1.0.0[][src]Trait geng_core::prelude::Sub

#[lang = "sub"]pub trait Sub<Rhs = Self> {
    type Output;
#[must_use]    fn sub(self, rhs: Rhs) -> Self::Output;
}

The subtraction operator -.

Note that Rhs is Self by default, but this is not mandatory. For example, std::time::SystemTime implements Sub<Duration>, which permits operations of the form SystemTime = SystemTime - Duration.

Examples

Subtractable points

use std::ops::Sub;

#[derive(Debug, Copy, Clone, PartialEq)]
struct Point {
    x: i32,
    y: i32,
}

impl Sub for Point {
    type Output = Point;

    fn sub(self, other: Point) -> Point {
        Point {
            x: self.x - other.x,
            y: self.y - other.y,
        }
    }
}

assert_eq!(Point { x: 3, y: 3 } - Point { x: 2, y: 3 },
           Point { x: 1, y: 0 });

Implementing Sub with generics

Here is an example of the same Point struct implementing the Sub trait using generics.

use std::ops::Sub;

#[derive(Debug, PartialEq)]
struct Point<T> {
    x: T,
    y: T,
}

// Notice that the implementation uses the associated type `Output`.
impl<T: Sub<Output = T>> Sub for Point<T> {
    type Output = Self;

    fn sub(self, other: Self) -> Self::Output {
        Point {
            x: self.x - other.x,
            y: self.y - other.y,
        }
    }
}

assert_eq!(Point { x: 2, y: 3 } - Point { x: 1, y: 0 },
           Point { x: 1, y: 3 });

Associated Types

type Output

The resulting type after applying the - operator.

Loading content...

Required methods

#[must_use]fn sub(self, rhs: Rhs) -> Self::Output

Performs the - operation.

Loading content...

Implementations on Foreign Types

impl Sub<Instant> for Instant[src]

type Output = Duration

impl Sub<Duration> for SystemTime[src]

type Output = SystemTime

impl Sub<Duration> for Instant[src]

type Output = Instant

impl Sub<usize> for usize[src]

type Output = usize

impl<'a> Sub<u128> for &'a u128[src]

type Output = <u128 as Sub<u128>>::Output

impl<'_> Sub<&'_ Wrapping<i64>> for Wrapping<i64>[src]

type Output = <Wrapping<i64> as Sub<Wrapping<i64>>>::Output

impl<'_> Sub<&'_ f32> for f32[src]

type Output = <f32 as Sub<f32>>::Output

impl Sub<u128> for u128[src]

type Output = u128

impl Sub<Wrapping<u16>> for Wrapping<u16>[src]

type Output = Wrapping<u16>

impl<'_> Sub<&'_ Wrapping<u64>> for Wrapping<u64>[src]

type Output = <Wrapping<u64> as Sub<Wrapping<u64>>>::Output

impl<'_> Sub<&'_ Wrapping<u32>> for Wrapping<u32>[src]

type Output = <Wrapping<u32> as Sub<Wrapping<u32>>>::Output

impl<'a> Sub<Wrapping<i8>> for &'a Wrapping<i8>[src]

type Output = <Wrapping<i8> as Sub<Wrapping<i8>>>::Output

impl<'a> Sub<usize> for &'a usize[src]

type Output = <usize as Sub<usize>>::Output

impl<'a> Sub<u64> for &'a u64[src]

type Output = <u64 as Sub<u64>>::Output

impl<'a> Sub<f64> for &'a f64[src]

type Output = <f64 as Sub<f64>>::Output

impl<'a> Sub<i128> for &'a i128[src]

type Output = <i128 as Sub<i128>>::Output

impl<'_, '_> Sub<&'_ Wrapping<i8>> for &'_ Wrapping<i8>[src]

type Output = <Wrapping<i8> as Sub<Wrapping<i8>>>::Output

impl Sub<u32> for u32[src]

type Output = u32

impl Sub<f64> for f64[src]

type Output = f64

impl Sub<f32> for f32[src]

type Output = f32

impl Sub<Wrapping<i16>> for Wrapping<i16>[src]

type Output = Wrapping<i16>

impl<'_, '_> Sub<&'_ Wrapping<u8>> for &'_ Wrapping<u8>[src]

type Output = <Wrapping<u8> as Sub<Wrapping<u8>>>::Output

impl<'a> Sub<Wrapping<usize>> for &'a Wrapping<usize>[src]

type Output = <Wrapping<usize> as Sub<Wrapping<usize>>>::Output

impl<'a> Sub<i16> for &'a i16[src]

type Output = <i16 as Sub<i16>>::Output

impl<'a> Sub<Wrapping<u128>> for &'a Wrapping<u128>[src]

type Output = <Wrapping<u128> as Sub<Wrapping<u128>>>::Output

impl<'a> Sub<Wrapping<i32>> for &'a Wrapping<i32>[src]

type Output = <Wrapping<i32> as Sub<Wrapping<i32>>>::Output

impl<'_, '_> Sub<&'_ u32> for &'_ u32[src]

