1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
use crate::line_interpolate_point::LineInterpolatePoint;
use crate::{
    Coord, Densify, DensifyHaversine, EuclideanLength, HaversineLength, LineString, LinesIter,
    MultiLineString,
};

/// Segments a LineString into `n` equal length LineStrings as a MultiLineString.
/// `None` will be returned when `n` is equal to 0 or when a point
/// cannot be interpolated on a `Line` segment.
///
///
/// # Examples
/// ```
/// use geo::{LineString, MultiLineString, LineStringSegmentize};
/// // Create a simple line string
/// let lns: LineString<f64> = vec![[0.0, 0.0], [1.0, 2.0], [3.0, 6.0]].into();
/// // Segment it into n LineStrings inside of a MultiLineString
/// let n = 6;
/// let segmentized = lns.line_segmentize(n).unwrap();
/// // Compare the number of elements
/// assert_eq!(n, segmentized.0.len());
///```
pub trait LineStringSegmentize {
    fn line_segmentize(&self, n: usize) -> Option<MultiLineString>;
}

/// Segments a LineString into `n` equal length LineStrings as a MultiLineString
/// using Haversine distance calculations. Use this over `LineStringSegmentize`
/// when using data from a geographic coordinate system.
/// `None` will be returned when `n` is equal to 0 or when a point
/// cannot be interpolated on a `Line` segment.
///
///
/// # Examples
/// ```
/// use geo::{LineString, MultiLineString, LineStringSegmentizeHaversine};
/// // Create a simple line string
/// let lns: LineString<f64> = vec![[0.0, 0.0], [1.0, 2.0], [3.0, 6.0]].into();
/// // Segment it into n LineStrings inside of a MultiLineString
/// let n = 6;
/// let segmentized = lns.line_segmentize_haversine(n).unwrap();
/// // Compare the number of elements
/// assert_eq!(n, segmentized.0.len());
///```
pub trait LineStringSegmentizeHaversine {
    fn line_segmentize_haversine(&self, n: usize) -> Option<MultiLineString>;
}

macro_rules! implement_segmentize {
    ($trait_name:ident, $method_name:ident, $distance_method:ident, $densify_method:ident) => {
        impl $trait_name for LineString {
            fn $method_name(&self, n: usize) -> Option<MultiLineString> {
                if (n == usize::MIN) || (n == usize::MAX) {
                    return None;
                } else if n == 1 {
                    let mlns = MultiLineString::from(self.clone());
                    return Some(mlns);
                }

                let mut res_coords: Vec<Vec<Coord>> = Vec::with_capacity(n);
                let total_length = self.$distance_method().abs();
                let mut cum_length = 0_f64;
                let segment_prop = (1_f64) / (n as f64);
                let segment_length = total_length * segment_prop;
                let densified = self.$densify_method(segment_length - f64::EPSILON);

                if densified.lines().count() == n {
                    let linestrings = densified
                        .lines()
                        .map(LineString::from)
                        .collect::<Vec<LineString>>();
                    return Some(MultiLineString::new(linestrings));
                }

                let n_lines = densified.lines().count();
                let lns = densified.lines_iter();
                let mut ln_vec: Vec<Coord> = Vec::new();

                for (i, segment) in lns.enumerate() {
                    if i == 0 {
                        ln_vec.push(segment.start)
                    }

                    let length = segment.$distance_method().abs();
                    cum_length += length;

                    if (cum_length >= segment_length) && (i != (n_lines - 1)) {
                        let remainder = cum_length - segment_length;
                        let endpoint =
                            segment.line_interpolate_point((length - remainder) / length)?;

                        ln_vec.push(endpoint.into());
                        let to_push = ln_vec.drain(..);
                        res_coords.push(to_push.collect::<Vec<Coord>>());

