	#[test]
	fn test_bullet_proof_multisig() {
		let multisig_bp =
			|v, nonce: SecretKey, ca, cb, ba, bb, msg, extra| -> (RangeProof, Result<ProofRange, Error>) {
				let secp = Secp256k1::with_caps(ContextFlag::Commit);
				let blinding_a: SecretKey = ba;
				let value: u64 = v;
				let partial_commit_a: Commitment = ca;

				let blinding_b: SecretKey = bb;
				let partial_commit_b: Commitment = cb;

				let message: Option<ProofMessage> = msg;
				let extra_data: Option<Vec<u8>> = extra;

				// upfront step: party A and party B generate self commitment and communicate to each other,
				//   to get the total commitment.
				let commit = secp
					.commit_sum(vec![partial_commit_a, partial_commit_b], vec![])
					.unwrap();
				let mut commits = vec![];
				commits.push(commit);

				let common_nonce = nonce;

				let private_nonce_a = SecretKey::new(&secp, &mut thread_rng());
				let private_nonce_b = SecretKey::new(&secp, &mut thread_rng());

				// 1st step on party A: generate t_one and t_two, and sends to party B
				let mut t_one_a = PublicKey::new();
				let mut t_two_a = PublicKey::new();
				secp.bullet_proof_multisig(
					value,
					blinding_a.clone(),
					common_nonce.clone(),
					extra_data.clone(),
					message.clone(),
					None,
					Some(&mut t_one_a),
					Some(&mut t_two_a),
					commits.clone(),
					Some(&private_nonce_a),
					1,
				);

				// 1st step on party B: generate t_one and t_two, and sends to party A
				let mut t_one_b = PublicKey::new();
				let mut t_two_b = PublicKey::new();
				secp.bullet_proof_multisig(
					value,
					blinding_b.clone(),
					common_nonce.clone(),
					extra_data.clone(),
					message.clone(),
					None,
					Some(&mut t_one_b),
					Some(&mut t_two_b),
					commits.clone(),
					Some(&private_nonce_b),
					1,
				);

				// 1st step on both party A and party B: sum up both t_one and both t_two.
				let mut pubkeys = vec![];
				pubkeys.push(&t_one_a);
				pubkeys.push(&t_one_b);
				let mut t_one_sum = PublicKey::from_combination(&secp, pubkeys.clone()).unwrap();

				pubkeys.clear();
				pubkeys.push(&t_two_a);
				pubkeys.push(&t_two_b);
				let mut t_two_sum = PublicKey::from_combination(&secp, pubkeys.clone()).unwrap();

				// 2nd step on party A: use t_one_sum and t_two_sum to generate tau_x, and sent to party B.
				let mut tau_x_a = SecretKey::new(&secp, &mut thread_rng());
				secp.bullet_proof_multisig(
					value,
					blinding_a.clone(),
					common_nonce.clone(),
					extra_data.clone(),
					message.clone(),
					Some(&mut tau_x_a),
					Some(&mut t_one_sum),
					Some(&mut t_two_sum),
					commits.clone(),
					Some(&private_nonce_a),
					2,
				);

				// 2nd step on party B: use t_one_sum and t_two_sum to generate tau_x, and send to party A.
				let mut tau_x_b = SecretKey::new(&secp, &mut thread_rng());
				secp.bullet_proof_multisig(
					value,
					blinding_b.clone(),
					common_nonce.clone(),
					extra_data.clone(),
					message.clone(),
					Some(&mut tau_x_b),
					Some(&mut t_one_sum),
					Some(&mut t_two_sum),
					commits.clone(),
					Some(&private_nonce_b),
					2,
				);

				// 2nd step on both party A and B: sum up both tau_x
				let mut tau_x_sum = tau_x_a;
				tau_x_sum.add_assign(&secp, &tau_x_b).unwrap();

				// 3rd step: party A finalizes bulletproof with input tau_x, t_one, t_two.
				let bullet_proof =
					secp.bullet_proof_multisig(
						value,
						blinding_a.clone(),
						common_nonce.clone(),
						extra_data.clone(),
						message.clone(),
						Some(&mut tau_x_sum),
						Some(&mut t_one_sum),
						Some(&mut t_two_sum),
						commits.clone(),
						Some(&private_nonce_a),
						0,
					).unwrap();

