1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
/*
* Licensed to Elasticsearch B.V. under one or more contributor
* license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright
* ownership. Elasticsearch B.V. licenses this file to you under
* the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*  http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied.  See the License for the
* specific language governing permissions and limitations
* under the License.
*/

//! # The Cover Tree Data Structure
//! To keep a no-lock, yet editable cover tree that can be queried in parallel we need to keep a pair of hash-maps for each layer.
//! They are duplicated (this is slow, it should be changed to an unsafe partial duplication). All the readers are pointed at one
//! hash-map on each layer, while this write head is pointed at the other. All writes to the write head are not available to the
//! readers until refresh is called. Each write is queued for a pair of write operations, the first is to the hash-maps available
//! to the write head, then after refresh this queue is drained and the second write operation is performed on the other hash-maps.
//!
//! To ensure consistency only call refresh when you have a valid tree. For example if you are removing a subtree starting from some root node
//! only call refresh once you're finished.
//!
//! The covertree is meant to be eventually consistent with no mutexes or any other locks. To accomplish this there
//! is a reader head and a writer head. The reader head is read only and has access to the most recent "valid" tree.
//! For now, valid only means a *weak covertree*.
//!
//! The hashmap pair idea is in `layer` and originally comes from Jon Gjengset.

use super::layer::*;
use super::node::*;
use crate::*;
//use pointcloud::*;

use crate::monomap::{MonoReadHandle, MonoWriteHandle};
use crate::tree_file_format::*;
use std::sync::{atomic, Arc, RwLock};

use super::query_tools::{KnnQueryHeap, MultiscaleQueryHeap, RoutingQueryHeap};
use crate::plugins::{GokoPlugin, TreePluginSet};
use errors::{GokoError, GokoResult};
use std::collections::HashMap;
use std::iter::Iterator;
use std::iter::Rev;
use std::ops::Range;
use std::slice::Iter;

use plugins::labels::*;

/// When 2 spheres overlap under a node, and there is a point in the overlap we have to decide
/// to which sphere it belongs. As we create the nodes in a particular sequence, we can assign them
/// to the first to be created or we can assign it to the nearest.
#[derive(Debug, Copy, Clone)]
pub enum PartitionType {
    /// Conflicts assigning a point to several eligible nodes are assigned to the nearest node.
    Nearest,
    /// Conflicts assigning a point to several eligible nodes are assigned to the first node to be created.
    First,
}

/// Container for the parameters governing the construction of the covertree
#[derive(Debug)]
pub struct CoverTreeParameters<D: PointCloud> {
    /// An atomic that tracks all nodes as they are created across all threads.
    /// This may not reflect what your current reader can see.
    pub total_nodes: atomic::AtomicUsize,
    /// See paper or main description, governs the number of children of each node. Higher is more.
    pub scale_base: f32,
    /// If a node covers less than or equal to this number of points, it becomes a leaf.
    pub leaf_cutoff: usize,
    /// If a node has scale index less than or equal to this, it becomes a leaf
    pub min_res_index: i32,
    /// If you don't want singletons messing with your tree and want everything to be a node or a element of leaf node, make this true.
    pub use_singletons: bool,
    /// The partition type of the tree
    pub partition_type: PartitionType,
    /// The point cloud this tree references
    pub point_cloud: Arc<D>,
    /// This should be replaced by a logging solution
    pub verbosity: u32,
    /// This is where the base plugins are are stored.
    pub plugins: RwLock<TreePluginSet>,
}

impl<D: PointCloud> CoverTreeParameters<D> {
    /// Gets the index of the layer in the vector.
    #[inline]
    pub fn internal_index(&self, scale_index: i32) -> usize {
        if scale_index < self.min_res_index {
            0
        } else {
            (scale_index - self.min_res_index + 1) as usize
        }
    }
}

/// Helper struct for iterating thru the reader's of the the layers.
pub type LayerIter<'a, D> = Rev<std::iter::Zip<Range<i32>, Iter<'a, CoverLayerReader<D>>>>;

/// # Cover Tree Reader Head
///
/// You can clone the reader head, though this is a relatively expensive operation and should not be performed lightly.
///
/// All queries of the covertree should go through a reader head. This includes queries you are doing to modify the tree.
/// There are no thread locks anywhere in the code below the reader head, so it's fast.
///
/// The data structure is just a list of `CoverLayerReader`s, the parameter's object and the root address. Copies are relatively
/// expensive as each `CoverLayerReader` contains several Arcs that need to be cloned.
pub struct CoverTreeReader<D: PointCloud> {
    parameters: Arc<CoverTreeParameters<D>>,
    layers: Vec<CoverLayerReader<D>>,
    root_address: NodeAddress,
    final_addresses: MonoReadHandle<PointIndex, NodeAddress>,
}

