1.0.0[][src]Trait geng::prelude::Add

#[lang = "add"]pub trait Add<Rhs = Self> {
    type Output;
#[must_use]    fn add(self, rhs: Rhs) -> Self::Output;
}

The addition operator +.

Note that Rhs is Self by default, but this is not mandatory. For example, std::time::SystemTime implements Add<Duration>, which permits operations of the form SystemTime = SystemTime + Duration.

Examples

Addable points

use std::ops::Add;

#[derive(Debug, Copy, Clone, PartialEq)]
struct Point {
    x: i32,
    y: i32,
}

impl Add for Point {
    type Output = Self;

    fn add(self, other: Self) -> Self {
        Self {
            x: self.x + other.x,
            y: self.y + other.y,
        }
    }
}

assert_eq!(Point { x: 1, y: 0 } + Point { x: 2, y: 3 },
           Point { x: 3, y: 3 });

Implementing Add with generics

Here is an example of the same Point struct implementing the Add trait using generics.

use std::ops::Add;

#[derive(Debug, Copy, Clone, PartialEq)]
struct Point<T> {
    x: T,
    y: T,
}

// Notice that the implementation uses the associated type `Output`.
impl<T: Add<Output = T>> Add for Point<T> {
    type Output = Self;

    fn add(self, other: Self) -> Self::Output {
        Self {
            x: self.x + other.x,
            y: self.y + other.y,
        }
    }
}

assert_eq!(Point { x: 1, y: 0 } + Point { x: 2, y: 3 },
           Point { x: 3, y: 3 });

Associated Types

type Output

The resulting type after applying the + operator.

Loading content...

Required methods

#[must_use]fn add(self, rhs: Rhs) -> Self::Output

Performs the + operation.

Example

assert_eq!(12 + 1, 13);
Loading content...

Implementations on Foreign Types

impl Add<Duration> for SystemTime[src]

type Output = SystemTime

pub fn add(self, dur: Duration) -> SystemTime[src]

Panics

This function may panic if the resulting point in time cannot be represented by the underlying data structure. See SystemTime::checked_add for a version without panic.

impl Add<Duration> for Instant[src]

type Output = Instant

pub fn add(self, other: Duration) -> Instant[src]

Panics

This function may panic if the resulting point in time cannot be represented by the underlying data structure. See Instant::checked_add for a version without panic.

impl<'a> Add<u32> for &'a u32[src]

type Output = <u32 as Add<u32>>::Output

impl<'_> Add<&'_ f32> for f32[src]

type Output = <f32 as Add<f32>>::Output

impl<'a> Add<Wrapping<usize>> for &'a Wrapping<usize>[src]

type Output = <Wrapping<usize> as Add<Wrapping<usize>>>::Output

impl<'_, '_> Add<&'_ usize> for &'_ usize[src]

type Output = <usize as Add<usize>>::Output

impl<'a> Add<usize> for &'a usize[src]

type Output = <usize as Add<usize>>::Output

impl Add<u32> for u32[src]

type Output = u32

impl<'a> Add<u16> for &'a u16[src]

type Output = <u16 as Add<u16>>::Output

impl Add<i128> for i128[src]

type Output = i128

impl<'_> Add<&'_ f64> for f64[src]

type Output = <f64 as Add<f64>>::Output

impl<'a> Add<isize> for &'a isize[src]

type Output = <isize as Add<isize>>::Output

impl<'a> Add<u8> for &'a u8[src]

type Output = <u8 as Add<u8>>::Output

impl<'_, '_> Add<&'_ Wrapping<u16>> for &'_ Wrapping<u16>[src]

type Output = <Wrapping<u16> as Add<Wrapping<u16>>>::Output

impl<'a> Add<Wrapping<u8>> for &'a Wrapping<u8>[src]

type Output = <Wrapping<u8> as Add<Wrapping<u8>>>::Output

impl<'_, '_> Add<&'_ Wrapping<i16>> for &'_ Wrapping<i16>[src]

type Output = <Wrapping<i16> as Add<Wrapping<i16>>>::Output

impl<'_> Add<&'_ Wrapping<i16>> for Wrapping<i16>[src]

