1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
// Copyright 2015-2016 Brian Smith.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

//! ECDSA Signatures using the P-256 and P-384 curves.

use super::digest_scalar::digest_scalar;
use crate::{
    arithmetic::montgomery::*,
    cpu, digest,
    ec::{
        self,
        suite_b::{ops::*, private_key},
    },
    error,
    io::der,
    limb, pkcs8, rand, sealed, signature,
};
use core;
use untrusted;

/// An ECDSA signing algorithm.
pub struct Algorithm {
    curve: &'static ec::Curve,
    private_scalar_ops: &'static PrivateScalarOps,
    private_key_ops: &'static PrivateKeyOps,
    digest_alg: &'static digest::Algorithm,
    pkcs8_template: &'static pkcs8::Template,
    format_rs:
        for<'a> fn(ops: &'static ScalarOps, r: &Scalar, s: &Scalar, out: &'a mut [u8]) -> usize,
    id: AlgorithmID,
}

#[derive(Debug, Eq, PartialEq)]
enum AlgorithmID {
    ECDSA_P256_SHA256_FIXED_SIGNING,
    ECDSA_P384_SHA384_FIXED_SIGNING,
    ECDSA_P256_SHA256_ASN1_SIGNING,
    ECDSA_P384_SHA384_ASN1_SIGNING,
}

derive_debug_via_id!(Algorithm);

impl PartialEq for Algorithm {
    fn eq(&self, other: &Self) -> bool { self.id == other.id }
}

impl Eq for Algorithm {}

impl sealed::Sealed for Algorithm {}

/// An ECDSA key pair, used for signing.
pub struct KeyPair {
    d: Scalar<R>,
    alg: &'static Algorithm,
    public_key: PublicKey,
}

derive_debug_via_field!(KeyPair, stringify!(EcdsaKeyPair), public_key);

impl KeyPair {
    /// Generates a new key pair and returns the key pair serialized as a
    /// PKCS#8 document.
    ///
    /// The PKCS#8 document will be a v1 `OneAsymmetricKey` with the public key
    /// included in the `ECPrivateKey` structure, as described in
    /// [RFC 5958 Section 2] and [RFC 5915]. The `ECPrivateKey` structure will
    /// not have a `parameters` field so the generated key is compatible with
    /// PKCS#11.
    ///
    /// [RFC 5915]: https://tools.ietf.org/html/rfc5915
    /// [RFC 5958 Section 2]: https://tools.ietf.org/html/rfc5958#section-2
    pub fn generate_pkcs8(
        alg: &'static Algorithm, rng: &rand::SecureRandom,
    ) -> Result<pkcs8::Document, error::Unspecified> {
        let private_key = ec::Seed::generate(alg.curve, rng, cpu::features())?;
        let public_key = private_key.compute_public_key()?;
        Ok(pkcs8::wrap_key(
            &alg.pkcs8_template,
            private_key.bytes_less_safe(),
            public_key.as_ref(),
        ))
    }

    /// Constructs an ECDSA key pair by parsing an unencrypted PKCS#8 v1
    /// id-ecPublicKey `ECPrivateKey` key.
    ///
    /// The input must be in PKCS#8 v1 format. It must contain the public key in
    /// the `ECPrivateKey` structure; `from_pkcs8()` will verify that the public
    /// key and the private key are consistent with each other. The algorithm
    /// identifier must identify the curve by name; it must not use an
    /// "explicit" encoding of the curve. The `parameters` field of the
    /// `ECPrivateKey`, if present, must be the same named curve that is in the
    /// algorithm identifier in the PKCS#8 header.
    pub fn from_pkcs8(
        alg: &'static Algorithm, input: untrusted::Input,
    ) -> Result<Self, error::KeyRejected> {
        let key_pair = ec::suite_b::key_pair_from_pkcs8(
            alg.curve,
            alg.pkcs8_template,
            input,
            cpu::features(),
        )?;
        Ok(Self::new(alg, key_pair))
    }

    /// Constructs an ECDSA key pair directly from the big-endian-encoded
    /// private key and public key bytes.
    ///
    /// This is intended for use by code that deserializes key pairs. It is
    /// recommended to use `RsaPubeyPair::from_pkcs8()` (with a PKCS#8-encoded
    /// key) instead.
    pub fn from_private_key_and_public_key(
        alg: &'static Algorithm, private_key: untrusted::Input, public_key: untrusted::Input,
    ) -> Result<Self, error::KeyRejected> {
        let key_pair =
            ec::suite_b::key_pair_from_bytes(alg.curve, private_key, public_key, cpu::features())?;
        Ok(Self::new(alg, key_pair))
    }

    fn new(alg: &'static Algorithm, key_pair: ec::KeyPair) -> Self {
        let (seed, public_key) = key_pair.split();
        let d = private_key::private_key_as_scalar(alg.private_key_ops, &seed);
        let d = alg
            .private_scalar_ops
            .scalar_ops
            .scalar_product(&d, &alg.private_scalar_ops.oneRR_mod_n);