impl<D: PointCloud> Clone for CoverTreeReader<D> {
    fn clone(&self) -> CoverTreeReader<D> {
        CoverTreeReader {
            parameters: self.parameters.clone(),
            layers: self.layers.clone(),
            root_address: self.root_address,
            final_addresses: self.final_addresses.clone(),
        }
    }
}

impl<D: PointCloud + LabeledCloud> CoverTreeReader<D> {
    /// Reads the contents of a plugin, due to the nature of the plugin map we have to access it with a
    /// closure.
    pub fn get_node_label_summary(
        &self,
        node_address: (i32, PointIndex),
    ) -> Option<Arc<SummaryCounter<D::LabelSummary>>> {
        self.layers[self.parameters.internal_index(node_address.0)]
            .get_node_and(node_address.1, |n| n.label_summary())
            .flatten()
    }
}

impl<D: PointCloud + MetaCloud> CoverTreeReader<D> {
    /// Reads the contents of a plugin, due to the nature of the plugin map we have to access it with a
    /// closure.
    pub fn get_node_metasummary(
        &self,
        node_address: (i32, PointIndex),
    ) -> Option<Arc<SummaryCounter<D::MetaSummary>>> {
        self.layers[self.parameters.internal_index(node_address.0)]
            .get_node_and(node_address.1, |n| n.metasummary())
            .flatten()
    }
}

impl<D: PointCloud> CoverTreeReader<D> {
    /// A reference to the point cloud the tree was built on.
    pub fn point_cloud(&self) -> &Arc<D> {
        &self.parameters.point_cloud
    }

    /// Returns a borrowed reader for a cover layer.
    ///
    pub fn layer(&self, scale_index: i32) -> &CoverLayerReader<D> {
        &self.layers[self.parameters.internal_index(scale_index)]
    }

    /// simple helper to get the scale from the scale index and the scale base, this is just `b^i`
    pub fn scale(&self, scale_index: i32) -> f32 {
        self.parameters.scale_base.powi(scale_index)
    }

    /// Read only access to the internals of a node.
    pub fn get_node_and<F, T>(&self, node_address: (i32, PointIndex), f: F) -> Option<T>
    where
        F: FnOnce(&CoverNode<D>) -> T,
    {
        self.layers[self.parameters.internal_index(node_address.0)]
            .get_node_and(node_address.1, |n| f(n))
    }

    /// Grabs all children indexes and allows you to query against them. Usually used at the tree level so that you
    /// can access the child nodes as they are not on this layer.
    pub fn get_node_children_and<F, T>(&self, node_address: (i32, PointIndex), f: F) -> Option<T>
    where
        F: FnOnce(NodeAddress, &[NodeAddress]) -> T,
    {
        self.layers[self.parameters.internal_index(node_address.0)]
            .get_node_children_and(node_address.1, f)
    }

    /// The root of the tree. Pass this to `get_node_and` to get the root node's content and start a traversal of the tree.
    pub fn root_address(&self) -> NodeAddress {
        self.root_address
    }

    /// An iterator for accessing the layers starting from the layer who holds the root.
    pub fn layers(&self) -> LayerIter<D> {
        ((self.parameters.min_res_index - 1)
            ..(self.layers.len() as i32 + self.parameters.min_res_index - 1))
            .zip(self.layers.iter())
            .rev()
    }

    /// Returns the number of layers in the tree. This is _not_ the number of non-zero layers.
    pub fn len(&self) -> usize {
        self.layers.len()
    }

    /// Returns the number of layers in the tree. This is _not_ the number of non-zero layers.
    pub fn is_empty(&self) -> bool {
        self.layers.is_empty()
    }

    /// If you want to build a new tree with shared parameters, this is helpful.
    pub fn parameters(&self) -> &Arc<CoverTreeParameters<D>> {
        &self.parameters
    }

    /// This is the total number of nodes in the tree. This queries each layer, so it's not a simple return int.
    pub fn node_count(&self) -> usize {
        self.layers().fold(0, |a, (_si, l)| a + l.len())
    }

    /// Returns the scale index range. It starts at the minimum min_res_index and ends at the top. You can reverse this for the correct order.
    pub fn scale_range(&self) -> Range<i32> {
        (self.parameters.min_res_index)
            ..(self.parameters.min_res_index - 1 + self.layers.len() as i32)
    }

    /// Access the stored tree plugin
    pub fn get_plugin_and<T: Send + Sync + 'static, F, S>(&self, transform_fn: F) -> Option<S>
    where
        F: FnOnce(&T) -> S,
    {
        self.parameters
            .plugins
            .read()
            .unwrap()
            .get::<T>()
            .map(transform_fn)
    }