type Output = <Wrapping<i16> as Add<Wrapping<i16>>>::Output

impl<'a> Add<Wrapping<isize>> for &'a Wrapping<isize>[src]

type Output = <Wrapping<isize> as Add<Wrapping<isize>>>::Output

impl<'_> Add<&'_ u16> for u16[src]

type Output = <u16 as Add<u16>>::Output

impl Add<i16> for i16[src]

type Output = i16

impl Add<Wrapping<i64>> for Wrapping<i64>[src]

type Output = Wrapping<i64>

impl<'_, '_> Add<&'_ Wrapping<i8>> for &'_ Wrapping<i8>[src]

type Output = <Wrapping<i8> as Add<Wrapping<i8>>>::Output

impl<'_, '_> Add<&'_ i8> for &'_ i8[src]

type Output = <i8 as Add<i8>>::Output

impl Add<i64> for i64[src]

type Output = i64

impl<'_> Add<&'_ usize> for usize[src]

type Output = <usize as Add<usize>>::Output

impl<'_> Add<&'_ Wrapping<u16>> for Wrapping<u16>[src]

type Output = <Wrapping<u16> as Add<Wrapping<u16>>>::Output

impl Add<Wrapping<usize>> for Wrapping<usize>[src]

type Output = Wrapping<usize>

impl<'a> Add<Wrapping<i128>> for &'a Wrapping<i128>[src]

type Output = <Wrapping<i128> as Add<Wrapping<i128>>>::Output

impl<'_> Add<&'_ isize> for isize[src]

type Output = <isize as Add<isize>>::Output

impl<'_, '_> Add<&'_ i16> for &'_ i16[src]

type Output = <i16 as Add<i16>>::Output

impl<'_> Add<&'_ Wrapping<u64>> for Wrapping<u64>[src]

type Output = <Wrapping<u64> as Add<Wrapping<u64>>>::Output

impl<'a> Add<i32> for &'a i32[src]

type Output = <i32 as Add<i32>>::Output

impl<'_> Add<&'_ u8> for u8[src]

type Output = <u8 as Add<u8>>::Output

impl<'a> Add<u64> for &'a u64[src]

type Output = <u64 as Add<u64>>::Output

impl Add<usize> for usize[src]

type Output = usize

impl<'_> Add<&'_ Wrapping<isize>> for Wrapping<isize>[src]

type Output = <Wrapping<isize> as Add<Wrapping<isize>>>::Output

impl<'_> Add<&'_ u128> for u128[src]

type Output = <u128 as Add<u128>>::Output

impl<'_, '_> Add<&'_ Wrapping<u32>> for &'_ Wrapping<u32>[src]

type Output = <Wrapping<u32> as Add<Wrapping<u32>>>::Output

impl Add<Wrapping<isize>> for Wrapping<isize>[src]

type Output = Wrapping<isize>

impl Add<isize> for isize[src]

type Output = isize

impl<'_> Add<&'_ Wrapping<u32>> for Wrapping<u32>[src]

type Output = <Wrapping<u32> as Add<Wrapping<u32>>>::Output

impl Add<u128> for u128[src]

type Output = u128

impl Add<f32> for f32[src]

type Output = f32

impl<'_, '_> Add<&'_ Wrapping<u8>> for &'_ Wrapping<u8>[src]

type Output = <Wrapping<u8> as Add<Wrapping<u8>>>::Output

impl<'a> Add<Wrapping<i64>> for &'a Wrapping<i64>[src]

type Output = <Wrapping<i64> as Add<Wrapping<i64>>>::Output

impl<'a> Add<f64> for &'a f64[src]

type Output = <f64 as Add<f64>>::Output

impl Add<Wrapping<u8>> for Wrapping<u8>[src]

type Output = Wrapping<u8>

impl<'_, '_> Add<&'_ Wrapping<i32>> for &'_ Wrapping<i32>[src]

type Output = <Wrapping<i32> as Add<Wrapping<i32>>>::Output

impl Add<u16> for u16[src]

type Output = u16

impl Add<Wrapping<u16>> for Wrapping<u16>[src]

type Output = Wrapping<u16>

impl<'_> Add<&'_ Wrapping<i8>> for Wrapping<i8>[src]