type Output = <u32 as Sub<u32>>::Output

impl<'a> Sub<Wrapping<u16>> for &'a Wrapping<u16>[src]

type Output = <Wrapping<u16> as Sub<Wrapping<u16>>>::Output

impl<'_, '_> Sub<&'_ Wrapping<usize>> for &'_ Wrapping<usize>[src]

type Output = <Wrapping<usize> as Sub<Wrapping<usize>>>::Output

impl<'_, '_> Sub<&'_ usize> for &'_ usize[src]

type Output = <usize as Sub<usize>>::Output

impl<'_, '_> Sub<&'_ i8> for &'_ i8[src]

type Output = <i8 as Sub<i8>>::Output

impl<'_> Sub<&'_ Wrapping<i16>> for Wrapping<i16>[src]

type Output = <Wrapping<i16> as Sub<Wrapping<i16>>>::Output

impl<'_, '_> Sub<&'_ Wrapping<u64>> for &'_ Wrapping<u64>[src]

type Output = <Wrapping<u64> as Sub<Wrapping<u64>>>::Output

impl<'_> Sub<&'_ Wrapping<u8>> for Wrapping<u8>[src]

type Output = <Wrapping<u8> as Sub<Wrapping<u8>>>::Output

impl<'_> Sub<&'_ i64> for i64[src]

type Output = <i64 as Sub<i64>>::Output

impl<'a> Sub<Wrapping<i16>> for &'a Wrapping<i16>[src]

type Output = <Wrapping<i16> as Sub<Wrapping<i16>>>::Output

impl<'_> Sub<&'_ Wrapping<isize>> for Wrapping<isize>[src]

type Output = <Wrapping<isize> as Sub<Wrapping<isize>>>::Output

impl<'_, '_> Sub<&'_ u16> for &'_ u16[src]

type Output = <u16 as Sub<u16>>::Output

impl<'_, '_> Sub<&'_ u128> for &'_ u128[src]

type Output = <u128 as Sub<u128>>::Output

impl<'_> Sub<&'_ Wrapping<u128>> for Wrapping<u128>[src]

type Output = <Wrapping<u128> as Sub<Wrapping<u128>>>::Output

impl<'_, '_> Sub<&'_ Wrapping<u16>> for &'_ Wrapping<u16>[src]

type Output = <Wrapping<u16> as Sub<Wrapping<u16>>>::Output

impl<'_, '_> Sub<&'_ i16> for &'_ i16[src]

type Output = <i16 as Sub<i16>>::Output

impl<'_> Sub<&'_ i8> for i8[src]

type Output = <i8 as Sub<i8>>::Output

impl Sub<Wrapping<u128>> for Wrapping<u128>[src]

type Output = Wrapping<u128>

impl<'a> Sub<u8> for &'a u8[src]

type Output = <u8 as Sub<u8>>::Output

impl<'_> Sub<&'_ i32> for i32[src]

type Output = <i32 as Sub<i32>>::Output

impl<'_, '_> Sub<&'_ Wrapping<i64>> for &'_ Wrapping<i64>[src]

type Output = <Wrapping<i64> as Sub<Wrapping<i64>>>::Output

impl<'a> Sub<f32> for &'a f32[src]

type Output = <f32 as Sub<f32>>::Output

impl<'_, '_> Sub<&'_ Wrapping<u32>> for &'_ Wrapping<u32>[src]

type Output = <Wrapping<u32> as Sub<Wrapping<u32>>>::Output

impl<'a> Sub<i8> for &'a i8[src]

type Output = <i8 as Sub<i8>>::Output

impl<'_, '_> Sub<&'_ isize> for &'_ isize[src]

type Output = <isize as Sub<isize>>::Output

impl<'_, '_> Sub<&'_ f32> for &'_ f32[src]

type Output = <f32 as Sub<f32>>::Output

impl Sub<Wrapping<i32>> for Wrapping<i32>[src]

type Output = Wrapping<i32>

impl<'_> Sub<&'_ Wrapping<i128>> for Wrapping<i128>[src]

type Output = <Wrapping<i128> as Sub<Wrapping<i128>>>::Output

impl<'_> Sub<&'_ u16> for u16[src]

type Output = <u16 as Sub<u16>>::Output

impl<'_, '_> Sub<&'_ i32> for &'_ i32[src]

type Output = <i32 as Sub<i32>>::Output

impl<'a> Sub<i64> for &'a i64[src]

type Output = <i64 as Sub<i64>>::Output

impl<'_, '_> Sub<&'_ Wrapping<i32>> for &'_ Wrapping<i32>[src]

type Output = <Wrapping<i32> as Sub<Wrapping<i32>>>::Output

impl<'_> Sub<&'_ u32> for u32[src]

type Output = <u32 as Sub<u32>>::Output

impl<'_, '_> Sub<&'_ f64> for &'_ f64[src]

type Output = <f64 as Sub<f64>>::Output

impl<'_> Sub<&'_ u128> for u128[src]

type Output = <u128 as Sub<u128>>::Output

impl<'a> Sub<Wrapping<u32>> for &'a Wrapping<u32>[src]