				// correct verification
				println!("MultiSig Bullet proof len: {:}", bullet_proof.len());
				let proof_range = secp.verify_bullet_proof(commit, bullet_proof, None);

				return (bullet_proof, proof_range);
			};

		let secp = Secp256k1::with_caps(ContextFlag::Commit);
		let value: u64 = 12345678;

		let common_nonce = SecretKey::new(&secp, &mut thread_rng());

		let blinding_a = SecretKey::new(&secp, &mut thread_rng());
		let partial_commit_a = secp.commit(value, blinding_a.clone()).unwrap();

		let blinding_b = SecretKey::new(&secp, &mut thread_rng());
		let partial_commit_b = secp.commit(0, blinding_b.clone()).unwrap();

		// 1. Test Bulletproofs multisig without message
		let (_, proof_range) = multisig_bp(
			value,
			common_nonce.clone(),
			partial_commit_a,
			partial_commit_b,
			blinding_a.clone(),
			blinding_b.clone(),
			None,
			None,
		);
		assert_eq!(proof_range.unwrap().min, 0);

		// 2. wrong value committed to
		let wrong_partial_commit_a = secp.commit(87654321, blinding_a.clone()).unwrap();
		let (_, proof_range) = multisig_bp(
			value,
			common_nonce.clone(),
			wrong_partial_commit_a,
			partial_commit_b,
			blinding_a.clone(),
			blinding_b.clone(),
			None,
			None,
		);
		if !proof_range.is_err() {
			panic!("Multi-Sig Bullet proof verify should have error");
		}

		// 3. wrong blinding
		let wrong_blinding = SecretKey::new(&secp, &mut thread_rng());
		let (_, proof_range) = multisig_bp(
			value,
			common_nonce.clone(),
			partial_commit_a,
			partial_commit_b,
			wrong_blinding,
			blinding_b.clone(),
			None,
			None,
		);
		if !proof_range.is_err() {
			panic!("Multi-Sig Bullet proof verify should have error");
		}

		// 4. Commit to a message in the bulletproof
		let message_bytes: [u8; 16] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16];
		let message = ProofMessage::from_bytes(&message_bytes);
		let (_, proof_range) = multisig_bp(
			value,
			common_nonce,
			partial_commit_a,
			partial_commit_b,
			blinding_a,
			blinding_b,
			Some(message.clone()),
			None,
		);
		assert_eq!(proof_range.unwrap().min, 0);

		// Note: For the moment, Multi-Sig Bullet Proof implementation don't support rewind_bullet_proof().
		// TODO: uncomment the following test code when feature is ready.
		// Ensure rewinding works
		/*
		let mut extra_data = [0u8; 32];
		thread_rng().fill(&mut extra_data);

		let (bullet_proof, _) = multisig_bp(
			value,
			common_nonce,
			partial_commit_a,
			partial_commit_b,
			blinding_a,
			blinding_b,
			None,
			Some(extra_data.to_vec()),
		);
		// 5. Rewind message with same blinding factor
		let commit = secp
			.commit_sum(vec![partial_commit_a, partial_commit_b], vec![])
			.unwrap();
		let proof_info = secp.rewind_bullet_proof(
			commit,
			common_nonce.clone(),
			Some(extra_data.to_vec()),
			bullet_proof,
		);
		println!("proof_info after rewind: {:#?}", proof_info);

		let proof_info = proof_info.unwrap();
		assert_eq!(proof_info.value, value);

		let mut blinding = blinding_a;
		blinding.add_assign(&secp, &blinding_b).unwrap();
		assert_eq!(blinding, proof_info.blinding);

		// 6. Rewind with wrong nonce data should fail
		let proof_info = secp.rewind_bullet_proof(
			commit,
			blinding.clone(),
			Some(extra_data.to_vec()),
			bullet_proof,
		);
		if !proof_info.is_err() {
			panic!("Bullet proof verify with wrong nonce should have error.");
		}

		// 7. unwinding with wrong extra data should fail
		let proof_info = secp.rewind_bullet_proof(commit, common_nonce.clone(), None, bullet_proof);
		if !proof_info.is_err() {
			panic!("Bullet proof verify with wrong extra data should have error.");
		}