    /// Reads the contents of a plugin, due to the nature of the plugin map we have to access it with a
    /// closure.
    pub fn get_node_plugin_and<T: Send + Sync + 'static, F, S>(
        &self,
        node_address: (i32, PointIndex),
        transform_fn: F,
    ) -> Option<S>
    where
        F: FnOnce(&T) -> S,
    {
        self.layers[self.parameters.internal_index(node_address.0)]
            .get_node_and(node_address.1, |n| n.get_plugin_and(transform_fn))
            .flatten()
    }

    /// # The KNN query.
    /// This works by recursively greedily querying the nearest child node with the lowest scale index to the point in question of a node,
    /// starting at the root until we hit a leaf. During this process all nodes touched are pushed onto a pair of min-heaps, one
    /// to keep track of the nodes' who have been not yet been queried for their children or singletons (called the `child_heap`, and
    /// the other to track the nodes who have not yet been queried for their singletons (called the `singleton_heap`). Both these heaps are
    /// min-heaps, ordering the nodes lexicographically by minimum possible distance to the point, then scale index, and finally the
    /// actual distance to the query point.
    ///
    /// Once we reach the bottom we pop a node from the `singleton_heap` and if that node could have a point within range we query that
    /// node's singletons. These should be the closest to the query point.
    /// We then pop a node from the `child_heap` and repeat the greedy query starting from the popped node and terminating at a leaf.
    ///
    /// The process terminates when there is no node that could cover a point in the tree closer than the furthest point we already have in
    /// our KNN.
    ///
    /// See `query_tools::KnnQueryHeap` for the pair of heaps and mechanisms for tracking the minimum distance and the current knn set.
    /// See the `nodes::CoverNode::singleton_knn` and `nodes::CoverNode::child_knn` for the brute force node based knn.
    pub fn knn<'a, T: Into<PointRef<'a>>>(
        &self,
        point: T,
        k: usize,
    ) -> GokoResult<Vec<(f32, PointIndex)>> {
        let mut query_heap = KnnQueryHeap::new(k, self.parameters.scale_base);
        let point: PointRef<'a> = point.into();

        let root_center = self.parameters.point_cloud.point(self.root_address.1)?;
        let dist_to_root = D::Metric::dist(&root_center, point)?;
        query_heap.push_nodes(&[self.root_address], &[dist_to_root], None);
        self.greedy_knn_nodes(&point, &mut query_heap);

        while let Some((_dist, address)) = query_heap.closest_unvisited_singleton_covering_address()
        {
            self.get_node_and(address, |n| {
                n.singleton_knn(&point, &self.parameters.point_cloud, &mut query_heap)
            });
            self.greedy_knn_nodes(&point, &mut query_heap);
        }

        Ok(query_heap.unpack())
    }

    /// Same as knn, but only deals with non-singleton points
    pub fn routing_knn<'a, T: Into<PointRef<'a>>>(
        &self,
        point: T,
        k: usize,
    ) -> GokoResult<Vec<(f32, PointIndex)>> {
        let mut query_heap = KnnQueryHeap::new(k, self.parameters.scale_base);
        let point: PointRef<'a> = point.into();

        let root_center = self.parameters.point_cloud.point(self.root_address.1)?;
        let dist_to_root = D::Metric::dist(&root_center, point)?;
        query_heap.push_nodes(&[self.root_address], &[dist_to_root], None);
        self.greedy_knn_nodes(&point, &mut query_heap);

        while self.greedy_knn_nodes(&point, &mut query_heap) {}
        Ok(query_heap.unpack())
    }

    fn greedy_knn_nodes<'a, T: Into<PointRef<'a>>>(
        &self,
        point: T,
        query_heap: &mut KnnQueryHeap,
    ) -> bool {
        let point: PointRef<'a> = point.into();
        let mut did_something = false;
        while let Some((dist, nearest_address)) =
            query_heap.closest_unvisited_child_covering_address()
        {
            if self
                .get_node_and(nearest_address, |n| n.is_leaf())
                .unwrap_or(true)
            {
                break;
            } else {
                self.get_node_and(nearest_address, |n| {
                    n.child_knn(Some(dist), &point, &self.parameters.point_cloud, query_heap)
                });
            }
            did_something = true;
        }
        did_something
    }