type Output = <Wrapping<u32> as Sub<Wrapping<u32>>>::Output

impl Sub<isize> for isize[src]

type Output = isize

impl<'a> Sub<Wrapping<u64>> for &'a Wrapping<u64>[src]

type Output = <Wrapping<u64> as Sub<Wrapping<u64>>>::Output

impl<'_> Sub<&'_ isize> for isize[src]

type Output = <isize as Sub<isize>>::Output

impl Sub<Wrapping<u8>> for Wrapping<u8>[src]

type Output = Wrapping<u8>

impl<'_, '_> Sub<&'_ Wrapping<u128>> for &'_ Wrapping<u128>[src]

type Output = <Wrapping<u128> as Sub<Wrapping<u128>>>::Output

impl<'_> Sub<&'_ usize> for usize[src]

type Output = <usize as Sub<usize>>::Output

impl<'a> Sub<i32> for &'a i32[src]

type Output = <i32 as Sub<i32>>::Output

impl<'a> Sub<u32> for &'a u32[src]

type Output = <u32 as Sub<u32>>::Output

impl<'a> Sub<Wrapping<i64>> for &'a Wrapping<i64>[src]

type Output = <Wrapping<i64> as Sub<Wrapping<i64>>>::Output

impl<'_> Sub<&'_ u8> for u8[src]

type Output = <u8 as Sub<u8>>::Output

impl<'_, '_> Sub<&'_ Wrapping<i128>> for &'_ Wrapping<i128>[src]

type Output = <Wrapping<i128> as Sub<Wrapping<i128>>>::Output

impl<'_> Sub<&'_ Wrapping<u16>> for Wrapping<u16>[src]

type Output = <Wrapping<u16> as Sub<Wrapping<u16>>>::Output

impl<'a> Sub<Wrapping<u8>> for &'a Wrapping<u8>[src]

type Output = <Wrapping<u8> as Sub<Wrapping<u8>>>::Output

impl Sub<i128> for i128[src]

type Output = i128

impl Sub<u8> for u8[src]

type Output = u8

impl<'a> Sub<Wrapping<i128>> for &'a Wrapping<i128>[src]

type Output = <Wrapping<i128> as Sub<Wrapping<i128>>>::Output

impl<'_, '_> Sub<&'_ Wrapping<isize>> for &'_ Wrapping<isize>[src]

type Output = <Wrapping<isize> as Sub<Wrapping<isize>>>::Output

impl Sub<i16> for i16[src]

type Output = i16

impl Sub<Wrapping<isize>> for Wrapping<isize>[src]

type Output = Wrapping<isize>

impl<'_> Sub<&'_ i128> for i128[src]

type Output = <i128 as Sub<i128>>::Output

impl Sub<i32> for i32[src]

type Output = i32

impl Sub<i8> for i8[src]

type Output = i8

impl<'_, '_> Sub<&'_ Wrapping<i16>> for &'_ Wrapping<i16>[src]

type Output = <Wrapping<i16> as Sub<Wrapping<i16>>>::Output

impl Sub<Wrapping<i128>> for Wrapping<i128>[src]

type Output = Wrapping<i128>

impl<'_, '_> Sub<&'_ i64> for &'_ i64[src]

type Output = <i64 as Sub<i64>>::Output

impl Sub<Wrapping<usize>> for Wrapping<usize>[src]

type Output = Wrapping<usize>

impl<'a> Sub<u16> for &'a u16[src]

type Output = <u16 as Sub<u16>>::Output

impl Sub<Wrapping<u32>> for Wrapping<u32>[src]

type Output = Wrapping<u32>

impl<'a> Sub<isize> for &'a isize[src]

type Output = <isize as Sub<isize>>::Output

impl<'_> Sub<&'_ i16> for i16[src]

type Output = <i16 as Sub<i16>>::Output

impl<'_, '_> Sub<&'_ u64> for &'_ u64[src]

type Output = <u64 as Sub<u64>>::Output

impl<'_> Sub<&'_ u64> for u64[src]

type Output = <u64 as Sub<u64>>::Output

impl<'_> Sub<&'_ f64> for f64[src]

type Output = <f64 as Sub<f64>>::Output

impl Sub<i64> for i64[src]

type Output = i64

impl Sub<Wrapping<i8>> for Wrapping<i8>[src]

type Output = Wrapping<i8>

impl Sub<u16> for u16[src]

type Output = u16

impl Sub<Duration> for Duration[src]

type Output = Duration

impl Sub<Wrapping<u64>> for Wrapping<u64>[src]

type Output = Wrapping<u64>

impl<'_> Sub<&'_ Wrapping<i8>> for Wrapping<i8>[src]

type Output = <Wrapping<i8> as Sub<Wrapping<i8>>>::Output

impl Sub<u64> for u64[src]

type Output = u64

impl<'_, '_> Sub<&'_ u8> for &'_ u8[src]

type Output = <u8 as Sub<u8>>::Output

impl<'a> Sub<Wrapping<isize>> for &'a Wrapping<isize>[src]