type Output = <Wrapping<i8> as Add<Wrapping<i8>>>::Output

impl<'_, '_> Add<&'_ Wrapping<i128>> for &'_ Wrapping<i128>[src]

type Output = <Wrapping<i128> as Add<Wrapping<i128>>>::Output

impl<'a> Add<i64> for &'a i64[src]

type Output = <i64 as Add<i64>>::Output

impl<'a> Add<i16> for &'a i16[src]

type Output = <i16 as Add<i16>>::Output

impl<'_> Add<&'_ Wrapping<i64>> for Wrapping<i64>[src]

type Output = <Wrapping<i64> as Add<Wrapping<i64>>>::Output

impl Add<i8> for i8[src]

type Output = i8

impl<'_, '_> Add<&'_ Wrapping<usize>> for &'_ Wrapping<usize>[src]

type Output = <Wrapping<usize> as Add<Wrapping<usize>>>::Output

impl<'_> Add<&'_ i128> for i128[src]

type Output = <i128 as Add<i128>>::Output

impl<'a> Add<Wrapping<u64>> for &'a Wrapping<u64>[src]

type Output = <Wrapping<u64> as Add<Wrapping<u64>>>::Output

impl<'_> Add<&'_ Wrapping<u128>> for Wrapping<u128>[src]

type Output = <Wrapping<u128> as Add<Wrapping<u128>>>::Output

impl<'a> Add<Wrapping<i8>> for &'a Wrapping<i8>[src]

type Output = <Wrapping<i8> as Add<Wrapping<i8>>>::Output

impl<'a> Add<Wrapping<i32>> for &'a Wrapping<i32>[src]

type Output = <Wrapping<i32> as Add<Wrapping<i32>>>::Output

impl<'_> Add<&'_ u32> for u32[src]

type Output = <u32 as Add<u32>>::Output

impl<'a> Add<i8> for &'a i8[src]

type Output = <i8 as Add<i8>>::Output

impl Add<u64> for u64[src]

type Output = u64

impl<'a> Add<Wrapping<u16>> for &'a Wrapping<u16>[src]

type Output = <Wrapping<u16> as Add<Wrapping<u16>>>::Output

impl<'_, '_> Add<&'_ f64> for &'_ f64[src]

type Output = <f64 as Add<f64>>::Output

impl<'a> Add<Wrapping<u32>> for &'a Wrapping<u32>[src]

type Output = <Wrapping<u32> as Add<Wrapping<u32>>>::Output

impl<'_> Add<&'_ Wrapping<u8>> for Wrapping<u8>[src]

type Output = <Wrapping<u8> as Add<Wrapping<u8>>>::Output

impl Add<Wrapping<u128>> for Wrapping<u128>[src]

type Output = Wrapping<u128>

impl<'a> Add<Wrapping<i16>> for &'a Wrapping<i16>[src]

type Output = <Wrapping<i16> as Add<Wrapping<i16>>>::Output

impl<'_, '_> Add<&'_ Wrapping<u64>> for &'_ Wrapping<u64>[src]

type Output = <Wrapping<u64> as Add<Wrapping<u64>>>::Output

impl Add<u8> for u8[src]

type Output = u8

impl Add<Wrapping<u32>> for Wrapping<u32>[src]

type Output = Wrapping<u32>

impl<'a> Add<Wrapping<u128>> for &'a Wrapping<u128>[src]

type Output = <Wrapping<u128> as Add<Wrapping<u128>>>::Output

impl<'_, '_> Add<&'_ u16> for &'_ u16[src]

type Output = <u16 as Add<u16>>::Output

impl<'_, '_> Add<&'_ i32> for &'_ i32[src]

type Output = <i32 as Add<i32>>::Output

impl<'_> Add<&'_ Wrapping<usize>> for Wrapping<usize>[src]

type Output = <Wrapping<usize> as Add<Wrapping<usize>>>::Output

impl Add<Wrapping<i16>> for Wrapping<i16>[src]

type Output = Wrapping<i16>

impl<'_> Add<&'_ i32> for i32[src]

type Output = <i32 as Add<i32>>::Output

impl Add<Wrapping<u64>> for Wrapping<u64>[src]