		// Ensure including a message also works
		let message_bytes: [u8; 16] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16];
		let message = ProofMessage::from_bytes(&message_bytes);

		let (bullet_proof, _) = multisig_bp(
			value,
			common_nonce,
			partial_commit_a,
			partial_commit_b,
			blinding_a,
			blinding_b,
			Some(message.clone()),
			None,
		);
		// 8. Rewind message with same nonce
		let proof_info = secp
			.rewind_bullet_proof(
				commit,
				common_nonce.clone(),
				Some(extra_data.to_vec()),
				bullet_proof,
			).unwrap();
		assert_eq!(proof_info.message, message);
		*/	}

	#[test]
	fn rewind_empty_message() {
		let secp = Secp256k1::with_caps(ContextFlag::Commit);
		let blinding = SecretKey::new(&secp, &mut thread_rng());
		let nonce = SecretKey::new(&secp, &mut thread_rng());
		let value = <u64>::max_value() - 1;
		let commit = secp.commit(value, blinding.clone()).unwrap();

		let mut pm = ProofMessage::from_bytes(&[0u8;32]);
		let bullet_proof = secp.bullet_proof(value, blinding.clone(), nonce.clone(), nonce.clone(), None, Some(pm.clone()));
		// Unwind message with same blinding factor
		let proof_info = secp
			.rewind_bullet_proof(commit, nonce, None, bullet_proof)
			.unwrap();
		assert_eq!(proof_info.value, value);
		assert_eq!(blinding, proof_info.blinding);
		pm.truncate(constants::BULLET_PROOF_MSG_SIZE);
		assert_eq!(pm, proof_info.message);
	}

	#[test]
	fn rewind_message() {
		let secp = Secp256k1::with_caps(ContextFlag::Commit);
		let blinding = SecretKey::new(&secp, &mut thread_rng());
		let nonce = SecretKey::new(&secp, &mut thread_rng());
		let value = <u64>::max_value() - 1;
		let commit = secp.commit(value, blinding.clone()).unwrap();

		let bullet_proof = secp.bullet_proof(value, blinding.clone(), nonce.clone(), nonce.clone(), None, None);
		// Unwind message with same blinding factor
		let proof_info = secp
			.rewind_bullet_proof(commit, nonce.clone(), None, bullet_proof)
			.unwrap();
		assert_eq!(proof_info.value, value);
		assert_eq!(blinding, proof_info.blinding);

		// Using a different private nonce should prevent rewind of blinding factor
		let private_nonce = SecretKey::new(&secp, &mut thread_rng());
		let bullet_proof = secp.bullet_proof(value, blinding.clone(), nonce.clone(), private_nonce.clone(), None, None);
		let proof_info = secp
			.rewind_bullet_proof(commit, nonce, None, bullet_proof)
			.unwrap();
		assert_eq!(proof_info.value, value);
		assert_ne!(blinding, proof_info.blinding);
	}

	#[ignore]
	#[test]
	fn bench_bullet_proof_single_vs_multi() {
		let nano_to_millis = 1.0 / 1_000_000.0;

		let secp = Secp256k1::with_caps(ContextFlag::Commit);
		let blinding = SecretKey::new(&secp, &mut thread_rng());
		let value = 12345678;

		let increments = vec![1, 2, 5, 10, 100, 200];

		for v in increments {
			let mut commits: Vec<Commitment> = vec![];
			let mut proofs: Vec<RangeProof> = vec![];
			for i in 0..v {
				commits.push(secp.commit(value + i as u64, blinding.clone()).unwrap());
				proofs.push(secp.bullet_proof(value + i as u64, blinding.clone(), blinding.clone(), blinding.clone(), None, None));
			}
			println!("--------");
			println!("Comparing {} Proofs", v);
			let start = Utc::now().timestamp_nanos();
			for i in 0..v {
				let proof_range = secp
					.verify_bullet_proof(commits[i].clone(), proofs[i].clone(), None)
					.unwrap();
				assert_eq!(proof_range.min, 0);
			}
			let fin = Utc::now().timestamp_nanos();
			let dur_ms = (fin - start) as f64 * nano_to_millis;
			println!("{} proofs single validated in {}ms", v, dur_ms);

			let start = Utc::now().timestamp_nanos();
			let proof_range = secp.verify_bullet_proof_multi(commits.clone(), proofs.clone(), None);
			assert!(!proof_range.is_err());
			let fin = Utc::now().timestamp_nanos();
			let dur_ms = (fin - start) as f64 * nano_to_millis;
			println!("{} proofs batch validated in {}ms", v, dur_ms);
		}
	}