type Output = <Wrapping<isize> as Sub<Wrapping<isize>>>::Output

impl Sub<Wrapping<i64>> for Wrapping<i64>[src]

type Output = Wrapping<i64>

impl<'_> Sub<&'_ Wrapping<usize>> for Wrapping<usize>[src]

type Output = <Wrapping<usize> as Sub<Wrapping<usize>>>::Output

impl<'_, '_> Sub<&'_ i128> for &'_ i128[src]

type Output = <i128 as Sub<i128>>::Output

impl<'_> Sub<&'_ Wrapping<i32>> for Wrapping<i32>[src]

type Output = <Wrapping<i32> as Sub<Wrapping<i32>>>::Output

impl<'_, '_, T> Sub<&'_ BTreeSet<T>> for &'_ BTreeSet<T> where
    T: Clone + Ord
[src]

type Output = BTreeSet<T>

fn sub(self, rhs: &BTreeSet<T>) -> BTreeSet<T>[src]

Returns the difference of self and rhs as a new BTreeSet<T>.

Examples

use std::collections::BTreeSet;

let a: BTreeSet<_> = vec![1, 2, 3].into_iter().collect();
let b: BTreeSet<_> = vec![3, 4, 5].into_iter().collect();

let result = &a - &b;
let result_vec: Vec<_> = result.into_iter().collect();
assert_eq!(result_vec, [1, 2]);

impl<'_, '_, T, S> Sub<&'_ HashSet<T, S>> for &'_ HashSet<T, S> where
    S: BuildHasher + Default,
    T: Eq + Hash + Clone

type Output = HashSet<T, S>

fn sub(self, rhs: &HashSet<T, S>) -> HashSet<T, S>

Returns the difference of self and rhs as a new HashSet<T, S>.

Examples

use hashbrown::HashSet;

let a: HashSet<_> = vec![1, 2, 3].into_iter().collect();
let b: HashSet<_> = vec![3, 4, 5].into_iter().collect();

let set = &a - &b;

let mut i = 0;
let expected = [1, 2];
for x in &set {
    assert!(expected.contains(x));
    i += 1;
}
assert_eq!(i, expected.len());

impl Sub<Extensions> for Extensions[src]

type Output = Extensions

fn sub(self, other: Extensions) -> Extensions[src]

Returns the set difference of the two sets of flags.

impl Sub<NaiveDate> for NaiveDate[src]

Subtracts another NaiveDate from the current date. Returns a Duration of integral numbers.

This does not overflow or underflow at all, as all possible output fits in the range of Duration.

The implementation is a wrapper around NaiveDate::signed_duration_since.

Example

use chrono::NaiveDate;
use time::Duration;

let from_ymd = NaiveDate::from_ymd;

assert_eq!(from_ymd(2014, 1, 1) - from_ymd(2014, 1, 1), Duration::zero());
assert_eq!(from_ymd(2014, 1, 1) - from_ymd(2013, 12, 31), Duration::days(1));
assert_eq!(from_ymd(2014, 1, 1) - from_ymd(2014, 1, 2), Duration::days(-1));
assert_eq!(from_ymd(2014, 1, 1) - from_ymd(2013, 9, 23), Duration::days(100));
assert_eq!(from_ymd(2014, 1, 1) - from_ymd(2013, 1, 1), Duration::days(365));
assert_eq!(from_ymd(2014, 1, 1) - from_ymd(2010, 1, 1), Duration::days(365*4 + 1));
assert_eq!(from_ymd(2014, 1, 1) - from_ymd(1614, 1, 1), Duration::days(365*400 + 97));

type Output = Duration

impl Sub<Duration> for NaiveDate[src]

A subtraction of Duration from NaiveDate discards the fractional days, rounding to the closest integral number of days towards Duration::zero(). It is the same as the addition with a negated Duration.

Panics on underflow or overflow. Use NaiveDate::checked_sub_signed to detect that.

Example

use chrono::NaiveDate;
use time::Duration;

let from_ymd = NaiveDate::from_ymd;

assert_eq!(from_ymd(2014, 1, 1) - Duration::zero(),             from_ymd(2014, 1, 1));
assert_eq!(from_ymd(2014, 1, 1) - Duration::seconds(86399),     from_ymd(2014, 1, 1));
assert_eq!(from_ymd(2014, 1, 1) - Duration::seconds(-86399),    from_ymd(2014, 1, 1));
assert_eq!(from_ymd(2014, 1, 1) - Duration::days(1),            from_ymd(2013, 12, 31));
assert_eq!(from_ymd(2014, 1, 1) - Duration::days(-1),           from_ymd(2014, 1, 2));
assert_eq!(from_ymd(2014, 1, 1) - Duration::days(364),          from_ymd(2013, 1, 2));
assert_eq!(from_ymd(2014, 1, 1) - Duration::days(365*4 + 1),    from_ymd(2010, 1, 1));
assert_eq!(from_ymd(2014, 1, 1) - Duration::days(365*400 + 97), from_ymd(1614, 1, 1));

type Output = NaiveDate

impl<Tz> Sub<FixedOffset> for DateTime<Tz> where
    Tz: TimeZone
[src]

type Output = DateTime<Tz>

impl Sub<NaiveDateTime> for NaiveDateTime[src]

Subtracts another NaiveDateTime from the current date and time. This does not overflow or underflow at all.