        Self {
            d,
            alg,
            public_key: PublicKey(public_key),
        }
    }

    /// Returns the signature of the message `msg` using a random nonce
    /// generated by `rng`.
    pub fn sign(
        &self, rng: &rand::SecureRandom, msg: untrusted::Input,
    ) -> Result<signature::Signature, error::Unspecified> {
        // Step 4 (out of order).
        let h = digest::digest(self.alg.digest_alg, msg.as_slice_less_safe());
        self.sign_(rng, h)
    }

    /// Returns the signature of message digest `h` using a "random" nonce
    /// generated by `rng`.
    fn sign_(
        &self, rng: &rand::SecureRandom, h: digest::Digest,
    ) -> Result<signature::Signature, error::Unspecified> {
        // NSA Suite B Implementer's Guide to ECDSA Section 3.4.1: ECDSA
        // Signature Generation.

        // NSA Guide Prerequisites:
        //
        //     Prior to generating an ECDSA signature, the signatory shall
        //     obtain:
        //
        //     1. an authentic copy of the domain parameters,
        //     2. a digital signature key pair (d,Q), either generated by a
        //        method from Appendix A.1, or obtained from a trusted third
        //        party,
        //     3. assurance of the validity of the public key Q (see Appendix
        //        A.3), and
        //     4. assurance that he/she/it actually possesses the associated
        //        private key d (see [SP800-89] Section 6).
        //
        // The domain parameters are hard-coded into the source code.
        // `EcdsaKeyPair::generate_pkcs8()` can be used to meet the second
        // requirement; otherwise, it is up to the user to ensure the key pair
        // was obtained from a trusted private key. The constructors for
        // `EcdsaKeyPair` ensure that #3 and #4 are met subject to the caveats
        // in SP800-89 Section 6.

        let ops = self.alg.private_scalar_ops;
        let scalar_ops = ops.scalar_ops;
        let cops = scalar_ops.common;
        let private_key_ops = self.alg.private_key_ops;

        for _ in 0..100 {
            // XXX: iteration conut?
            // Step 1.
            let k = private_key::random_scalar(self.alg.private_key_ops, rng)?;
            let k_inv = scalar_ops.scalar_inv_to_mont(&k);

            // Step 2.
            let r = private_key_ops.point_mul_base(&k);

            // Step 3.
            let r = {
                let (x, _) = private_key::affine_from_jacobian(private_key_ops, &r)?;
                let x = cops.elem_unencoded(&x);
                elem_reduced_to_scalar(cops, &x)
            };
            if cops.is_zero(&r) {
                continue;
            }

            // Step 4 is done by the caller.

            // Step 5.
            let e = digest_scalar(scalar_ops, h);

            // Step 6.
            let s = {
                let dr = scalar_ops.scalar_product(&self.d, &r);
                let e_plus_dr = scalar_sum(cops, &e, &dr);
                scalar_ops.scalar_product(&k_inv, &e_plus_dr)
            };
            if cops.is_zero(&s) {
                continue;
            }

            // Step 7 with encoding.
            return Ok(signature::Signature::new(|sig_bytes| {
                (self.alg.format_rs)(scalar_ops, &r, &s, sig_bytes)
            }));
        }

        Err(error::Unspecified)
    }
}

impl signature::KeyPair for KeyPair {
    type PublicKey = PublicKey;

    fn public_key(&self) -> &Self::PublicKey { &self.public_key }
}

#[derive(Clone, Copy)]
pub struct PublicKey(ec::PublicKey);

derive_debug_self_as_ref_hex_bytes!(PublicKey);

impl AsRef<[u8]> for PublicKey {
    fn as_ref(&self) -> &[u8] { self.0.as_ref() }
}

fn format_rs_fixed<'a>(
    ops: &'static ScalarOps, r: &Scalar, s: &Scalar, out: &'a mut [u8],
) -> usize {
    let scalar_len = ops.scalar_bytes_len();

    let (r_out, rest) = out.split_at_mut(scalar_len);
    limb::big_endian_from_limbs(&r.limbs[..ops.common.num_limbs], r_out);

    let (s_out, _) = rest.split_at_mut(scalar_len);
    limb::big_endian_from_limbs(&s.limbs[..ops.common.num_limbs], s_out);

