1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
// Copyright 2020 The Grin Developers
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Transaction pool implementation leveraging txhashset for chain state
//! validation. It is a valid operation to add a tx to the tx pool if the
//! resulting tx pool can be added to the current chain state to produce a
//! valid chain state.

use self::core::core::hash::{Hash, Hashed};
use self::core::core::id::ShortId;
use self::core::core::verifier_cache::VerifierCache;
use self::core::core::{
	transaction, Block, BlockHeader, HeaderVersion, OutputIdentifier, Transaction, Weighting,
};
use self::core::global;
use self::util::RwLock;
use crate::pool::Pool;
use crate::types::{BlockChain, PoolAdapter, PoolConfig, PoolEntry, PoolError, TxSource};
use chrono::prelude::*;
use grin_core as core;
use grin_util as util;
use std::collections::VecDeque;
use std::sync::Arc;

/// Transaction pool implementation.
pub struct TransactionPool<B, P, V>
where
	B: BlockChain,
	P: PoolAdapter,
	V: VerifierCache,
{
	/// Pool Config
	pub config: PoolConfig,
	/// Our transaction pool.
	pub txpool: Pool<B, V>,
	/// Our Dandelion "stempool".
	pub stempool: Pool<B, V>,
	/// Cache of previous txs in case of a re-org.
	pub reorg_cache: Arc<RwLock<VecDeque<PoolEntry>>>,
	/// The blockchain
	pub blockchain: Arc<B>,
	pub verifier_cache: Arc<RwLock<V>>,
	/// The pool adapter
	pub adapter: Arc<P>,
}

impl<B, P, V> TransactionPool<B, P, V>
where
	B: BlockChain,
	P: PoolAdapter,
	V: VerifierCache + 'static,
{
	/// Create a new transaction pool
	pub fn new(
		config: PoolConfig,
		chain: Arc<B>,
		verifier_cache: Arc<RwLock<V>>,
		adapter: Arc<P>,
	) -> Self {
		TransactionPool {
			config,
			txpool: Pool::new(chain.clone(), verifier_cache.clone(), "txpool".to_string()),
			stempool: Pool::new(
				chain.clone(),
				verifier_cache.clone(),
				"stempool".to_string(),
			),
			reorg_cache: Arc::new(RwLock::new(VecDeque::new())),
			blockchain: chain,
			verifier_cache,
			adapter,
		}
	}

	pub fn chain_head(&self) -> Result<BlockHeader, PoolError> {
		self.blockchain.chain_head()
	}

	// Add tx to stempool (passing in all txs from txpool to validate against).
	fn add_to_stempool(
		&mut self,
		entry: &PoolEntry,
		header: &BlockHeader,
		extra_tx: Option<Transaction>,
	) -> Result<(), PoolError> {
		self.stempool.add_to_pool(entry.clone(), extra_tx, header)
	}

	fn add_to_reorg_cache(&mut self, entry: &PoolEntry) {
		let mut cache = self.reorg_cache.write();
		cache.push_back(entry.clone());

		// We cache 30 mins of txs but we have a hard limit to avoid catastrophic failure.
		// For simplicity use the same value as the actual tx pool limit.
		if cache.len() > self.config.max_pool_size {
			let _ = cache.pop_front();
		}
		debug!("added tx to reorg_cache: size now {}", cache.len());
	}

	// Deaggregate this tx against the txpool.
	// Returns the new deaggregated tx or the original tx if no deaggregation.
	fn deaggregate_tx(&self, entry: PoolEntry) -> Result<PoolEntry, PoolError> {
		if entry.tx.kernels().len() > 1 {
			let txs = self.txpool.find_matching_transactions(entry.tx.kernels());
			if !txs.is_empty() {
				let tx = transaction::deaggregate(entry.tx, &txs)?;
				return Ok(PoolEntry::new(tx, TxSource::Deaggregate));
			}
		}
		Ok(entry)
	}

	fn add_to_txpool(&mut self, entry: &PoolEntry, header: &BlockHeader) -> Result<(), PoolError> {
		self.txpool.add_to_pool(entry.clone(), None, header)?;

		// We now need to reconcile the stempool based on the new state of the txpool.
		// Some stempool txs may no longer be valid and we need to evict them.
		let txpool_agg = self.txpool.all_transactions_aggregate(None)?;
		self.stempool.reconcile(txpool_agg, header)?;