type Output = Wrapping<u64>

impl<'_, '_> Add<&'_ u32> for &'_ u32[src]

type Output = <u32 as Add<u32>>::Output

impl Add<i32> for i32[src]

type Output = i32

impl<'_> Add<&'_ u64> for u64[src]

type Output = <u64 as Add<u64>>::Output

impl<'a> Add<f32> for &'a f32[src]

type Output = <f32 as Add<f32>>::Output

impl<'a> Add<i128> for &'a i128[src]

type Output = <i128 as Add<i128>>::Output

impl<'a> Add<u128> for &'a u128[src]

type Output = <u128 as Add<u128>>::Output

impl Add<Wrapping<i32>> for Wrapping<i32>[src]

type Output = Wrapping<i32>

impl Add<Duration> for Duration[src]

type Output = Duration

impl Add<Wrapping<i128>> for Wrapping<i128>[src]

type Output = Wrapping<i128>

impl<'_> Add<&'_ i16> for i16[src]

type Output = <i16 as Add<i16>>::Output

impl<'_, '_> Add<&'_ u8> for &'_ u8[src]

type Output = <u8 as Add<u8>>::Output

impl<'_, '_> Add<&'_ f32> for &'_ f32[src]

type Output = <f32 as Add<f32>>::Output

impl<'_, '_> Add<&'_ Wrapping<isize>> for &'_ Wrapping<isize>[src]

type Output = <Wrapping<isize> as Add<Wrapping<isize>>>::Output

impl<'_, '_> Add<&'_ Wrapping<i64>> for &'_ Wrapping<i64>[src]

type Output = <Wrapping<i64> as Add<Wrapping<i64>>>::Output

impl<'_> Add<&'_ Wrapping<i128>> for Wrapping<i128>[src]

type Output = <Wrapping<i128> as Add<Wrapping<i128>>>::Output

impl<'_, '_> Add<&'_ u64> for &'_ u64[src]

type Output = <u64 as Add<u64>>::Output

impl<'_> Add<&'_ i8> for i8[src]

type Output = <i8 as Add<i8>>::Output

impl Add<f64> for f64[src]

type Output = f64

impl<'_, '_> Add<&'_ Wrapping<u128>> for &'_ Wrapping<u128>[src]

type Output = <Wrapping<u128> as Add<Wrapping<u128>>>::Output

impl<'_> Add<&'_ i64> for i64[src]

type Output = <i64 as Add<i64>>::Output

impl<'_> Add<&'_ Wrapping<i32>> for Wrapping<i32>[src]

type Output = <Wrapping<i32> as Add<Wrapping<i32>>>::Output

impl Add<Wrapping<i8>> for Wrapping<i8>[src]

type Output = Wrapping<i8>

impl<'_, '_> Add<&'_ i64> for &'_ i64[src]

type Output = <i64 as Add<i64>>::Output

impl<'_, '_> Add<&'_ isize> for &'_ isize[src]

type Output = <isize as Add<isize>>::Output

impl<'_, '_> Add<&'_ i128> for &'_ i128[src]

type Output = <i128 as Add<i128>>::Output

impl<'_, '_> Add<&'_ u128> for &'_ u128[src]

type Output = <u128 as Add<u128>>::Output

impl<'_> Add<&'_ str> for String[src]

Implements the + operator for concatenating two strings.

This consumes the String on the left-hand side and re-uses its buffer (growing it if necessary). This is done to avoid allocating a new String and copying the entire contents on every operation, which would lead to O(n^2) running time when building an n-byte string by repeated concatenation.

The string on the right-hand side is only borrowed; its contents are copied into the returned String.

Examples

Concatenating two Strings takes the first by value and borrows the second:

let a = String::from("hello");
let b = String::from(" world");
let c = a + &b;
// `a` is moved and can no longer be used here.

If you want to keep using the first String, you can clone it and append to the clone instead:

let a = String::from("hello");
let b = String::from(" world");
let c = a.clone() + &b;
// `a` is still valid here.