As a part of Chrono's leap second handling, the subtraction assumes that there is no leap second ever, except when any of the NaiveDateTimes themselves represents a leap second in which case the assumption becomes that there are exactly one (or two) leap second(s) ever.

The implementation is a wrapper around NaiveDateTime::signed_duration_since.

Example

use chrono::NaiveDate;
use time::Duration;

let from_ymd = NaiveDate::from_ymd;

let d = from_ymd(2016, 7, 8);
assert_eq!(d.and_hms(3, 5, 7) - d.and_hms(2, 4, 6), Duration::seconds(3600 + 60 + 1));

// July 8 is 190th day in the year 2016
let d0 = from_ymd(2016, 1, 1);
assert_eq!(d.and_hms_milli(0, 7, 6, 500) - d0.and_hms(0, 0, 0),
           Duration::seconds(189 * 86_400 + 7 * 60 + 6) + Duration::milliseconds(500));

Leap seconds are handled, but the subtraction assumes that there were no other leap seconds happened.

let leap = from_ymd(2015, 6, 30).and_hms_milli(23, 59, 59, 1_500);
assert_eq!(leap - from_ymd(2015, 6, 30).and_hms(23, 0, 0),
           Duration::seconds(3600) + Duration::milliseconds(500));
assert_eq!(from_ymd(2015, 7, 1).and_hms(1, 0, 0) - leap,
           Duration::seconds(3600) - Duration::milliseconds(500));

impl Sub<NaiveTime> for NaiveTime[src]

Subtracts another NaiveTime from the current time. Returns a Duration within +/- 1 day. This does not overflow or underflow at all.

As a part of Chrono's leap second handling, the subtraction assumes that there is no leap second ever, except when any of the NaiveTimes themselves represents a leap second in which case the assumption becomes that there are exactly one (or two) leap second(s) ever.

The implementation is a wrapper around NaiveTime::signed_duration_since.

Example

use chrono::NaiveTime;
use time::Duration;

let from_hmsm = NaiveTime::from_hms_milli;

assert_eq!(from_hmsm(3, 5, 7, 900) - from_hmsm(3, 5, 7, 900), Duration::zero());
assert_eq!(from_hmsm(3, 5, 7, 900) - from_hmsm(3, 5, 7, 875), Duration::milliseconds(25));
assert_eq!(from_hmsm(3, 5, 7, 900) - from_hmsm(3, 5, 6, 925), Duration::milliseconds(975));
assert_eq!(from_hmsm(3, 5, 7, 900) - from_hmsm(3, 5, 0, 900), Duration::seconds(7));
assert_eq!(from_hmsm(3, 5, 7, 900) - from_hmsm(3, 0, 7, 900), Duration::seconds(5 * 60));
assert_eq!(from_hmsm(3, 5, 7, 900) - from_hmsm(0, 5, 7, 900), Duration::seconds(3 * 3600));
assert_eq!(from_hmsm(3, 5, 7, 900) - from_hmsm(4, 5, 7, 900), Duration::seconds(-3600));
assert_eq!(from_hmsm(3, 5, 7, 900) - from_hmsm(2, 4, 6, 800),
           Duration::seconds(3600 + 60 + 1) + Duration::milliseconds(100));

Leap seconds are handled, but the subtraction assumes that there were no other leap seconds happened.

assert_eq!(from_hmsm(3, 0, 59, 1_000) - from_hmsm(3, 0, 59, 0), Duration::seconds(1));
assert_eq!(from_hmsm(3, 0, 59, 1_500) - from_hmsm(3, 0, 59, 0),
           Duration::milliseconds(1500));
assert_eq!(from_hmsm(3, 0, 59, 1_000) - from_hmsm(3, 0, 0, 0), Duration::seconds(60));
assert_eq!(from_hmsm(3, 0, 0, 0) - from_hmsm(2, 59, 59, 1_000), Duration::seconds(1));
assert_eq!(from_hmsm(3, 0, 59, 1_000) - from_hmsm(2, 59, 59, 1_000),
           Duration::seconds(61));

type Output = Duration

impl Sub<FixedOffset> for NaiveTime[src]

impl<Tz> Sub<Date<Tz>> for Date<Tz> where
    Tz: TimeZone
[src]

type Output = Duration

impl Sub<FixedOffset> for NaiveDateTime[src]

impl<Tz> Sub<DateTime<Tz>> for DateTime<Tz> where
    Tz: TimeZone
[src]

type Output = Duration

impl Sub<Duration> for NaiveDateTime[src]

A subtraction of Duration from NaiveDateTime yields another NaiveDateTime. It is the same as the addition with a negated Duration.

As a part of Chrono's leap second handling, the addition assumes that there is no leap second ever, except when the NaiveDateTime itself represents a leap second in which case the assumption becomes that there is exactly a single leap second ever.

