1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
//! Time sources for rate limiters.
//!
//! The time sources contained in this module allow the rate limiter
//! to be (optionally) independent of std, and additionally
//! allow mocking the passage of time.
//!
//! You can supply a custom time source by implementing both [`Reference`]
//! and [`Clock`] for your own types, and by implementing `Add<Nanos>` for
//! your [`Reference`] type:
//! ```rust
//! # use std::ops::Add;
//! use governor::clock::{Reference, Clock};
//! use governor::nanos::Nanos;
//!
//! #[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord)]
//! struct MyInstant(u64);
//!
//! impl Add<Nanos> for MyInstant {
//!     type Output = Self;
//!
//!    fn add(self, other: Nanos) -> Self {
//!        Self(self.0 + other.as_u64())
//!    }
//! }
//!
//! impl Reference for MyInstant {
//!     fn duration_since(&self, earlier: Self) -> Nanos {
//!         self.0.checked_sub(earlier.0).unwrap_or(0).into()
//!     }
//!
//!     fn saturating_sub(&self, duration: Nanos) -> Self {
//!         Self(self.0.checked_sub(duration.into()).unwrap_or(self.0))
//!     }
//! }
//!
//! #[derive(Clone)]
//! struct MyCounter(u64);
//!
//! impl Clock for MyCounter {
//!     type Instant = MyInstant;
//!
//!     fn now(&self) -> Self::Instant {
//!         MyInstant(self.0)
//!     }
//! }
//! ```

use std::prelude::v1::*;

use std::convert::TryInto;
use std::fmt::Debug;
use std::ops::Add;
use std::sync::atomic::Ordering;
use std::sync::Arc;
use std::time::Duration;

use portable_atomic::AtomicU64;

use crate::nanos::Nanos;

/// A measurement from a clock.
pub trait Reference:
    Sized + Add<Nanos, Output = Self> + PartialEq + Eq + Ord + Copy + Clone + Send + Sync + Debug
{
    /// Determines the time that separates two measurements of a
    /// clock. Implementations of this must perform a saturating
    /// subtraction - if the `earlier` timestamp should be later,
    /// `duration_since` must return the zero duration.
    fn duration_since(&self, earlier: Self) -> Nanos;

    /// Returns a reference point that lies at most `duration` in the
    /// past from the current reference. If an underflow should occur,
    /// returns the current reference.
    fn saturating_sub(&self, duration: Nanos) -> Self;
}

/// A time source used by rate limiters.
pub trait Clock: Clone {
    /// A measurement of a monotonically increasing clock.
    type Instant: Reference;

    /// Returns a measurement of the clock.
    fn now(&self) -> Self::Instant;
}

impl Reference for Duration {
    /// The internal duration between this point and another.
    /// ```rust
    /// # use std::time::Duration;
    /// # use governor::clock::Reference;
    /// let diff = Duration::from_secs(20).duration_since(Duration::from_secs(10));
    /// assert_eq!(diff, Duration::from_secs(10).into());
    /// ```
    fn duration_since(&self, earlier: Self) -> Nanos {
        self.checked_sub(earlier)
            .unwrap_or_else(|| Duration::new(0, 0))
            .into()
    }

    /// The internal duration between this point and another.
    /// ```rust
    /// # use std::time::Duration;
    /// # use governor::clock::Reference;
    /// let diff = Reference::saturating_sub(&Duration::from_secs(20), Duration::from_secs(10).into());
    /// assert_eq!(diff, Duration::from_secs(10));
    /// ```
    fn saturating_sub(&self, duration: Nanos) -> Self {
        self.checked_sub(duration.into()).unwrap_or(*self)
    }
}

impl Add<Nanos> for Duration {
    type Output = Self;

    fn add(self, other: Nanos) -> Self {
        let other: Duration = other.into();
        self + other
    }
}

/// A mock implementation of a clock. All it does is keep track of
/// what "now" is (relative to some point meaningful to the program),
/// and returns that.
///
/// # Thread safety
/// The mock time is represented as an atomic u64 count of nanoseconds, behind an [`Arc`].
/// Clones of this clock will all show the same time, even if the original advances.
#[derive(Debug, Clone, Default)]
pub struct FakeRelativeClock {
    now: Arc<AtomicU64>,
}

impl FakeRelativeClock {
    /// Advances the fake clock by the given amount.
    pub fn advance(&self, by: Duration) {
        let by: u64 = by
            .as_nanos()
            .try_into()
            .expect("Can not represent times past ~584 years");

        let mut prev = self.now.load(Ordering::Acquire);
        let mut next = prev + by;
        while let Err(next_prev) =
            self.now
                .compare_exchange_weak(prev, next, Ordering::Release, Ordering::Relaxed)
        {
            prev = next_prev;
            next = prev + by;
        }
    }
}

impl PartialEq for FakeRelativeClock {
    /// Compares two fake relative clocks' current state, snapshotted.
    ///
    /// ```rust
    /// # use std::time::Duration;
    /// # use governor::clock::FakeRelativeClock;
    /// let clock1 = FakeRelativeClock::default();
    /// let clock2 = FakeRelativeClock::default();
    /// assert_eq!(clock1, clock2);
    /// clock1.advance(Duration::from_secs(1));
    /// assert_ne!(clock1, clock2);
    /// ```
    fn eq(&self, other: &Self) -> bool {
        self.now.load(Ordering::Relaxed) == other.now.load(Ordering::Relaxed)
    }
}

impl Clock for FakeRelativeClock {
    type Instant = Nanos;

    fn now(&self) -> Self::Instant {
        self.now.load(Ordering::Relaxed).into()
    }
}

#[cfg(feature = "std")]
mod with_std;
#[cfg(feature = "std")]
pub use with_std::*;

#[cfg(all(feature = "std", feature = "quanta"))]
mod quanta;
#[cfg(all(feature = "std", feature = "quanta"))]
pub use self::quanta::*;

mod default;

pub use default::*;

#[cfg(all(feature = "std", test))]
mod test {
    use super::*;
    use crate::nanos::Nanos;
    use std::iter::repeat;
    use std::sync::Arc;
    use std::thread;
    use std::time::Duration;

    #[test]
    fn fake_clock_parallel_advances() {
        let clock = Arc::new(FakeRelativeClock::default());
        let threads = repeat(())
            .take(10)
            .map(move |_| {
                let clock = Arc::clone(&clock);
                thread::spawn(move || {
                    for _ in 0..1000000 {
                        let now = clock.now();
                        clock.advance(Duration::from_nanos(1));
                        assert!(clock.now() > now);
                    }
                })
            })
            .collect::<Vec<_>>();
        for t in threads {
            t.join().unwrap();
        }
    }

    #[test]
    fn duration_addition_coverage() {
        let d = Duration::from_secs(1);
        let one_ns = Nanos::new(1);
        assert!(d + one_ns > d);
    }
}