    /// # Multiscale KNN
    ///
    /// This tries to return the k closest node on each layer to the query point. It terminates
    /// when the closest node is a leaf node.
    ///
    /// Todo: More Documentation, make this the k closest nodes on each layer.
    pub fn multiscale_knn<'a, T: Into<PointRef<'a>>>(
        &self,
        point: T,
        k: usize,
    ) -> GokoResult<HashMap<i32, Vec<(f32, NodeAddress)>>> {
        let mut query_heap = MultiscaleQueryHeap::new(k, self.parameters.scale_base);
        let point: PointRef<'a> = point.into();
        let root_center = self.parameters.point_cloud.point(self.root_address.1)?;
        let dist_to_root = D::Metric::dist(&root_center, point)?;
        query_heap.push_nodes(&[self.root_address], &[dist_to_root], None);
        println!("========================");
        println!("{:#?}", query_heap);
        for (si, _) in self.layers() {
            while let Some((q_dist, nearest_address)) = query_heap.pop_closest_unqueried(si) {
                println!("========================");
                println!("{:#?}", query_heap);
                match query_heap.furthest_node(si) {
                    Some((furthest_distance, _)) => {
                        if q_dist - self.parameters.scale_base.powi(si) < furthest_distance {
                            self.get_node_and(nearest_address, |n| {
                                n.child_knn(
                                    Some(q_dist),
                                    &point,
                                    &self.parameters.point_cloud,
                                    &mut query_heap,
                                )
                            });
                        } else {
                            break;
                        }
                    }
                    None => break,
                }
            }
        }
        println!("========================");

        Ok(query_heap.unpack())
    }

    /// # Dry Insert Query
    pub fn path<'a, T: Into<PointRef<'a>>>(&self, point: T) -> GokoResult<Vec<(f32, NodeAddress)>> {
        let point: PointRef<'a> = point.into();
        let root_center = self.parameters.point_cloud.point(self.root_address.1)?;
        let mut current_distance = D::Metric::dist(&root_center, point)?;
        let mut current_address = self.root_address;
        let mut trace = vec![(current_distance, current_address)];
        while let Some(nearest) =
            self.get_node_and(current_address, |n| match self.parameters.partition_type {
                PartitionType::Nearest => n.nearest_covering_child(
                    self.parameters.scale_base,
                    current_distance,
                    point,
                    &self.parameters.point_cloud,
                ),
                PartitionType::First => n.first_covering_child(
                    self.parameters.scale_base,
                    current_distance,
                    point,
                    &self.parameters.point_cloud,
                ),
            })
        {
            if let Some(nearest) = nearest? {
                trace.push(nearest);
                current_distance = nearest.0;
                current_address = nearest.1;
            } else {
                break;
            }
        }
        Ok(trace)
    }

    ///
    pub fn known_path(&self, point_index: PointIndex) -> GokoResult<Vec<(f32, NodeAddress)>> {
        self.final_addresses
            .get_and(&point_index, |addr| {
                let mut path = Vec::with_capacity((self.root_address().0 - addr.0) as usize);
                let mut parent = Some(*addr);
                while let Some(addr) = parent {
                    path.push(addr);
                    parent = self.get_node_and(addr, |n| n.parent_address()).flatten();
                }
                (&mut path[..]).reverse();
                let point_indexes: Vec<PointIndex> = path.iter().map(|na| na.1).collect();
                let dists = self
                    .parameters
                    .point_cloud
                    .distances_to_point_index(point_index, &point_indexes[..])
                    .unwrap();
                dists.iter().zip(path).map(|(d, a)| (*d, a)).collect()
            })
            .ok_or(GokoError::IndexNotInTree(point_index))
    }

    ///Computes the fractal dimension of a node
    pub fn node_fractal_dim(&self, node_address: NodeAddress) -> f32 {
        let count: f32 = self
            .get_node_and(node_address, |n| {
                (n.singletons_len() + n.children_len()) as f32
            })
            .unwrap() as f32;
        count.log(self.parameters.scale_base)
    }

    ///Computes the weighted fractal dimension of a node
    pub fn node_weighted_fractal_dim(&self, node_address: NodeAddress) -> f32 {
        let weighted_count: f32 = self
            .get_node_and(node_address, |n| {
                let singleton_count = n.singletons().len() as f32;
                let mut max_pop: usize = 1;
                let mut weighted_count: f32 = 0.0;
                if let Some((nested_scale, children)) = n.children() {
                    let mut pops: Vec<usize> = children
                        .iter()
                        .map(|child_addr| {
                            self.get_node_and(*child_addr, |child| child.coverage_count())
                                .unwrap()
                        })
                        .collect();
                    pops.push(
                        self.get_node_and((nested_scale, node_address.1), |child| {
                            child.coverage_count()
                        })
                        .unwrap(),
                    );
                    max_pop = *pops.iter().max().unwrap();
                    pops.iter()
                        .for_each(|p| weighted_count += (*p as f32) / (max_pop as f32));
                }
                weighted_count + singleton_count / (max_pop as f32)
            })
            .unwrap();
        weighted_count.log(self.parameters.scale_base)
    }