Panics on underflow or overflow. Use NaiveDateTime::checked_sub_signed to detect that.

Example

use chrono::NaiveDate;
use time::Duration;

let from_ymd = NaiveDate::from_ymd;

let d = from_ymd(2016, 7, 8);
let hms = |h, m, s| d.and_hms(h, m, s);
assert_eq!(hms(3, 5, 7) - Duration::zero(),             hms(3, 5, 7));
assert_eq!(hms(3, 5, 7) - Duration::seconds(1),         hms(3, 5, 6));
assert_eq!(hms(3, 5, 7) - Duration::seconds(-1),        hms(3, 5, 8));
assert_eq!(hms(3, 5, 7) - Duration::seconds(3600 + 60), hms(2, 4, 7));
assert_eq!(hms(3, 5, 7) - Duration::seconds(86_400),
           from_ymd(2016, 7, 7).and_hms(3, 5, 7));
assert_eq!(hms(3, 5, 7) - Duration::days(365),
           from_ymd(2015, 7, 9).and_hms(3, 5, 7));

let hmsm = |h, m, s, milli| d.and_hms_milli(h, m, s, milli);
assert_eq!(hmsm(3, 5, 7, 450) - Duration::milliseconds(670), hmsm(3, 5, 6, 780));

Leap seconds are handled, but the subtraction assumes that it is the only leap second happened.

let leap = hmsm(3, 5, 59, 1_300);
assert_eq!(leap - Duration::zero(),            hmsm(3, 5, 59, 1_300));
assert_eq!(leap - Duration::milliseconds(200), hmsm(3, 5, 59, 1_100));
assert_eq!(leap - Duration::milliseconds(500), hmsm(3, 5, 59, 800));
assert_eq!(leap - Duration::seconds(60),       hmsm(3, 5, 0, 300));
assert_eq!(leap - Duration::days(1),
           from_ymd(2016, 7, 7).and_hms_milli(3, 6, 0, 300));

impl<Tz> Sub<Duration> for Date<Tz> where
    Tz: TimeZone
[src]

type Output = Date<Tz>

impl Sub<Duration> for NaiveTime[src]

A subtraction of Duration from NaiveTime wraps around and never overflows or underflows. In particular the addition ignores integral number of days. It is the same as the addition with a negated Duration.

As a part of Chrono's leap second handling, the addition assumes that there is no leap second ever, except when the NaiveTime itself represents a leap second in which case the assumption becomes that there is exactly a single leap second ever.

Example

use chrono::NaiveTime;
use time::Duration;

let from_hmsm = NaiveTime::from_hms_milli;

assert_eq!(from_hmsm(3, 5, 7, 0) - Duration::zero(),                  from_hmsm(3, 5, 7, 0));
assert_eq!(from_hmsm(3, 5, 7, 0) - Duration::seconds(1),              from_hmsm(3, 5, 6, 0));
assert_eq!(from_hmsm(3, 5, 7, 0) - Duration::seconds(60 + 5),         from_hmsm(3, 4, 2, 0));
assert_eq!(from_hmsm(3, 5, 7, 0) - Duration::seconds(2*60*60 + 6*60), from_hmsm(0, 59, 7, 0));
assert_eq!(from_hmsm(3, 5, 7, 0) - Duration::milliseconds(80),        from_hmsm(3, 5, 6, 920));
assert_eq!(from_hmsm(3, 5, 7, 950) - Duration::milliseconds(280),     from_hmsm(3, 5, 7, 670));

The subtraction wraps around.

assert_eq!(from_hmsm(3, 5, 7, 0) - Duration::seconds(8*60*60), from_hmsm(19, 5, 7, 0));
assert_eq!(from_hmsm(3, 5, 7, 0) - Duration::days(800),        from_hmsm(3, 5, 7, 0));

Leap seconds are handled, but the subtraction assumes that it is the only leap second happened.

let leap = from_hmsm(3, 5, 59, 1_300);
assert_eq!(leap - Duration::zero(),            from_hmsm(3, 5, 59, 1_300));
assert_eq!(leap - Duration::milliseconds(200), from_hmsm(3, 5, 59, 1_100));
assert_eq!(leap - Duration::milliseconds(500), from_hmsm(3, 5, 59, 800));
assert_eq!(leap - Duration::seconds(60),       from_hmsm(3, 5, 0, 300));
assert_eq!(leap - Duration::days(1),           from_hmsm(3, 6, 0, 300));

type Output = NaiveTime

impl<Tz> Sub<Duration> for DateTime<Tz> where
    Tz: TimeZone
[src]

type Output = DateTime<Tz>

impl Sub<Duration> for SteadyTime[src]

type Output = SteadyTime

impl Sub<Timespec> for Timespec[src]

type Output = Duration

impl Sub<Tm> for Tm[src]

type Output = Duration

impl Sub<Duration> for Duration[src]

type Output = Duration

impl Sub<SteadyTime> for SteadyTime[src]

type Output = Duration

impl Sub<Duration> for Tm[src]

type Output = Tm

fn sub(self, other: Duration) -> Tm[src]