    2 * scalar_len
}

fn format_rs_asn1<'a>(ops: &'static ScalarOps, r: &Scalar, s: &Scalar, out: &'a mut [u8]) -> usize {
    // This assumes `a` is not zero since neither `r` or `s` is allowed to be
    // zero.
    fn format_integer_tlv(ops: &ScalarOps, a: &Scalar, out: &mut [u8]) -> usize {
        let mut fixed = [0u8; ec::SCALAR_MAX_BYTES + 1];
        let fixed = &mut fixed[..(ops.scalar_bytes_len() + 1)];
        limb::big_endian_from_limbs(&a.limbs[..ops.common.num_limbs], &mut fixed[1..]);

        // Since `a_fixed_out` is an extra byte long, it is guaranteed to start
        // with a zero.
        debug_assert_eq!(fixed[0], 0);

        // There must be at least one non-zero byte since `a` isn't zero.
        let first_index = fixed.iter().position(|b| *b != 0).unwrap();

        // If the first byte has its high bit set, it needs to be prefixed with 0x00.
        let first_index = if fixed[first_index] & 0x80 != 0 {
            first_index - 1
        } else {
            first_index
        };
        let value = &fixed[first_index..];

        out[0] = der::Tag::Integer as u8;

        // Lengths less than 128 are encoded in one byte.
        assert!(value.len() < 128);
        out[1] = value.len() as u8;

        out[2..][..value.len()].copy_from_slice(&value);

        2 + value.len()
    }

    out[0] = der::Tag::Sequence as u8;
    let r_tlv_len = format_integer_tlv(ops, r, &mut out[2..]);
    let s_tlv_len = format_integer_tlv(ops, s, &mut out[2..][r_tlv_len..]);

    // Lengths less than 128 are encoded in one byte.
    let value_len = r_tlv_len + s_tlv_len;
    assert!(value_len < 128);
    out[1] = value_len as u8;

    2 + value_len
}

/// Signing of fixed-length (PKCS#11 style) ECDSA signatures using the
/// P-256 curve and SHA-256.
///
/// See "`ECDSA_*_FIXED` Details" in `ring::signature`'s module-level
/// documentation for more details.
pub static ECDSA_P256_SHA256_FIXED_SIGNING: Algorithm = Algorithm {
    curve: &ec::suite_b::curve::P256,
    private_scalar_ops: &p256::PRIVATE_SCALAR_OPS,
    private_key_ops: &p256::PRIVATE_KEY_OPS,
    digest_alg: &digest::SHA256,
    pkcs8_template: &EC_PUBLIC_KEY_P256_PKCS8_V1_TEMPLATE,
    format_rs: format_rs_fixed,
    id: AlgorithmID::ECDSA_P256_SHA256_FIXED_SIGNING,
};

/// Signing of fixed-length (PKCS#11 style) ECDSA signatures using the
/// P-384 curve and SHA-384.
///
/// See "`ECDSA_*_FIXED` Details" in `ring::signature`'s module-level
/// documentation for more details.
pub static ECDSA_P384_SHA384_FIXED_SIGNING: Algorithm = Algorithm {
    curve: &ec::suite_b::curve::P384,
    private_scalar_ops: &p384::PRIVATE_SCALAR_OPS,
    private_key_ops: &p384::PRIVATE_KEY_OPS,
    digest_alg: &digest::SHA384,
    pkcs8_template: &EC_PUBLIC_KEY_P384_PKCS8_V1_TEMPLATE,
    format_rs: format_rs_fixed,
    id: AlgorithmID::ECDSA_P384_SHA384_FIXED_SIGNING,
};

/// Signing of ASN.1 DER-encoded ECDSA signatures using the P-256 curve and
/// SHA-256.
///
/// See "`ECDSA_*_ASN1` Details" in `ring::signature`'s module-level
/// documentation for more details.
pub static ECDSA_P256_SHA256_ASN1_SIGNING: Algorithm = Algorithm {
    curve: &ec::suite_b::curve::P256,
    private_scalar_ops: &p256::PRIVATE_SCALAR_OPS,
    private_key_ops: &p256::PRIVATE_KEY_OPS,
    digest_alg: &digest::SHA256,
    pkcs8_template: &EC_PUBLIC_KEY_P256_PKCS8_V1_TEMPLATE,
    format_rs: format_rs_asn1,
    id: AlgorithmID::ECDSA_P256_SHA256_ASN1_SIGNING,
};