    ///Computes the fractal dimension of a layer
    pub fn layer_fractal_dim(&self, scale_index: i32) -> f32 {
        let parent_layer = self.layer(scale_index);
        let parent_count = parent_layer.len() as f32;
        let mut child_count: f32 = 0.0;
        parent_layer
            .for_each_node(|_, n| child_count += (n.singletons_len() + n.children_len()) as f32);
        child_count.log(self.parameters.scale_base) - parent_count.log(self.parameters.scale_base)
    }

    ///Computes the weighted fractal dimension of a node
    pub fn layer_weighted_fractal_dim(&self, scale_index: i32) -> f32 {
        // gather the coverages of every node on the layer and their's children
        let parent_layer = self.layer(scale_index);
        let mut parent_coverage_counts: Vec<usize> = Vec::new();
        let mut child_coverage_counts: Vec<usize> = Vec::new();
        let mut singletons_count: f32 = 0.0;
        parent_layer.for_each_node(|center_index, n| {
            parent_coverage_counts.push(n.coverage_count());

            singletons_count += n.singletons().len() as f32;
            if let Some((nested_scale, children)) = n.children() {
                child_coverage_counts.extend(children.iter().map(|child_addr| {
                    self.get_node_and(*child_addr, |child| child.coverage_count())
                        .unwrap()
                }));
                child_coverage_counts.push(
                    self.get_node_and((nested_scale, *center_index), |child| {
                        child.coverage_count()
                    })
                    .unwrap(),
                );
            }
        });
        // Get the maximum count
        let max_parent_pop: f32 = *parent_coverage_counts.iter().max().unwrap_or(&1) as f32;
        let max_child_pop: f32 = *child_coverage_counts.iter().max().unwrap_or(&1) as f32;

        // Normalize the counts by the maximum
        let weighted_child_sum: f32 = singletons_count / max_child_pop
            + child_coverage_counts
                .iter()
                .fold(0.0, |a, c| a + (*c as f32) / max_child_pop);
        let weighted_parent_sum: f32 = parent_coverage_counts
            .iter()
            .fold(0.0, |a, c| a + (*c as f32) / max_parent_pop);

        // take the log and return
        weighted_child_sum.log(self.parameters.scale_base)
            - weighted_parent_sum.log(self.parameters.scale_base)
    }

    /// Checks that there are no node addresses in the child list of any node that don't reference a node in the tree.
    /// Please calmly panic if there are, the tree is very invalid.
    pub(crate) fn no_dangling_refs(&self) -> bool {
        let mut refs_to_check = vec![self.root_address];
        while let Some(node_addr) = refs_to_check.pop() {
            println!("checking {:?}", node_addr);
            println!("refs_to_check: {:?}", refs_to_check);
            let node_exists = self.get_node_and(node_addr, |n| {
                if let Some((nested_scale, other_children)) = n.children() {
                    println!(
                        "Pushing: {:?}, {:?}",
                        (nested_scale, other_children),
                        other_children
                    );
                    refs_to_check.push((nested_scale, node_addr.1));
                    refs_to_check.extend(&other_children[..]);
                }
            });
            if node_exists.is_none() {
                return false;
            }
        }
        true
    }
}

///
pub struct CoverTreeWriter<D: PointCloud> {
    pub(crate) parameters: Arc<CoverTreeParameters<D>>,
    pub(crate) layers: Vec<CoverLayerWriter<D>>,
    pub(crate) root_address: NodeAddress,
    pub(crate) final_addresses: MonoWriteHandle<PointIndex, NodeAddress>,
}

impl<D: PointCloud + LabeledCloud> CoverTreeWriter<D> {
    ///
    pub fn generate_summaries(&mut self) {
        self.add_plugin::<LabelSummaryPlugin>(TreeLabelSummary::default())
    }
}

impl<D: PointCloud + MetaCloud> CoverTreeWriter<D> {
    ///
    pub fn generate_meta_summaries(&mut self) {
        self.add_plugin::<MetaSummaryPlugin>(TreeMetaSummary::default())
    }
}

impl<D: PointCloud> CoverTreeWriter<D> {
    ///
    pub fn add_plugin<P: GokoPlugin<D>>(
        &mut self,
        plug_in: <P as plugins::GokoPlugin<D>>::TreeComponent,
    ) where
        <P as plugins::GokoPlugin<D>>::TreeComponent: 'static,
        <P as plugins::GokoPlugin<D>>::NodeComponent: 'static,
    {
        P::prepare_tree(&plug_in, self);
        let reader = self.reader();
        for layer in self.layers.iter_mut() {
            layer.reader().for_each_node(|pi, n| {
                if let Some(node_component) = P::node_component(&plug_in, n, &reader) {
                    unsafe {
                        layer.update_node(*pi, move |n| n.insert_plugin(node_component.clone()))
                    }
                }
            });
            layer.refresh()
        }
        self.parameters.plugins.write().unwrap().insert(plug_in);
    }

