1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
use num_traits::{Float, Signed};
use types::{Point, LineString, Polygon, MultiPoint, MultiPolygon};
use algorithm::convexhull::ConvexHull;
use algorithm::orient::{Orient, Direction};
use types::{Extremes, ExtremePoint};

// Useful direction vectors, aligned with x and y axes:
// 1., 0. = largest x
// 0., 1. = largest y
// 0., -1. = smallest y
// -1, 0. = smallest x

// various tests for vector orientation relative to a direction vector u
fn up<T>(u: &Point<T>, v: &Point<T>) -> bool
    where T: Float
{
    u.dot(v) > T::zero()
}

fn direction_sign<T>(u: &Point<T>, vi: &Point<T>, vj: &Point<T>) -> T
    where T: Float
{
    u.dot(&(*vi - *vj))
}

// true if Vi is above Vj
fn above<T>(u: &Point<T>, vi: &Point<T>, vj: &Point<T>) -> bool
    where T: Float
{
    direction_sign(u, vi, vj) > T::zero()
}

// true if Vi is below Vj
fn below<T>(u: &Point<T>, vi: &Point<T>, vj: &Point<T>) -> bool
    where T: Float
{
    direction_sign(u, vi, vj) < T::zero()
}

// used to check the sign of a vec of floats
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
enum ListSign {
    Empty,
    Positive,
    Negative,
    Mixed,
}

// Wrap-around previous-vertex
impl<T> Polygon<T>
    where T: Float
{
    fn previous_vertex(&self, current_vertex: &usize) -> usize
        where T: Float
    {
        (current_vertex + (self.exterior.0.len() - 1) - 1) % (self.exterior.0.len() - 1)
    }
}

// positive implies a -> b -> c is counter-clockwise, negative implies clockwise
fn cross_prod<T>(p_a: &Point<T>, p_b: &Point<T>, p_c: &Point<T>) -> T
    where T: Float
{
    (p_b.x() - p_a.x()) * (p_c.y() - p_a.y()) - (p_b.y() - p_a.y()) * (p_c.x() - p_a.x())
}

// wrapper for extreme-finding function
fn find_extreme_indices<T, F>(func: F, polygon: &Polygon<T>) -> Result<Extremes, ()>
    where T: Float + Signed,
          F: Fn(&Point<T>, &Polygon<T>) -> Result<usize, ()>
{
    // For each consecutive pair of edges of the polygon (each triplet of points),
    // compute the z-component of the cross product of the vectors defined by the
    // edges pointing towards the points in increasing order.
    // Take the cross product of these vectors
    // The polygon is convex if the z-components of the cross products are either
    // all positive or all negative. Otherwise, the polygon is non-convex.
    // see: http://stackoverflow.com/a/1881201/416626
    let convex = polygon
        .exterior
        .0
        .iter()
        .enumerate()
        .map(|(idx, _)| {
            let prev_1 = polygon.previous_vertex(&idx);
            let prev_2 = polygon.previous_vertex(&prev_1);
            cross_prod(&polygon.exterior.0[prev_2],
                       &polygon.exterior.0[prev_1],
                       &polygon.exterior.0[idx])
        })
        // accumulate and check cross-product result signs in a single pass
        // positive implies ccw convexity, negative implies cw convexity
        // anything else implies non-convexity
        .fold(ListSign::Empty, |acc, n| {
            match (acc, n.is_positive()) {
                (ListSign::Empty, true) | (ListSign::Positive, true) => ListSign::Positive,
                (ListSign::Empty, false) | (ListSign::Negative, false) => ListSign::Negative,
                _ => ListSign::Mixed
            }
        });
    if convex == ListSign::Mixed {
        return Err(());
    }
    let directions = vec![Point::new(T::zero(), -T::one()),
                          Point::new(T::one(), T::zero()),
                          Point::new(T::zero(), T::one()),
                          Point::new(-T::one(), T::zero())];
    Ok(directions
           .iter()
           .map(|p| func(&p, &polygon).unwrap())
           .collect::<Vec<usize>>()
           .into())
}