Concatenating &str slices can be done by converting the first to a String:

let a = "hello";
let b = " world";
let c = a.to_string() + b;

type Output = String

impl<'a> Add<Cow<'a, str>> for Cow<'a, str>[src]

type Output = Cow<'a, str>

impl<'a> Add<&'a str> for Cow<'a, str>[src]

type Output = Cow<'a, str>

impl Add<FixedOffset> for NaiveTime[src]

type Output = NaiveTime

impl Add<Duration> for NaiveDateTime[src]

An addition of Duration to NaiveDateTime yields another NaiveDateTime.

As a part of Chrono's leap second handling, the addition assumes that there is no leap second ever, except when the NaiveDateTime itself represents a leap second in which case the assumption becomes that there is exactly a single leap second ever.

Panics on underflow or overflow. Use NaiveDateTime::checked_add_signed to detect that.

Example

use chrono::{Duration, NaiveDate};

let from_ymd = NaiveDate::from_ymd;

let d = from_ymd(2016, 7, 8);
let hms = |h, m, s| d.and_hms(h, m, s);
assert_eq!(hms(3, 5, 7) + Duration::zero(),             hms(3, 5, 7));
assert_eq!(hms(3, 5, 7) + Duration::seconds(1),         hms(3, 5, 8));
assert_eq!(hms(3, 5, 7) + Duration::seconds(-1),        hms(3, 5, 6));
assert_eq!(hms(3, 5, 7) + Duration::seconds(3600 + 60), hms(4, 6, 7));
assert_eq!(hms(3, 5, 7) + Duration::seconds(86_400),
           from_ymd(2016, 7, 9).and_hms(3, 5, 7));
assert_eq!(hms(3, 5, 7) + Duration::days(365),
           from_ymd(2017, 7, 8).and_hms(3, 5, 7));

let hmsm = |h, m, s, milli| d.and_hms_milli(h, m, s, milli);
assert_eq!(hmsm(3, 5, 7, 980) + Duration::milliseconds(450), hmsm(3, 5, 8, 430));

Leap seconds are handled, but the addition assumes that it is the only leap second happened.

let leap = hmsm(3, 5, 59, 1_300);
assert_eq!(leap + Duration::zero(),             hmsm(3, 5, 59, 1_300));
assert_eq!(leap + Duration::milliseconds(-500), hmsm(3, 5, 59, 800));
assert_eq!(leap + Duration::milliseconds(500),  hmsm(3, 5, 59, 1_800));
assert_eq!(leap + Duration::milliseconds(800),  hmsm(3, 6, 0, 100));
assert_eq!(leap + Duration::seconds(10),        hmsm(3, 6, 9, 300));
assert_eq!(leap + Duration::seconds(-10),       hmsm(3, 5, 50, 300));
assert_eq!(leap + Duration::days(1),
           from_ymd(2016, 7, 9).and_hms_milli(3, 5, 59, 300));

type Output = NaiveDateTime

impl<Tz> Add<Duration> for Date<Tz> where
    Tz: TimeZone
[src]

type Output = Date<Tz>

impl<Tz> Add<Duration> for DateTime<Tz> where
    Tz: TimeZone
[src]

type Output = DateTime<Tz>

impl<Tz> Add<FixedOffset> for DateTime<Tz> where
    Tz: TimeZone
[src]

type Output = DateTime<Tz>

impl Add<Duration> for NaiveTime[src]

An addition of Duration to NaiveTime wraps around and never overflows or underflows. In particular the addition ignores integral number of days.

As a part of Chrono's leap second handling, the addition assumes that there is no leap second ever, except when the NaiveTime itself represents a leap second in which case the assumption becomes that there is exactly a single leap second ever.