    /// Provides a reference to a `CoverLayerWriter`. Do not use, unless you're going to leave the tree in a *valid* state.
    pub(crate) unsafe fn layer(&mut self, scale_index: i32) -> &mut CoverLayerWriter<D> {
        &mut self.layers[self.parameters.internal_index(scale_index)]
    }

    pub(crate) unsafe fn update_node<F>(&mut self, address: NodeAddress, update_fn: F)
    where
        F: Fn(&mut CoverNode<D>) + 'static + Send + Sync,
    {
        self.layers[self.parameters.internal_index(address.0)].update_node(address.1, update_fn);
    }

    /// Creates a reader for queries.
    pub fn reader(&self) -> CoverTreeReader<D> {
        CoverTreeReader {
            parameters: Arc::clone(&self.parameters),
            layers: self.layers.iter().map(|l| l.reader()).collect(),
            root_address: self.root_address,
            final_addresses: self.final_addresses.factory().handle(),
        }
    }

    pub(crate) unsafe fn insert_raw(
        &mut self,
        scale_index: i32,
        point_index: PointIndex,
        node: CoverNode<D>,
    ) {
        self.layers[self.parameters.internal_index(scale_index)].insert_raw(point_index, node);
    }

    /// Loads a tree from a protobuf. There's a `load_tree` in `utils` that handles loading from a path to a protobuf file.
    pub fn load(cover_proto: &CoreProto, point_cloud: Arc<D>) -> GokoResult<CoverTreeWriter<D>> {
        let partition_type = if cover_proto.partition_type == "first" {
            PartitionType::First
        } else {
            PartitionType::Nearest
        };

        let parameters = Arc::new(CoverTreeParameters {
            total_nodes: atomic::AtomicUsize::new(0),
            use_singletons: cover_proto.use_singletons,
            scale_base: cover_proto.scale_base as f32,
            leaf_cutoff: cover_proto.cutoff as usize,
            min_res_index: cover_proto.resolution as i32,
            point_cloud,
            verbosity: 2,
            partition_type,
            plugins: RwLock::new(TreePluginSet::new()),
        });
        let root_address = (
            cover_proto.get_root_scale(),
            cover_proto.get_root_index() as usize,
        );
        let layers: Vec<CoverLayerWriter<D>> = cover_proto
            .get_layers()
            .par_iter()
            .map(|l| CoverLayerWriter::load(l))
            .collect();

        let (_final_addresses_reader, final_addresses) = monomap::new();

        let mut tree = CoverTreeWriter {
            parameters,
            layers,
            root_address,
            final_addresses,
        };

        tree.refresh_final_indexes();

        Ok(tree)
    }

    /// Completely redoes the final index map.
    pub fn refresh_final_indexes(&mut self) {
        let reader = self.reader();
        let mut unvisited_nodes: Vec<NodeAddress> = vec![self.root_address];
        while !unvisited_nodes.is_empty() {
            let cur_add = unvisited_nodes.pop().unwrap();
            reader
                .get_node_and(cur_add, |n| {
                    for singleton in n.singletons() {
                        self.final_addresses.insert(*singleton, cur_add);
                    }
                    if let Some((nested_si, child_addresses)) = n.children() {
                        unvisited_nodes.extend(child_addresses);
                        unvisited_nodes.push((nested_si, cur_add.1));
                    } else {
                        self.final_addresses.insert(cur_add.1, cur_add);
                    }
                })
                .unwrap();
        }

        self.final_addresses.refresh();
        self.final_addresses.refresh();
    }

    /// Encodes the tree into a protobuf. See `utils::save_tree` for saving to a file on disk.
    pub fn save(&self) -> CoreProto {
        let mut cover_proto = CoreProto::new();
        match self.parameters.partition_type {
            PartitionType::First => cover_proto.set_partition_type("first".to_string()),
            PartitionType::Nearest => cover_proto.set_partition_type("nearest".to_string()),
        }
        cover_proto.set_scale_base(self.parameters.scale_base);
        cover_proto.set_cutoff(self.parameters.leaf_cutoff as u64);
        cover_proto.set_resolution(self.parameters.min_res_index);
        cover_proto.set_use_singletons(self.parameters.use_singletons);
        cover_proto.set_dim(self.parameters.point_cloud.dim() as u64);
        cover_proto.set_count(self.parameters.point_cloud.len() as u64);
        cover_proto.set_root_scale(self.root_address.0);
        cover_proto.set_root_index(self.root_address.1 as u64);
        cover_proto.set_layers(self.layers.iter().map(|l| l.save()).collect());
        cover_proto
    }

