1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
use crate::gene::Gene;
use crate::utils;
use rand::prelude::*;

pub struct DNA {
    // The pool size, number of genes
    pub pool_size: u16,
    // The amount of marker each gene has, each marker is f32
    pub gene_size: u16,
    // The genes for this DNA sequence
    pub genes: Vec<Gene>,
}

impl DNA {
    /// Constructs a new `DNA`.
    ///
    /// # Examples
    ///
    /// ```
    /// use genome::DNA;
    ///
    /// let dna = DNA::new(2, 2);
    /// ```
    pub fn new(pool_size: u16, gene_size: u16) -> DNA {
        DNA {
            pool_size: pool_size,
            gene_size: gene_size,
            genes: (0..pool_size).map(|_| Gene::new(gene_size)).collect(),
        }
    }
    /// Check if current DNA string is valid.
    ///
    /// # Examples
    ///
    /// ```
    /// use genome::DNA;
    /// let dna = DNA::new(2, 2);
    ///
    /// let is_valid = DNA::is_valid(dna.to_string());
    /// ```
    pub fn is_valid(dna_str: String) -> bool {
        let pool_size_hex = &dna_str[0..8];
        let dna = DNA::from(dna_str.clone());
        if dna.get_sum() == utils::f32_from_str(pool_size_hex) {
            return true;
        }
        return false;
    }
    /// Merge two `DNA` into one
    ///
    /// # Examples
    ///
    /// ```
    /// use genome::DNA;
    ///
    /// let dna1 = DNA::new(2, 2);
    /// let dna2 = DNA::new(2, 2);
    ///
    /// let merged = DNA::merge(dna1, dna2, false);
    /// ```
    pub fn merge(left_dna: DNA, right_dna: DNA, mutate: bool) -> Option<DNA> {
        let mut ration_rng = thread_rng();
        let mut mutate_rng = thread_rng();
        match (left_dna.pool_size == right_dna.pool_size)
            && (left_dna.gene_size == right_dna.gene_size)
        {
            true => Some(DNA {
                pool_size: left_dna.pool_size,
                gene_size: left_dna.gene_size,
                genes: (0..left_dna.pool_size)
                    .map(|i| {
                        if ration_rng.gen::<f32>() >= 0.5 {
                            left_dna.genes[i as usize].to_string()
                        } else {
                            right_dna.genes[i as usize].to_string()
                        }
                    })
                    .map(|g| {
                        let mut gene = Gene::from(g);
                        if mutate && mutate_rng.gen::<f32>() >= 0.9 {
                            gene.mutate();
                        }
                        gene
                    })
                    .collect(),
            }),
            false => None,
        }
    }
    /// Compare two `DNA` similarity, return the percentage of same genes
    ///
    /// # Examples
    ///
    /// ```
    /// use genome::DNA;
    ///
    /// let dna1 = DNA::new(256, 2);
    /// let dna_str = dna1.to_string();
    /// let dna2 = DNA::new(256, 2);
    ///
    /// let merged = DNA::merge(dna1, dna2, false).unwrap();
    ///
    /// let is_parent = DNA::compare(DNA::from(dna_str), merged) > 0.3;
    /// ```
    pub fn compare(left_dna: DNA, right_dna: DNA) -> f64 {
        let mut same_markers = 0;
        if left_dna.pool_size != right_dna.pool_size {
            return 0 as f64;
        }
        (0..left_dna.pool_size).for_each(|i| {
            if left_dna.genes[i as usize].to_string() == right_dna.genes[i as usize].to_string() {
                same_markers = same_markers + 1;
            }
        });
        same_markers as f64 / left_dna.pool_size as f64
    }
    /// Convert DNA to GAN latent vector
    ///
    /// # Examples
    ///
    /// ```
    /// use genome::DNA;
    ///
    /// let dna1 = DNA::new(2, 2);
    ///
    /// let latent = dna1.to_latent_vec();
    /// ```
    pub fn to_latent_vec(&self) -> Vec<f32> {
        self.genes
            .iter()
            .map(|g| g.markers.iter().map(|m| m.value).collect::<Vec<f32>>())
            .collect::<Vec<Vec<f32>>>()
            .concat()
    }
    /// Convert DNA to string
    ///
    /// # Examples
    ///
    /// ```
    /// use genome::DNA;
    ///
    /// let dna1 = DNA::new(2, 2);
    ///
    /// let dna1_str = dna1.to_string();
    /// ```
    pub fn to_string(&self) -> String {
        let pool_size_hex: String = utils::u16_to_string(self.pool_size);
        let gene_size_hex: String = utils::u16_to_string(self.gene_size);
        let check_sum: String = utils::f32_to_string(self.get_sum());