Example

use chrono::{Duration, NaiveTime};

let from_hmsm = NaiveTime::from_hms_milli;

assert_eq!(from_hmsm(3, 5, 7, 0) + Duration::zero(),                  from_hmsm(3, 5, 7, 0));
assert_eq!(from_hmsm(3, 5, 7, 0) + Duration::seconds(1),              from_hmsm(3, 5, 8, 0));
assert_eq!(from_hmsm(3, 5, 7, 0) + Duration::seconds(-1),             from_hmsm(3, 5, 6, 0));
assert_eq!(from_hmsm(3, 5, 7, 0) + Duration::seconds(60 + 4),         from_hmsm(3, 6, 11, 0));
assert_eq!(from_hmsm(3, 5, 7, 0) + Duration::seconds(7*60*60 - 6*60), from_hmsm(9, 59, 7, 0));
assert_eq!(from_hmsm(3, 5, 7, 0) + Duration::milliseconds(80),        from_hmsm(3, 5, 7, 80));
assert_eq!(from_hmsm(3, 5, 7, 950) + Duration::milliseconds(280),     from_hmsm(3, 5, 8, 230));
assert_eq!(from_hmsm(3, 5, 7, 950) + Duration::milliseconds(-980),    from_hmsm(3, 5, 6, 970));

The addition wraps around.

assert_eq!(from_hmsm(3, 5, 7, 0) + Duration::seconds(22*60*60), from_hmsm(1, 5, 7, 0));
assert_eq!(from_hmsm(3, 5, 7, 0) + Duration::seconds(-8*60*60), from_hmsm(19, 5, 7, 0));
assert_eq!(from_hmsm(3, 5, 7, 0) + Duration::days(800),         from_hmsm(3, 5, 7, 0));

Leap seconds are handled, but the addition assumes that it is the only leap second happened.

let leap = from_hmsm(3, 5, 59, 1_300);
assert_eq!(leap + Duration::zero(),             from_hmsm(3, 5, 59, 1_300));
assert_eq!(leap + Duration::milliseconds(-500), from_hmsm(3, 5, 59, 800));
assert_eq!(leap + Duration::milliseconds(500),  from_hmsm(3, 5, 59, 1_800));
assert_eq!(leap + Duration::milliseconds(800),  from_hmsm(3, 6, 0, 100));
assert_eq!(leap + Duration::seconds(10),        from_hmsm(3, 6, 9, 300));
assert_eq!(leap + Duration::seconds(-10),       from_hmsm(3, 5, 50, 300));
assert_eq!(leap + Duration::days(1),            from_hmsm(3, 5, 59, 300));

type Output = NaiveTime

impl Add<FixedOffset> for NaiveDateTime[src]

impl Add<Duration> for NaiveDate[src]

An addition of Duration to NaiveDate discards the fractional days, rounding to the closest integral number of days towards Duration::zero().

Panics on underflow or overflow. Use NaiveDate::checked_add_signed to detect that.

Example

use chrono::{Duration, NaiveDate};

let from_ymd = NaiveDate::from_ymd;

assert_eq!(from_ymd(2014, 1, 1) + Duration::zero(),             from_ymd(2014, 1, 1));
assert_eq!(from_ymd(2014, 1, 1) + Duration::seconds(86399),     from_ymd(2014, 1, 1));
assert_eq!(from_ymd(2014, 1, 1) + Duration::seconds(-86399),    from_ymd(2014, 1, 1));
assert_eq!(from_ymd(2014, 1, 1) + Duration::days(1),            from_ymd(2014, 1, 2));
assert_eq!(from_ymd(2014, 1, 1) + Duration::days(-1),           from_ymd(2013, 12, 31));
assert_eq!(from_ymd(2014, 1, 1) + Duration::days(364),          from_ymd(2014, 12, 31));
assert_eq!(from_ymd(2014, 1, 1) + Duration::days(365*4 + 1),    from_ymd(2018, 1, 1));
assert_eq!(from_ymd(2014, 1, 1) + Duration::days(365*400 + 97), from_ymd(2414, 1, 1));

type Output = NaiveDate

impl Add<Duration> for Timespec[src]

type Output = Timespec

impl Add<Duration> for Duration[src]

type Output = Duration

impl Add<Duration> for Tm[src]

type Output = Tm

pub fn add(self, other: Duration) -> Tm[src]

The resulting Tm is in UTC.