		Ok(())
	}

	/// Verify the tx kernel variants and ensure they can all be accepted to the txpool/stempool
	/// with respect to current header version.
	fn verify_kernel_variants(
		&self,
		tx: &Transaction,
		header: &BlockHeader,
	) -> Result<(), PoolError> {
		if tx.kernels().iter().any(|k| k.is_nrd()) {
			if !global::is_nrd_enabled() {
				return Err(PoolError::NRDKernelNotEnabled);
			}
			if header.version < HeaderVersion(4) {
				return Err(PoolError::NRDKernelPreHF3);
			}
		}
		Ok(())
	}

	/// Add the given tx to the pool, directing it to either the stempool or
	/// txpool based on stem flag provided.
	pub fn add_to_pool(
		&mut self,
		src: TxSource,
		tx: Transaction,
		stem: bool,
		header: &BlockHeader,
	) -> Result<(), PoolError> {
		// Quick check for duplicate txs.
		// Our stempool is private and we do not want to reveal anything about the txs contained.
		// If this is a stem tx and is already present in stempool then fluff by adding to txpool.
		// Otherwise if already present in txpool return a "duplicate tx" error.
		if stem && self.stempool.contains_tx(&tx) {
			return self.add_to_pool(src, tx, false, header);
		} else if self.txpool.contains_tx(&tx) {
			return Err(PoolError::DuplicateTx);
		}

		// Attempt to deaggregate the tx if not stem tx.
		let entry = if stem {
			PoolEntry::new(tx, src)
		} else {
			self.deaggregate_tx(PoolEntry::new(tx, src))?
		};
		let ref tx = entry.tx;

		// Check this tx is valid based on current header version.
		// NRD kernels only valid post HF3 and if NRD feature enabled.
		self.verify_kernel_variants(tx, header)?;

		// Do we have the capacity to accept this transaction?
		let acceptability = self.is_acceptable(tx, stem);
		let mut evict = false;
		if !stem && acceptability.as_ref().err() == Some(&PoolError::OverCapacity) {
			evict = true;
		} else if acceptability.is_err() {
			return acceptability;
		}

		// Make sure the transaction is valid before anything else.
		// Validate tx accounting for max tx weight.
		tx.validate(Weighting::AsTransaction, self.verifier_cache.clone())
			.map_err(PoolError::InvalidTx)?;

		// Check the tx lock_time is valid based on current chain state.
		self.blockchain.verify_tx_lock_height(tx)?;

		// If stem we want to account for the txpool.
		let extra_tx = if stem {
			self.txpool.all_transactions_aggregate(None)?
		} else {
			None
		};

		// Locate outputs being spent from pool and current utxo.
		let (spent_pool, spent_utxo) = if stem {
			self.stempool.locate_spends(tx, extra_tx.clone())
		} else {
			self.txpool.locate_spends(tx, None)
		}?;

		// Check coinbase maturity before we go any further.
		let coinbase_inputs: Vec<_> = spent_utxo
			.iter()
			.filter(|x| x.is_coinbase())
			.cloned()
			.collect();
		self.blockchain
			.verify_coinbase_maturity(&coinbase_inputs.as_slice().into())?;

		// Convert the tx to "v2" compatibility with "features and commit" inputs.
		let ref entry = self.convert_tx_v2(entry, &spent_pool, &spent_utxo)?;

		// If this is a stem tx then attempt to add it to stempool.
		// If the adapter fails to accept the new stem tx then fallback to fluff via txpool.
		if stem {
			self.add_to_stempool(entry, header, extra_tx)?;
			if self.adapter.stem_tx_accepted(entry).is_ok() {
				return Ok(());
			}
		}

		// Add tx to txpool.
		self.add_to_txpool(entry, header)?;
		self.add_to_reorg_cache(entry);
		self.adapter.tx_accepted(entry);

		// Transaction passed all the checks but we have to make space for it
		if evict {
			self.evict_from_txpool();
		}

		Ok(())
	}

	/// Convert a transaction for v2 compatibility.
	/// We may receive a transaction with "commit only" inputs.
	/// We convert it to "features and commit" so we can safely relay it to v2 peers.
	/// Conversion is done using outputs previously looked up in both the pool and the current utxo.
	fn convert_tx_v2(
		&self,
		entry: PoolEntry,
		spent_pool: &[OutputIdentifier],
		spent_utxo: &[OutputIdentifier],
	) -> Result<PoolEntry, PoolError> {
		let tx = entry.tx;
		debug!(
			"convert_tx_v2: {} ({} -> v2)",
			tx.hash(),
			tx.inputs().version_str(),
		);

		let mut inputs = spent_utxo.to_vec();
		inputs.extend_from_slice(spent_pool);
		inputs.sort_unstable();

		let tx = Transaction {
			body: tx.body.replace_inputs(inputs.as_slice().into()),
			..tx
		};