    /// Swaps the maps on each layer so that any `CoverTreeReaders` see the updated tree.
    /// Only call once you have a valid tree.
    pub fn refresh(&mut self) {
        self.layers.iter_mut().rev().for_each(|l| l.refresh());
    }
}

#[cfg(test)]
pub(crate) mod tests {
    use super::*;

    use crate::utils::cover_tree_from_labeled_yaml;
    use std::path::Path;

    pub(crate) fn build_mnist_tree() -> CoverTreeWriter<DefaultLabeledCloud<L2>> {
        let file_name = "../data/mnist_complex.yml";
        let path = Path::new(file_name);
        if !path.exists() {
            panic!(file_name.to_owned() + &" does not exist".to_string());
        }

        cover_tree_from_labeled_yaml(&path).unwrap()
    }

    pub(crate) fn build_basic_tree() -> CoverTreeWriter<DefaultLabeledCloud<L2>> {
        let data = vec![0.499, 0.49, 0.48, -0.49, 0.0];
        let labels = vec![0, 0, 0, 1, 1];

        let point_cloud = DefaultLabeledCloud::<L2>::new_simple(data, 1, labels);
        let builder = CoverTreeBuilder {
            scale_base: 2.0,
            leaf_cutoff: 1,
            min_res_index: -9,
            use_singletons: true,
            partition_type: PartitionType::Nearest,
            verbosity: 0,
        };
        builder.build(Arc::new(point_cloud)).unwrap()
    }

    #[test]
    fn len_is_num_layers() {
        let tree = build_basic_tree();
        let reader = tree.reader();

        let mut l = 0;
        for _ in reader.layers() {
            l += 1;
        }
        assert_eq!(reader.len(), l);
    }

    #[test]
    fn layer_has_correct_scale_index() {
        let tree = build_basic_tree();
        let reader = tree.reader();
        let mut got_one = false;
        for (si, l) in reader.layers() {
            println!(
                "Scale Index, correct: {:?}, Scale Index, layer: {:?}",
                si,
                l.scale_index()
            );
            assert_eq!(si, l.scale_index());
            got_one = true;
        }
        assert!(got_one);
    }

    #[test]
    fn greedy_knn_nodes() {
        let data = vec![0.499, 0.49, 0.48, -0.49, 0.0];
        let labels = vec![0, 0, 0, 1, 1];

        let point_cloud = DefaultLabeledCloud::<L2>::new_simple(data, 1, labels);
        let builder = CoverTreeBuilder {
            scale_base: 2.0,
            leaf_cutoff: 1,
            min_res_index: -9,
            use_singletons: false,
            partition_type: PartitionType::Nearest,
            verbosity: 0,
        };
        let tree = builder.build(Arc::new(point_cloud)).unwrap();
        let reader = tree.reader();

        let point = [-0.5];

        let mut query_heap = KnnQueryHeap::new(5, reader.parameters.scale_base);
        let dist_to_root = reader
            .parameters
            .point_cloud
            .distances_to_point(&point, &[reader.root_address().1])
            .unwrap()[0];
        query_heap.push_nodes(&[reader.root_address()], &[dist_to_root], None);

        assert_eq!(
            reader.root_address(),
            query_heap
                .closest_unvisited_child_covering_address()
                .unwrap()
                .1
        );

        reader.greedy_knn_nodes(&point, &mut query_heap);
        println!("{:#?}", query_heap);
        println!(
            "{:#?}",
            query_heap.closest_unvisited_child_covering_address()
        );
    }

    #[test]
    fn path_sanity() {
        let writer = build_basic_tree();
        let reader = writer.reader();
        let trace = reader.path(&[0.495f32][..]).unwrap();
        assert!(trace.len() == 4 || trace.len() == 3);
        println!("{:?}", trace);
        for i in 0..(trace.len() - 1) {
            assert!((trace[i].1).0 > (trace[i + 1].1).0);
        }
    }

    #[test]
    fn known_path_sanity() {
        let writer = build_basic_tree();
        let reader = writer.reader();
        for i in 0..5 {
            let trace = reader.known_path(i).unwrap();
            println!("i {}, trace {:?}", i, trace);
            println!(
                "final address: {:?}",
                reader.final_addresses.get_and(&i, |i| *i)
            );
            let ad = trace.last().unwrap().1;
            reader
                .get_node_and(ad, |n| {
                    if !n.is_leaf() {
                        assert!(n.singletons().contains(&i));
                    } else {
                        assert!(
                            (ad.1 != i && n.singletons().contains(&i))
                                || (ad.1 == i && !n.singletons().contains(&i))
                        );
                    }
                })
                .unwrap();
        }
        let known_trace = reader.known_path(4).unwrap();
        let trace = reader.path(&[0.0f32][..]).unwrap();
        println!(
            "Testing known: {:?} matches unknown {:?}",
            known_trace, trace
        );
        for (p, kp) in trace.iter().zip(known_trace) {
            assert_eq!(*p, kp);
        }
    }