The resulting Tm is in UTC.

impl Sub<Duration> for Timespec[src]

type Output = Timespec

impl Sub<ModifiersState> for ModifiersState[src]

type Output = ModifiersState

fn sub(self, other: ModifiersState) -> ModifiersState[src]

Returns the set difference of the two sets of flags.

impl Sub<Sides> for Sides[src]

type Output = Sides

fn sub(self, other: Sides) -> Sides[src]

Returns the set difference of the two sets of flags.

impl<N> Sub<Vector<N>> for Vector<N> where
    N: Sub<N, Output = N>, 
[src]

type Output = Vector<N>

impl<N> Sub<Vector<N>> for Point<N> where
    N: Sub<N, Output = N>, 
[src]

type Output = Point<N>

impl<N> Sub<Point<N>> for Point<N> where
    N: Sub<N, Output = N>, 
[src]

type Output = Vector<N>

impl<T> Sub<NotNan<T>> for NotNan<T> where
    T: FloatCore

type Output = NotNan<T>

impl<T> Sub<OrderedFloat<T>> for OrderedFloat<T> where
    T: FloatCore

type Output = OrderedFloat<T>

impl<T> Sub<T> for NotNan<T> where
    T: FloatCore

Subtracts a float directly.

Panics if the provided value is NaN or the computation results in NaN

type Output = NotNan<T>

impl Sub<TimeSpec> for TimeSpec

type Output = TimeSpec

impl Sub<MsFlags> for MsFlags[src]

type Output = MsFlags

fn sub(self, other: MsFlags) -> MsFlags[src]

Returns the set difference of the two sets of flags.

impl Sub<QuotaValidFlags> for QuotaValidFlags[src]

type Output = QuotaValidFlags

fn sub(self, other: QuotaValidFlags) -> QuotaValidFlags[src]

Returns the set difference of the two sets of flags.

impl Sub<MlockAllFlags> for MlockAllFlags[src]

type Output = MlockAllFlags

fn sub(self, other: MlockAllFlags) -> MlockAllFlags[src]

Returns the set difference of the two sets of flags.

impl Sub<FdFlag> for FdFlag[src]

type Output = FdFlag

fn sub(self, other: FdFlag) -> FdFlag[src]

Returns the set difference of the two sets of flags.

impl Sub<SaFlags> for SaFlags[src]

type Output = SaFlags

fn sub(self, other: SaFlags) -> SaFlags[src]

Returns the set difference of the two sets of flags.

impl Sub<EpollCreateFlags> for EpollCreateFlags[src]

type Output = EpollCreateFlags

fn sub(self, other: EpollCreateFlags) -> EpollCreateFlags[src]

Returns the set difference of the two sets of flags.

impl Sub<Mode> for Mode[src]

type Output = Mode

fn sub(self, other: Mode) -> Mode[src]

Returns the set difference of the two sets of flags.

impl Sub<AtFlags> for AtFlags[src]

type Output = AtFlags

fn sub(self, other: AtFlags) -> AtFlags[src]

Returns the set difference of the two sets of flags.

impl Sub<PollFlags> for PollFlags[src]

type Output = PollFlags

fn sub(self, other: PollFlags) -> PollFlags[src]

Returns the set difference of the two sets of flags.

impl Sub<ModuleInitFlags> for ModuleInitFlags[src]

type Output = ModuleInitFlags

fn sub(self, other: ModuleInitFlags) -> ModuleInitFlags[src]

Returns the set difference of the two sets of flags.

impl Sub<SockFlag> for SockFlag[src]

type Output = SockFlag

fn sub(self, other: SockFlag) -> SockFlag[src]

Returns the set difference of the two sets of flags.

impl Sub<CloneFlags> for CloneFlags[src]

type Output = CloneFlags

fn sub(self, other: CloneFlags) -> CloneFlags[src]

Returns the set difference of the two sets of flags.

impl Sub<InterfaceFlags> for InterfaceFlags[src]

type Output = InterfaceFlags

fn sub(self, other: InterfaceFlags) -> InterfaceFlags[src]

Returns the set difference of the two sets of flags.

impl Sub<MsgFlags> for MsgFlags[src]

type Output = MsgFlags

fn sub(self, other: MsgFlags) -> MsgFlags[src]

Returns the set difference of the two sets of flags.

impl Sub<EfdFlags> for EfdFlags[src]

type Output = EfdFlags

fn sub(self, other: EfdFlags) -> EfdFlags[src]

Returns the set difference of the two sets of flags.

impl Sub<InputFlags> for InputFlags[src]

type Output = InputFlags

fn sub(self, other: InputFlags) -> InputFlags[src]

Returns the set difference of the two sets of flags.

impl Sub<WaitPidFlag> for WaitPidFlag[src]

type Output = WaitPidFlag

fn sub(self, other: WaitPidFlag) -> WaitPidFlag[src]

Returns the set difference of the two sets of flags.