	#[test]
	fn test_bullet_proof_verify_multi() {
		let mut commits: Vec<Commitment> = vec![];
		let mut proofs: Vec<RangeProof> = vec![];

		let secp = Secp256k1::with_caps(ContextFlag::Commit);
		let blinding = SecretKey::new(&secp, &mut thread_rng());
		let rewind_nonce  = SecretKey::new(&secp, &mut thread_rng());
		let private_nonce = SecretKey::new(&secp, &mut thread_rng());
		let wrong_blinding = SecretKey::new(&secp, &mut thread_rng());
		let value = 12345678;

		let wrong_commit = secp.commit(value, wrong_blinding).unwrap();

		commits.push(secp.commit(value, blinding.clone()).unwrap());
		proofs.push(secp.bullet_proof(value, blinding.clone(), rewind_nonce.clone(), private_nonce.clone(), None, None));
		let proof_range = secp
			.verify_bullet_proof(commits[0].clone(), proofs[0].clone(), None)
			.unwrap();
		assert_eq!(proof_range.min, 0);

		// verify with single element in each
		let proof_range = secp
			.verify_bullet_proof_multi(commits.clone(), proofs.clone(), None)
			.unwrap();
		assert_eq!(proof_range.min, 0);

		// verify wrong proof
		commits[0] = wrong_commit.clone();
		if !secp
			.verify_bullet_proof_multi(commits.clone(), proofs.clone(), None)
			.is_err()
		{
			panic!("Bullet proof multi verify should have errored.");
		}

		//  batching verification on double elements w/t extra message data
		commits = vec![];
		proofs = vec![];
		commits.push(secp.commit(value + 1, blinding.clone()).unwrap());
		commits.push(secp.commit(value - 1, blinding.clone()).unwrap());
		proofs.push(secp.bullet_proof(value + 1, blinding.clone(), rewind_nonce.clone(), private_nonce.clone(), None, None));
		proofs.push(secp.bullet_proof(value - 1, blinding.clone(), rewind_nonce.clone(), private_nonce.clone(), None, None));
		let proof_range = secp
			.verify_bullet_proof_multi(commits.clone(), proofs.clone(), None)
			.unwrap();
		assert_eq!(proof_range.min, 0);

		//  batching verification on double elements w/ extra message data
		let mut extra_data1 = [0u8; 64].to_vec();
		extra_data1[0] = 100;
		let mut extra_data2 = [0u8; 64].to_vec();
		extra_data2[0] = 200;

		proofs = vec![];
		proofs.push(secp.bullet_proof(
			value + 1,
			blinding.clone(),
			rewind_nonce.clone(),
			private_nonce.clone(),
			Some(extra_data1.clone()),
			None,
		));
		proofs.push(secp.bullet_proof(
			value - 1,
			blinding.clone(),
			rewind_nonce.clone(),
			private_nonce.clone(),
			Some(extra_data2.clone()),
			None,
		));

		let mut extra_data = vec![];
		extra_data.push(extra_data1.clone());
		extra_data.push(extra_data2.clone());
		let proof_range = secp
			.verify_bullet_proof_multi(commits.clone(), proofs.clone(), Some(extra_data.clone()))
			.unwrap();
		assert_eq!(proof_range.min, 0);

		// verify wrong extra message
		let mut extra_data = vec![];
		extra_data1[0] = 101; // simulate a wrong extra message
		extra_data.push(extra_data1.clone());
		extra_data.push(extra_data2.clone());
		if !secp
			.verify_bullet_proof_multi(commits.clone(), proofs.clone(), Some(extra_data.clone()))
			.is_err()
		{
			panic!("Bullet proof multi verify should have error.");
		}

		//  batching verification on 1-100 elements w/o extra message data
		commits = vec![];
		proofs = vec![];
		let mut errs = 0;
		for i in 1..100 {
			print!("\r\r\r{}", i);
			commits.push(secp.commit(value + i as u64, blinding.clone()).unwrap());
			proofs.push(secp.bullet_proof(value + i as u64, blinding.clone(), rewind_nonce.clone(), private_nonce.clone(), None, None));
			let proof_range = secp.verify_bullet_proof_multi(commits.clone(), proofs.clone(), None); //.unwrap();
			if proof_range.is_err() {
				println!(" proofs batch verify failed");
				errs += 1;
			}
		}
		assert_eq!(errs, 0);
	}
}