    #[test]
    fn multiscale_sanity() {
        let writer = build_basic_tree();
        let reader = writer.reader();
        let trace = reader.multiscale_knn(&[0.495f32][..], 2).unwrap();
        assert_eq!(
            trace.get(&reader.root_address().0).unwrap()[0],
            (0.495, reader.root_address())
        );
        println!("{:?}", trace);
    }

    #[test]
    fn knn_singletons_on() {
        println!("2 nearest neighbors of 0.0 are 0.48 and 0.0");
        let writer = build_basic_tree();
        let reader = writer.reader();
        let zero_nbrs = reader.knn(&[0.1f32][..], 2).unwrap();
        println!("{:?}", zero_nbrs);
        assert!(zero_nbrs[0].1 == 4);
        assert!(zero_nbrs[1].1 == 2);
    }

    #[test]
    fn label_summary() {
        let data = vec![0.499, 0.49, 0.48, -0.49, 0.0];
        let labels = vec![0, 0, 0, 1, 1];

        let point_cloud = DefaultLabeledCloud::<L2>::new_simple(data, 1, labels);
        let builder = CoverTreeBuilder {
            scale_base: 2.0,
            leaf_cutoff: 1,
            min_res_index: -9,
            use_singletons: false,
            partition_type: PartitionType::Nearest,
            verbosity: 0,
        };
        let mut tree = builder.build(Arc::new(point_cloud)).unwrap();
        tree.generate_summaries();
        let reader = tree.reader();

        for (_, layer) in reader.layers() {
            layer.for_each_node(|_, n| println!("{:?}", n.label_summary()));
        }

        let l = reader
            .get_node_label_summary(reader.root_address())
            .unwrap();
        assert_eq!(l.summary.items.len(), 2);
        assert_eq!(l.nones, 0);
        assert_eq!(l.errors, 0);
    }

    #[test]
    fn knn_singletons_off() {
        let data = vec![0.499, 0.49, 0.48, -0.49, 0.0];
        let labels = vec![0, 0, 0, 1, 1];

        let point_cloud = DefaultLabeledCloud::<L2>::new_simple(data, 1, labels);
        let builder = CoverTreeBuilder {
            scale_base: 2.0,
            leaf_cutoff: 1,
            min_res_index: -9,
            use_singletons: false,
            partition_type: PartitionType::Nearest,
            verbosity: 0,
        };
        let tree = builder.build(Arc::new(point_cloud)).unwrap();
        let reader = tree.reader();

        println!("2 nearest neighbors of 0.1 are 0.48 and 0.0");
        let zero_nbrs = reader.knn(&[0.1f32][..], 2).unwrap();
        println!("{:?}", zero_nbrs);
        assert!(zero_nbrs[0].1 == 4);
        assert!(zero_nbrs[1].1 == 2);
    }

    #[test]
    fn test_save_load_tree() {
        let data = vec![0.499, 0.49, 0.48, -0.49, 0.0];
        let labels = vec![0, 0, 0, 1, 1];

        let point_cloud = Arc::new(DefaultLabeledCloud::<L2>::new_simple(data, 1, labels));
        let builder = CoverTreeBuilder {
            scale_base: 2.0,
            leaf_cutoff: 1,
            min_res_index: -9,
            use_singletons: false,
            partition_type: PartitionType::Nearest,
            verbosity: 0,
        };
        let tree = builder.build(Arc::clone(&point_cloud)).unwrap();
        let reader = tree.reader();
        let proto = tree.save();

        assert_eq!(reader.layers.len(), proto.get_layers().len());

        for (layer, proto_layer) in reader.layers.iter().zip(proto.get_layers()) {
            assert_eq!(layer.len(), proto_layer.get_nodes().len());
        }

        let reconstructed_tree_writer =
            CoverTreeWriter::load(&proto, Arc::clone(&point_cloud)).unwrap();
        let reconstructed_tree = reconstructed_tree_writer.reader();

        assert_eq!(reader.layers.len(), reconstructed_tree.layers.len());
        for (layer, reconstructed_layer) in reader.layers.iter().zip(reconstructed_tree.layers) {
            assert_eq!(layer.len(), reconstructed_layer.len());

            layer.for_each_node(|pi, n| {
                reconstructed_layer
                    .get_node_and(*pi, |rn| {
                        assert_eq!(n.address(), rn.address());
                        assert_eq!(n.parent_address(), rn.parent_address());
                        assert_eq!(n.singletons(), rn.singletons());
                    })
                    .unwrap();
            })
        }
    }
}