// find a convex, counter-clockwise oriented polygon's maximum vertex in a specified direction
// u: a direction vector. We're using a point to represent this, which is a hack but works fine
fn polymax_naive_indices<T>(u: &Point<T>, poly: &Polygon<T>) -> Result<usize, ()>
    where T: Float
{
    let vertices = &poly.exterior.0;
    let mut max: usize = 0;
    for (i, _) in vertices.iter().enumerate() {
        // if vertices[i] is above prior vertices[max]
        if above(u, &vertices[i], &vertices[max]) {
            max = i;
        }
    }
    return Ok(max);
}

pub trait ExtremeIndices<T: Float + Signed> {
    /// Find the extreme `x` and `y` indices of a convex Polygon
    ///
    /// The polygon **must be convex and properly (ccw) oriented**.
    ///
    /// ```
    /// use geo::{Point, LineString, Polygon};
    /// use geo::extremes::ExtremeIndices;
    /// // a diamond shape
    /// let points_raw = vec![(1.0, 0.0), (2.0, 1.0), (1.0, 2.0), (0.0, 1.0), (1.0, 0.0)];
    /// let points = points_raw.iter().map(|e| Point::new(e.0, e.1)).collect::<Vec<_>>();
    /// let poly = Polygon::new(LineString(points), vec![]);
    /// // Polygon is both convex and oriented counter-clockwise
    /// let extremes = poly.extreme_indices().unwrap();
    /// assert_eq!(extremes.ymin, 0);
    /// assert_eq!(extremes.xmax, 1);
    /// assert_eq!(extremes.ymax, 2);
    /// assert_eq!(extremes.xmin, 3);
    /// ```
    fn extreme_indices(&self) -> Result<Extremes, ()>;
}

impl<T> ExtremeIndices<T> for Polygon<T>
    where T: Float + Signed
{
    fn extreme_indices(&self) -> Result<Extremes, ()> {
        find_extreme_indices(polymax_naive_indices, self)
    }
}

impl<T> ExtremeIndices<T> for MultiPolygon<T>
    where T: Float + Signed
{
    fn extreme_indices(&self) -> Result<Extremes, ()> {
        find_extreme_indices(polymax_naive_indices, &self.convex_hull())
    }
}

impl<T> ExtremeIndices<T> for MultiPoint<T>
    where T: Float + Signed
{
    fn extreme_indices(&self) -> Result<Extremes, ()> {
        find_extreme_indices(polymax_naive_indices, &self.convex_hull())
    }
}

pub trait ExtremePoints<T: Float> {
    /// Find the extreme `x` and `y` points of a Geometry
    ///
    /// This trait is available to any struct implementing both `ConvexHull` amd `ExtremeIndices`
    ///
    /// ```
    /// use geo::{Point, LineString, Polygon};
    /// use geo::extremes::ExtremePoints;
    /// let points_raw = vec![(1.0, 0.0), (2.0, 1.0), (1.0, 2.0), (0.0, 1.0), (1.0, 0.0)];
    /// let points = points_raw
    ///     .iter()
    ///     .map(|e| Point::new(e.0, e.1))
    ///     .collect::<Vec<_>>();
    /// let poly1 = Polygon::new(LineString(points), vec![]);
    /// let extremes = poly1.extreme_points();
    /// let correct = Point::new(0.0, 1.0);
    /// assert_eq!(extremes.xmin, correct);
    /// ```
    fn extreme_points(&self) -> ExtremePoint<T>;
}

impl<T, G> ExtremePoints<T> for G
    where T: Float + Signed,
          G: ConvexHull<T> + ExtremeIndices<T>
{
    // Any Geometry implementing `ConvexHull` and `ExtremeIndices` gets this automatically
    fn extreme_points(&self) -> ExtremePoint<T> {
        let ch = self.convex_hull();
        // safe to unwrap, since we're guaranteeing the polygon's convexity
        let indices = ch.extreme_indices().unwrap();
        ExtremePoint {
            ymin: ch.exterior.0[indices.ymin],
            xmax: ch.exterior.0[indices.xmax],
            ymax: ch.exterior.0[indices.ymax],
            xmin: ch.exterior.0[indices.xmin],
        }
    }
}