                        if i != n_lines {
                            ln_vec.push(endpoint.into());
                        }
                        cum_length = remainder;
                    }
                    ln_vec.push(segment.end);
                }

                res_coords.push(ln_vec);
                let res_lines = res_coords
                    .into_iter()
                    .map(LineString::new)
                    .collect::<Vec<LineString>>();
                Some(MultiLineString::new(res_lines))
            }
        }
    };
}

implement_segmentize!(
    LineStringSegmentize,
    line_segmentize,
    euclidean_length,
    densify
);

implement_segmentize!(
    LineStringSegmentizeHaversine,
    line_segmentize_haversine,
    haversine_length,
    densify_haversine
);

#[cfg(test)]
mod test {
    use approx::RelativeEq;

    use super::*;
    use crate::{EuclideanLength, LineString};

    #[test]
    fn n_elems_bug() {
        // Test for an edge case that seems to fail:
        // https://github.com/georust/geo/issues/1075
        // https://github.com/JosiahParry/rsgeo/issues/28

        let linestring: LineString = vec![
            [324957.69921197, 673670.123131518],
            [324957.873557727, 673680.139281405],
            [324959.863123514, 673686.784106964],
            [324961.852683597, 673693.428933452],
            [324963.822867622, 673698.960855279],
            [324969.636546456, 673709.992098018],
            [324976.718443977, 673722.114520549],
            [324996.443964294, 673742.922904206],
        ]
        .into();
        let segments = linestring.line_segmentize(2).unwrap();
        assert_eq!(segments.0.len(), 2);
        let segments = linestring.line_segmentize(3).unwrap();
        assert_eq!(segments.0.len(), 3);
        let segments = linestring.line_segmentize(4).unwrap();
        assert_eq!(segments.0.len(), 4);

        assert_eq!(segments.euclidean_length(), linestring.euclidean_length());
    }

    #[test]
    fn long_end_segment() {
        let linestring: LineString = vec![
            [325581.792390628, 674398.495901267],
            [325585.576868499, 674400.657039341],
            [325589.966469742, 674401.694493658],
            [325593.750940609, 674403.855638851],
            [325599.389217394, 674404.871546368],
            [325604.422360924, 674407.011146146],
            [325665.309662534, 674424.885671739],
        ]
        .into();

        let segments = linestring.line_segmentize(5).unwrap();
        assert_eq!(segments.0.len(), 5);
        assert_relative_eq!(
            linestring.euclidean_length(),
            segments.euclidean_length(),
            epsilon = f64::EPSILON
        );
    }

    #[test]
    fn two_coords() {
        let linestring: LineString = vec![[0.0, 0.0], [0.0, 1.0]].into();

        let segments = linestring.line_segmentize(5).unwrap();
        assert_eq!(segments.0.len(), 5);
        assert_relative_eq!(
            linestring.euclidean_length(),
            segments.euclidean_length(),
            epsilon = f64::EPSILON
        );
    }

    #[test]
    fn long_middle_segments() {
        let linestring: LineString = vec![
            [325403.816883668, 673966.295402012],
            [325410.280933752, 673942.805501254],
            [325410.280933752, 673942.805501254],
            [325439.782082601, 673951.201057316],
            [325439.782082601, 673951.201057316],
            [325446.064640793, 673953.318876004],
            [325446.064640793, 673953.318876004],
            [325466.14184472, 673958.537886844],
            [325466.14184472, 673958.537886844],
            [325471.799973648, 673960.666539074],
            [325471.799973648, 673960.666539074],
            [325518.255916084, 673974.335722824],
            [325518.255916084, 673974.335722824],
            [325517.669972133, 673976.572326305],
            [325517.669972133, 673976.572326305],
            [325517.084028835, 673978.808929878],
            [325517.084028835, 673978.808929878],
            [325515.306972763, 673984.405833764],
            [325515.306972763, 673984.405833764],
            [325513.549152184, 673991.115645844],
            [325513.549152184, 673991.115645844],
            [325511.772106396, 673996.712551354],
        ]
        .into();

        let segments = linestring.line_segmentize(5).unwrap();
        assert_eq!(segments.0.len(), 5);

        assert_relative_eq!(
            linestring.euclidean_length(),
            segments.euclidean_length(),
            epsilon = f64::EPSILON
        );
    }