		// Validate the tx to ensure our converted inputs are correct.
		tx.validate(Weighting::AsTransaction, self.verifier_cache.clone())?;

		Ok(PoolEntry::new(tx, entry.src))
	}

	// Evict a transaction from the txpool.
	// Uses bucket logic to identify the "last" transaction.
	// No other tx depends on it and it has low fee_to_weight.
	pub fn evict_from_txpool(&mut self) {
		self.txpool.evict_transaction()
	}

	// Old txs will "age out" after 30 mins.
	pub fn truncate_reorg_cache(&mut self, cutoff: DateTime<Utc>) {
		let mut cache = self.reorg_cache.write();

		while cache.front().map(|x| x.tx_at < cutoff).unwrap_or(false) {
			let _ = cache.pop_front();
		}

		debug!("truncate_reorg_cache: size: {}", cache.len());
	}

	pub fn reconcile_reorg_cache(&mut self, header: &BlockHeader) -> Result<(), PoolError> {
		let entries = self.reorg_cache.read().iter().cloned().collect::<Vec<_>>();
		debug!(
			"reconcile_reorg_cache: size: {}, block: {:?} ...",
			entries.len(),
			header.hash(),
		);
		for entry in entries {
			let _ = self.add_to_txpool(&entry, header);
		}
		debug!(
			"reconcile_reorg_cache: block: {:?} ... done.",
			header.hash()
		);
		Ok(())
	}

	/// Reconcile the transaction pool (both txpool and stempool) against the
	/// provided block.
	pub fn reconcile_block(&mut self, block: &Block) -> Result<(), PoolError> {
		// First reconcile the txpool.
		self.txpool.reconcile_block(block);
		self.txpool.reconcile(None, &block.header)?;

		// Now reconcile our stempool, accounting for the updated txpool txs.
		self.stempool.reconcile_block(block);
		{
			let txpool_tx = self.txpool.all_transactions_aggregate(None)?;
			self.stempool.reconcile(txpool_tx, &block.header)?;
		}

		Ok(())
	}

	/// Retrieve individual transaction for the given kernel hash.
	pub fn retrieve_tx_by_kernel_hash(&self, hash: Hash) -> Option<Transaction> {
		self.txpool.retrieve_tx_by_kernel_hash(hash)
	}

	/// Retrieve all transactions matching the provided "compact block"
	/// based on the kernel set.
	/// Note: we only look in the txpool for this (stempool is under embargo).
	pub fn retrieve_transactions(
		&self,
		hash: Hash,
		nonce: u64,
		kern_ids: &[ShortId],
	) -> (Vec<Transaction>, Vec<ShortId>) {
		self.txpool.retrieve_transactions(hash, nonce, kern_ids)
	}

	/// Whether the transaction is acceptable to the pool, given both how
	/// full the pool is and the transaction weight.
	fn is_acceptable(&self, tx: &Transaction, stem: bool) -> Result<(), PoolError> {
		if self.total_size() > self.config.max_pool_size {
			return Err(PoolError::OverCapacity);
		}

		// Check that the stempool can accept this transaction
		if stem && self.stempool.size() > self.config.max_stempool_size
			|| self.total_size() > self.config.max_pool_size
		{
			return Err(PoolError::OverCapacity);
		}

		// for a basic transaction (1 input, 2 outputs) -
		// (-1 * 1) + (4 * 2) + 1 = 8
		// 8 * 10 = 80
		if self.config.accept_fee_base > 0 {
			let threshold = (tx.tx_weight() as u64) * self.config.accept_fee_base;
			if tx.fee() < threshold {
				return Err(PoolError::LowFeeTransaction(threshold));
			}
		}
		Ok(())
	}

	/// Get the total size of the pool.
	/// Note: we only consider the txpool here as stempool is under embargo.
	pub fn total_size(&self) -> usize {
		self.txpool.size()
	}

	/// Returns a vector of transactions from the txpool so we can build a
	/// block from them.
	pub fn prepare_mineable_transactions(&self) -> Result<Vec<Transaction>, PoolError> {
		self.txpool
			.prepare_mineable_transactions(self.config.mineable_max_weight)
	}
}