#[cfg(test)]
mod test {
    use types::Point;
    use super::*;
    #[test]
    fn test_polygon_extreme_x() {
        // a diamond shape
        let points_raw = vec![(1.0, 0.0), (2.0, 1.0), (1.0, 2.0), (0.0, 1.0), (1.0, 0.0)];
        let points = points_raw
            .iter()
            .map(|e| Point::new(e.0, e.1))
            .collect::<Vec<_>>();
        let poly1 = Polygon::new(LineString(points), vec![]);
        let min_x = polymax_naive_indices(&Point::new(-1., 0.), &poly1).unwrap();
        let correct = 3_usize;
        assert_eq!(min_x, correct);
    }
    #[test]
    #[should_panic]
    fn test_extreme_indices_bad_polygon() {
        // non-convex, with a bump on the top-right edge
        let points_raw = vec![(1.0, 0.0),
                              (1.3, 1.),
                              (2.0, 1.0),
                              (1.75, 1.75),
                              (1.0, 2.0),
                              (0.0, 1.0),
                              (1.0, 0.0)];
        let points = points_raw
            .iter()
            .map(|e| Point::new(e.0, e.1))
            .collect::<Vec<_>>();
        let poly1 = Polygon::new(LineString(points), vec![]);
        let extremes = find_extreme_indices(polymax_naive_indices, &poly1).unwrap();
        let correct = Extremes {
            ymin: 0,
            xmax: 1,
            ymax: 3,
            xmin: 4,
        };
        assert_eq!(extremes, correct);
    }
    #[test]
    fn test_extreme_indices_good_polygon() {
        // non-convex, with a bump on the top-right edge
        let points_raw = vec![(1.0, 0.0),
                              (1.3, 1.),
                              (2.0, 1.0),
                              (1.75, 1.75),
                              (1.0, 2.0),
                              (0.0, 1.0),
                              (1.0, 0.0)];
        let points = points_raw
            .iter()
            .map(|e| Point::new(e.0, e.1))
            .collect::<Vec<_>>();
        let poly1 = Polygon::new(LineString(points), vec![]);
        let extremes = find_extreme_indices(polymax_naive_indices, &poly1.convex_hull()).unwrap();
        let correct = Extremes {
            ymin: 0,
            xmax: 1,
            ymax: 3,
            xmin: 4,
        };
        assert_eq!(extremes, correct);
    }
    #[test]
    fn test_polygon_extreme_wrapper_convex() {
        // convex, with a bump on the top-right edge
        let mut points_raw =
            vec![(1.0, 0.0), (2.0, 1.0), (1.75, 1.75), (1.0, 2.0), (0.0, 1.0), (1.0, 0.0)];
        let points = points_raw
            .iter()
            .map(|e| Point::new(e.0, e.1))
            .collect::<Vec<_>>();
        let poly1 = Polygon::new(LineString(points), vec![]);
        let extremes = find_extreme_indices(polymax_naive_indices, &poly1.convex_hull()).unwrap();
        let correct = Extremes {
            ymin: 0,
            xmax: 1,
            ymax: 3,
            xmin: 4,
        };
        assert_eq!(extremes, correct);
    }
    #[test]
    fn test_polygon_extreme_point_x() {
        // a diamond shape
        let points_raw = vec![(1.0, 0.0), (2.0, 1.0), (1.0, 2.0), (0.0, 1.0), (1.0, 0.0)];
        let points = points_raw
            .iter()
            .map(|e| Point::new(e.0, e.1))
            .collect::<Vec<_>>();
        let poly1 = Polygon::new(LineString(points), vec![]);
        let extremes = poly1.extreme_points();
        let correct = Point::new(0.0, 1.0);
        assert_eq!(extremes.xmin, correct);
    }
}