impl Add<Duration> for SteadyTime[src]

type Output = SteadyTime

impl Add<TimeVal> for TimeVal

type Output = TimeVal

impl Add<TimeSpec> for TimeSpec

type Output = TimeSpec

impl<N> Add<Point<N>> for Vector<N> where
    N: Add<N, Output = N>, 
[src]

type Output = Point<N>

impl<N> Add<Vector<N>> for Point<N> where
    N: Add<N, Output = N>, 
[src]

type Output = Point<N>

impl<N> Add<Vector<N>> for Vector<N> where
    N: Add<N, Output = N>, 
[src]

type Output = Vector<N>

impl Add<Point> for Point

type Output = Point

pub fn add(self, rhs: Point) -> Point

Add rhs.x to x, rhs.y to y.

let p1 = point(1.0, 2.0) + point(2.0, 1.5);

assert!((p1.x - 3.0).abs() <= core::f32::EPSILON);
assert!((p1.y - 3.5).abs() <= core::f32::EPSILON);

impl<T> Add<Ratio<T>> for Ratio<T> where
    T: Clone + Integer
[src]

type Output = Ratio<T>

impl<'a, T> Add<&'a T> for Ratio<T> where
    T: Clone + Integer
[src]

type Output = Ratio<T>

impl<'a, 'b, T> Add<&'b Ratio<T>> for &'a Ratio<T> where
    T: Clone + Integer
[src]

type Output = Ratio<T>

impl<'a, T> Add<&'a Ratio<T>> for Ratio<T> where
    T: Clone + Integer
[src]

type Output = Ratio<T>

impl<T> Add<T> for Ratio<T> where
    T: Clone + Integer
[src]

type Output = Ratio<T>

impl<'a, T> Add<Ratio<T>> for &'a Ratio<T> where
    T: Clone + Integer
[src]

type Output = Ratio<T>

impl<'a, T> Add<T> for &'a Ratio<T> where
    T: Clone + Integer
[src]

type Output = Ratio<T>

impl<'a, 'b, T> Add<&'b T> for &'a Ratio<T> where
    T: Clone + Integer
[src]

type Output = Ratio<T>

impl<Ul, Ur> Add<UInt<Ur, B0>> for UInt<Ul, B0> where
    Ul: Unsigned + Add<Ur>,
    Ur: Unsigned, 

UInt<Ul, B0> + UInt<Ur, B0> = UInt<Ul + Ur, B0>

type Output = UInt<<Ul as Add<Ur>>::Output, B0>

impl Add<B1> for UTerm

UTerm + B1 = UInt<UTerm, B1>

type Output = UInt<UTerm, B1>

impl<U> Add<U> for UTerm where
    U: Unsigned, 

UTerm + U = U

type Output = U

impl<U, B> Add<UTerm> for UInt<U, B> where
    B: Bit,
    U: Unsigned, 

UInt<U, B> + UTerm = UInt<U, B>

type Output = UInt<U, B>

impl Add<ATerm> for ATerm

type Output = ATerm

impl<Ul, Ur> Add<UInt<Ur, B0>> for UInt<Ul, B1> where
    Ul: Unsigned + Add<Ur>,
    Ur: Unsigned, 

UInt<Ul, B1> + UInt<Ur, B0> = UInt<Ul + Ur, B1>

type Output = UInt<<Ul as Add<Ur>>::Output, B1>

impl<Ul, Ur> Add<PInt<Ur>> for PInt<Ul> where
    Ul: NonZero + Unsigned + Add<Ur>,
    Ur: NonZero + Unsigned,
    <Ul as Add<Ur>>::Output: Unsigned,
    <Ul as Add<Ur>>::Output: NonZero, 

P(Ul) + P(Ur) = P(Ul + Ur)

type Output = PInt<<Ul as Add<Ur>>::Output>

impl<U> Add<B1> for UInt<U, B0> where
    U: Unsigned, 

UInt<U, B0> + B1 = UInt<U + B1>

type Output = UInt<U, B1>

impl<Ul, Ur> Add<NInt<Ur>> for PInt<Ul> where
    Ul: NonZero + Unsigned + Cmp<Ur> + PrivateIntegerAdd<<Ul as Cmp<Ur>>::Output, Ur>,
    Ur: NonZero + Unsigned, 