        format!(
            "{}{}{}{}",
            check_sum,
            pool_size_hex,
            gene_size_hex,
            self.genes.iter().map(|m| m.to_string()).collect::<String>()
        )
    }
    /// Get checksum for the dna, return back f32 sum of all genes.
    ///
    /// # Examples
    ///
    /// ```
    /// use genome::DNA;
    ///
    /// let dna1 = DNA::new(2, 2);
    ///
    /// let dna1_str = dna1.get_sum();
    /// ```
    pub fn get_sum(&self) -> f32 {
        self.genes.iter().map(|g| g.get_sum()).sum()
    }
}

/// Convert DNA to string
///
/// # Examples
///
/// ```
/// use genome::DNA;
///
/// let dna1 = DNA::new(2, 2);
///
/// let dna1_str = String::from(dna1);
/// ```
impl std::convert::From<DNA> for String {
    fn from(dna: DNA) -> String {
        let pool_size_hex: String = utils::u16_to_string(dna.pool_size);
        let gene_size_hex: String = utils::u16_to_string(dna.gene_size);
        let check_sum: String = utils::f32_to_string(dna.get_sum());

        format!(
            "{}{}{}{}",
            check_sum,
            pool_size_hex,
            gene_size_hex,
            dna.genes.iter().map(|m| m.to_string()).collect::<String>()
        )
    }
}

/// Convert DNA to string
///
/// # Examples
///
/// ```
/// use genome::DNA;
///
/// let dna1 = DNA::new(2, 2);
/// let dna1_str = dna1.to_string();
///
/// let dna_copy = DNA::from(dna1_str);
/// ```
impl std::convert::From<String> for DNA {
    fn from(dna: String) -> DNA {
        // Ignore the first 8 char for checksum
        let pool_size_hex = &dna[8..12];
        let gene_size_hex = &dna[12..16];
        let genes_hex = &dna[16..];

        let gene_size = utils::u16_from_str(gene_size_hex);

        let genes = utils::partition_str(genes_hex, 8 * (gene_size + 1) as usize)
            .iter()
            .map(|s| String::from(*s))
            .collect::<Vec<String>>();

        DNA {
            pool_size: utils::u16_from_str(pool_size_hex),
            gene_size,
            genes: genes.iter().map(|g| Gene::from(g.clone())).collect(),
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    #[test]
    fn can_be_converted_and_back() {
        let dna = DNA::new(4, 2);
        let dna2 = DNA::from(dna.to_string());
        assert_eq!(dna.gene_size, dna2.gene_size);
        assert_eq!(dna.pool_size, dna2.pool_size);
        assert_eq!(dna.genes.len(), dna2.genes.len());
        assert_eq!(dna.to_string(), dna2.to_string());
    }
    #[test]
    fn can_be_merged() {
        let dna1 = DNA::new(2, 2);
        let dna2 = DNA::new(2, 2);
        match DNA::merge(dna1, dna2, false) {
            Some(_) => assert!(true),
            None => assert!(false),
        };
    }
    #[test]
    fn cannot_be_merged() {
        let dna1 = DNA::new(2, 2);
        let dna2 = DNA::new(3, 2);
        match DNA::merge(dna1, dna2, false) {
            Some(_) => assert!(false),
            None => assert!(true),
        };
    }
    #[test]
    fn check_merged_gene_ratio() {
        let dna1 = DNA::new(512, 4);
        let dna2 = DNA::new(512, 4);
        let dna1str = dna1.to_string();
        let dna2str = dna2.to_string();
        let child = DNA::merge(dna1, dna2, false).unwrap();
        let child_str = child.to_string();
        let parent1_ratio = DNA::compare(DNA::from(child_str.clone()), DNA::from(dna1str));
        let parent2_ratio = DNA::compare(DNA::from(child_str), DNA::from(dna2str));
        assert!(parent1_ratio != 0 as f64);
        assert!(parent2_ratio != 0 as f64);
        assert!(parent1_ratio + parent2_ratio == 1 as f64);
    }
}