/// Signing of ASN.1 DER-encoded ECDSA signatures using the P-384 curve and
/// SHA-384.
///
/// See "`ECDSA_*_ASN1` Details" in `ring::signature`'s module-level
/// documentation for more details.
pub static ECDSA_P384_SHA384_ASN1_SIGNING: Algorithm = Algorithm {
    curve: &ec::suite_b::curve::P384,
    private_scalar_ops: &p384::PRIVATE_SCALAR_OPS,
    private_key_ops: &p384::PRIVATE_KEY_OPS,
    digest_alg: &digest::SHA384,
    pkcs8_template: &EC_PUBLIC_KEY_P384_PKCS8_V1_TEMPLATE,
    format_rs: format_rs_asn1,
    id: AlgorithmID::ECDSA_P384_SHA384_ASN1_SIGNING,
};

static EC_PUBLIC_KEY_P256_PKCS8_V1_TEMPLATE: pkcs8::Template = pkcs8::Template {
    bytes: include_bytes!("ecPublicKey_p256_pkcs8_v1_template.der"),
    alg_id_range: core::ops::Range { start: 8, end: 27 },
    curve_id_index: 9,
    private_key_index: 0x24,
};

static EC_PUBLIC_KEY_P384_PKCS8_V1_TEMPLATE: pkcs8::Template = pkcs8::Template {
    bytes: include_bytes!("ecPublicKey_p384_pkcs8_v1_template.der"),
    alg_id_range: core::ops::Range { start: 8, end: 24 },
    curve_id_index: 9,
    private_key_index: 0x23,
};

#[cfg(test)]
mod tests {
    use crate::{signature, test};
    use untrusted;

    #[test]
    fn signature_ecdsa_sign_fixed_test() {
        test::run(
            test_file!("ecdsa_sign_fixed_tests.txt"),
            |section, test_case| {
                assert_eq!(section, "");

                let curve_name = test_case.consume_string("Curve");
                let digest_name = test_case.consume_string("Digest");

                let msg = test_case.consume_bytes("Msg");
                let msg = untrusted::Input::from(&msg);

                let d = test_case.consume_bytes("d");
                let d = untrusted::Input::from(&d);

                let q = test_case.consume_bytes("Q");
                let q = untrusted::Input::from(&q);

                let k = test_case.consume_bytes("k");

                let expected_result = test_case.consume_bytes("Sig");

                let alg = match (curve_name.as_str(), digest_name.as_str()) {
                    ("P-256", "SHA256") => &signature::ECDSA_P256_SHA256_FIXED_SIGNING,
                    ("P-384", "SHA384") => &signature::ECDSA_P384_SHA384_FIXED_SIGNING,
                    _ => {
                        panic!("Unsupported curve+digest: {}+{}", curve_name, digest_name);
                    },
                };

                let private_key =
                    signature::EcdsaKeyPair::from_private_key_and_public_key(alg, d, q).unwrap();
                let rng = test::rand::FixedSliceRandom { bytes: &k };

                let actual_result = private_key.sign(&rng, msg).unwrap();

                assert_eq!(actual_result.as_ref(), &expected_result[..]);

                Ok(())
            },
        );
    }

    #[test]
    fn signature_ecdsa_sign_asn1_test() {
        test::run(
            test_file!("ecdsa_sign_asn1_tests.txt"),
            |section, test_case| {
                assert_eq!(section, "");

                let curve_name = test_case.consume_string("Curve");
                let digest_name = test_case.consume_string("Digest");

                let msg = test_case.consume_bytes("Msg");
                let msg = untrusted::Input::from(&msg);

                let d = test_case.consume_bytes("d");
                let d = untrusted::Input::from(&d);

                let q = test_case.consume_bytes("Q");
                let q = untrusted::Input::from(&q);

                let k = test_case.consume_bytes("k");

                let expected_result = test_case.consume_bytes("Sig");

                let alg = match (curve_name.as_str(), digest_name.as_str()) {
                    ("P-256", "SHA256") => &signature::ECDSA_P256_SHA256_ASN1_SIGNING,
                    ("P-384", "SHA384") => &signature::ECDSA_P384_SHA384_ASN1_SIGNING,
                    _ => {
                        panic!("Unsupported curve+digest: {}+{}", curve_name, digest_name);
                    },
                };

                let private_key =
                    signature::EcdsaKeyPair::from_private_key_and_public_key(alg, d, q).unwrap();
                let rng = test::rand::FixedSliceRandom { bytes: &k };

                let actual_result = private_key.sign(&rng, msg).unwrap();

                assert_eq!(actual_result.as_ref(), &expected_result[..]);

                Ok(())
            },
        );
    }
}