    #[test]
    // that 0 returns None and that usize::MAX returns None
    fn n_is_zero() {
        let linestring: LineString = vec![[-1.0, 0.0], [0.5, 1.0], [1.0, 2.0]].into();
        let segments = linestring.line_segmentize(0);
        assert!(segments.is_none())
    }

    #[test]
    fn n_is_max() {
        let linestring: LineString = vec![[-1.0, 0.0], [0.5, 1.0], [1.0, 2.0]].into();
        let segments = linestring.line_segmentize(usize::MAX);
        assert!(segments.is_none())
    }

    #[test]
    fn n_greater_than_lines() {
        let linestring: LineString = vec![[-1.0, 0.0], [0.5, 1.0], [1.0, 2.0]].into();
        let segments = linestring.line_segmentize(5).unwrap();

        // assert that there are n linestring segments
        assert_eq!(segments.0.len(), 5);

        // assert that the lines are equal length
        let lens = segments
            .into_iter()
            .map(|x| x.euclidean_length())
            .collect::<Vec<f64>>();

        let first = lens[0];

        assert!(lens
            .iter()
            .all(|x| first.relative_eq(x, f64::EPSILON, 1e-10)))
    }

    #[test]
    // test the cumulative length is the same
    fn cumul_length() {
        let linestring: LineString = vec![[0.0, 0.0], [1.0, 1.0], [1.0, 2.0], [3.0, 3.0]].into();
        let segments = linestring.line_segmentize(2).unwrap();

        assert_relative_eq!(
            linestring.euclidean_length(),
            segments.euclidean_length(),
            epsilon = f64::EPSILON
        )
    }

    #[test]
    fn n_elems() {
        let linestring: LineString = vec![[0.0, 0.0], [1.0, 1.0], [1.0, 2.0], [3.0, 3.0]].into();
        let segments = linestring.line_segmentize(2).unwrap();
        assert_eq!(segments.0.len(), 2)
    }

    #[test]
    fn tiny_distances() {
        // this test is to ensure that at super small distances
        // the number of units is still the specified one.
        let linestring: LineString = vec![
            [-3.19416, 55.95524],
            [-3.19352, 55.95535],
            [-3.19288, 55.95546],
        ]
        .into();

        let n = 8;
        let segments = linestring.line_segmentize(n).unwrap();
        assert_eq!(segments.0.len(), n)
    }

    #[test]
    fn haversine_n_elems() {
        let linestring: LineString = vec![
            [-3.19416, 55.95524],
            [-3.19352, 55.95535],
            [-3.19288, 55.95546],
        ]
        .into();

        let n = 8;

        let segments = linestring.line_segmentize_haversine(n).unwrap();
        assert_eq!(n, segments.0.len());
    }

    #[test]
    fn haversine_segment_length() {
        let linestring: LineString = vec![
            [-3.19416, 55.95524],
            [-3.19352, 55.95535],
            [-3.19288, 55.95546],
        ]
        .into();

        let n = 8;

        let segments = linestring.line_segmentize_haversine(n).unwrap();
        let lens = segments
            .0
            .iter()
            .map(|li| li.haversine_length())
            .collect::<Vec<_>>();

        let epsilon = 1e-6; // 6th decimal place which is micrometers
        assert!(lens.iter().all(|&x| (x - lens[0]).abs() < epsilon));
    }

    #[test]
    fn haversine_total_length() {
        let linestring: LineString = vec![
            [-3.19416, 55.95524],
            [-3.19352, 55.95535],
            [-3.19288, 55.95546],
        ]
        .into();

        let n = 8;

        let segments = linestring.line_segmentize_haversine(n).unwrap();

        // different at 12th decimal which is a picometer
        assert_relative_eq!(
            linestring.haversine_length(),
            segments.haversine_length(),
            epsilon = 1e-11
        );
    }
}