P(Ul) + N(Ur): We resolve this with our PrivateAdd

type Output = <Ul as PrivateIntegerAdd<<Ul as Cmp<Ur>>::Output, Ur>>::Output

impl<U> Add<Z0> for PInt<U> where
    U: NonZero + Unsigned, 

PInt + Z0 = PInt

type Output = PInt<U>

impl<Al, Vl, Ar, Vr> Add<TArr<Vr, Ar>> for TArr<Vl, Al> where
    Al: Add<Ar>,
    Vl: Add<Vr>, 

type Output = TArr<<Vl as Add<Vr>>::Output, <Al as Add<Ar>>::Output>

impl<I> Add<I> for Z0 where
    I: Integer, 

Z0 + I = I

type Output = I

impl<Ul, Ur> Add<UInt<Ur, B1>> for UInt<Ul, B0> where
    Ul: Unsigned + Add<Ur>,
    Ur: Unsigned, 

UInt<Ul, B0> + UInt<Ur, B1> = UInt<Ul + Ur, B1>

type Output = UInt<<Ul as Add<Ur>>::Output, B1>

impl<Ul, Ur> Add<PInt<Ur>> for NInt<Ul> where
    Ul: NonZero + Unsigned,
    Ur: NonZero + Unsigned + Cmp<Ul> + PrivateIntegerAdd<<Ur as Cmp<Ul>>::Output, Ul>, 

N(Ul) + P(Ur): We resolve this with our PrivateAdd

type Output = <Ur as PrivateIntegerAdd<<Ur as Cmp<Ul>>::Output, Ul>>::Output

impl<Ul, Ur> Add<UInt<Ur, B1>> for UInt<Ul, B1> where
    Ul: Unsigned + Add<Ur>,
    Ur: Unsigned,
    <Ul as Add<Ur>>::Output: Add<B1>, 

UInt<Ul, B1> + UInt<Ur, B1> = UInt<(Ul + Ur) + B1, B0>

type Output = UInt<<<Ul as Add<Ur>>::Output as Add<B1>>::Output, B0>

impl Add<B0> for UTerm

UTerm + B0 = UTerm

type Output = UTerm

impl<Ul, Ur> Add<NInt<Ur>> for NInt<Ul> where
    Ul: NonZero + Unsigned + Add<Ur>,
    Ur: NonZero + Unsigned,
    <Ul as Add<Ur>>::Output: Unsigned,
    <Ul as Add<Ur>>::Output: NonZero, 

N(Ul) + N(Ur) = N(Ul + Ur)

type Output = NInt<<Ul as Add<Ur>>::Output>

impl<U> Add<Z0> for NInt<U> where
    U: NonZero + Unsigned, 

NInt + Z0 = NInt

type Output = NInt<U>

impl<U, B> Add<B0> for UInt<U, B> where
    B: Bit,
    U: Unsigned, 

U + B0 = U

type Output = UInt<U, B>

impl<U> Add<B1> for UInt<U, B1> where
    U: Unsigned + Add<B1>,
    <U as Add<B1>>::Output: Unsigned, 

UInt<U, B1> + B1 = UInt<U + B1, B0>

type Output = UInt<<U as Add<B1>>::Output, B0>

impl Add<u64x2> for u64x2

type Output = u64x2

impl Add<u32x4> for u32x4

type Output = u32x4

impl Add<MilliBel> for MilliBel

type Output = MilliBel

impl Add<TimeSpec> for TimeSpec

type Output = TimeSpec

impl Add<TimeVal> for TimeVal

type Output = TimeVal

Loading content...

Implementors

impl<T> Add<Mat4<T>> for Mat4<T> where
    T: Num + Copy
[src]

type Output = Mat4<T>

impl<T> Add<Quat<T>> for Quat<T> where
    T: Num
[src]

type Output = Quat<T>

impl<T> Add<RealImpl<T>> for RealImpl<T> where
    T: Float
[src]

type Output = RealImpl<T>

impl<T> Add<Vec2<T>> for Vec2<T> where
    T: Add<T, Output = T>, 
[src]

type Output = Vec2<T>

impl<T> Add<Vec3<T>> for Vec3<T> where
    T: Add<T, Output = T>, 
[src]

type Output = Vec3<T>

impl<T> Add<Vec4<T>> for Vec4<T> where
    T: Add<T, Output = T>, 
[src]

type Output = Vec4<T>

Loading content...