impl Sub<OutputFlags> for OutputFlags[src]

type Output = OutputFlags

fn sub(self, other: OutputFlags) -> OutputFlags[src]

Returns the set difference of the two sets of flags.

impl Sub<MQ_OFlag> for MQ_OFlag[src]

type Output = MQ_OFlag

fn sub(self, other: MQ_OFlag) -> MQ_OFlag[src]

Returns the set difference of the two sets of flags.

impl Sub<LocalFlags> for LocalFlags[src]

type Output = LocalFlags

fn sub(self, other: LocalFlags) -> LocalFlags[src]

Returns the set difference of the two sets of flags.

impl Sub<DeleteModuleFlags> for DeleteModuleFlags[src]

type Output = DeleteModuleFlags

fn sub(self, other: DeleteModuleFlags) -> DeleteModuleFlags[src]

Returns the set difference of the two sets of flags.

impl Sub<EpollFlags> for EpollFlags[src]

type Output = EpollFlags

fn sub(self, other: EpollFlags) -> EpollFlags[src]

Returns the set difference of the two sets of flags.

impl Sub<Options> for Options[src]

type Output = Options

fn sub(self, other: Options) -> Options[src]

Returns the set difference of the two sets of flags.

impl Sub<SfdFlags> for SfdFlags[src]

type Output = SfdFlags

fn sub(self, other: SfdFlags) -> SfdFlags[src]

Returns the set difference of the two sets of flags.

impl Sub<FdFlag> for FdFlag[src]

type Output = FdFlag

fn sub(self, other: FdFlag) -> FdFlag[src]

Returns the set difference of the two sets of flags.

impl Sub<MntFlags> for MntFlags[src]

type Output = MntFlags

fn sub(self, other: MntFlags) -> MntFlags[src]

Returns the set difference of the two sets of flags.

impl Sub<ProtFlags> for ProtFlags[src]

type Output = ProtFlags

fn sub(self, other: ProtFlags) -> ProtFlags[src]

Returns the set difference of the two sets of flags.

impl Sub<FallocateFlags> for FallocateFlags[src]

type Output = FallocateFlags

fn sub(self, other: FallocateFlags) -> FallocateFlags[src]

Returns the set difference of the two sets of flags.

impl Sub<ControlFlags> for ControlFlags[src]

type Output = ControlFlags

fn sub(self, other: ControlFlags) -> ControlFlags[src]

Returns the set difference of the two sets of flags.

impl Sub<MemFdCreateFlag> for MemFdCreateFlag[src]

type Output = MemFdCreateFlag

fn sub(self, other: MemFdCreateFlag) -> MemFdCreateFlag[src]

Returns the set difference of the two sets of flags.

impl Sub<OFlag> for OFlag[src]

type Output = OFlag

fn sub(self, other: OFlag) -> OFlag[src]

Returns the set difference of the two sets of flags.

impl Sub<FsFlags> for FsFlags[src]

type Output = FsFlags

fn sub(self, other: FsFlags) -> FsFlags[src]

Returns the set difference of the two sets of flags.

impl Sub<InitFlags> for InitFlags[src]

type Output = InitFlags

fn sub(self, other: InitFlags) -> InitFlags[src]

Returns the set difference of the two sets of flags.

impl Sub<MsFlags> for MsFlags[src]

type Output = MsFlags

fn sub(self, other: MsFlags) -> MsFlags[src]

Returns the set difference of the two sets of flags.

impl Sub<SealFlag> for SealFlag[src]

type Output = SealFlag

fn sub(self, other: SealFlag) -> SealFlag[src]

Returns the set difference of the two sets of flags.

impl Sub<SFlag> for SFlag[src]

type Output = SFlag

fn sub(self, other: SFlag) -> SFlag[src]

Returns the set difference of the two sets of flags.

impl Sub<MapFlags> for MapFlags[src]

type Output = MapFlags

fn sub(self, other: MapFlags) -> MapFlags[src]

Returns the set difference of the two sets of flags.

impl Sub<AddWatchFlags> for AddWatchFlags[src]

type Output = AddWatchFlags

fn sub(self, other: AddWatchFlags) -> AddWatchFlags[src]

Returns the set difference of the two sets of flags.

impl Sub<AccessFlags> for AccessFlags[src]

type Output = AccessFlags

fn sub(self, other: AccessFlags) -> AccessFlags[src]

Returns the set difference of the two sets of flags.

impl Sub<SpliceFFlags> for SpliceFFlags[src]

type Output = SpliceFFlags

fn sub(self, other: SpliceFFlags) -> SpliceFFlags[src]

Returns the set difference of the two sets of flags.

impl Sub<TimeVal> for TimeVal

type Output = TimeVal

impl Sub<Mode> for Mode[src]

type Output = Mode

fn sub(self, other: Mode) -> Mode[src]

Returns the set difference of the two sets of flags.

impl Sub<Capability> for Capability[src]

type Output = Capability

fn sub(self, other: Capability) -> Capability[src]

Returns the set difference of the two sets of flags.

impl Sub<DndAction> for DndAction[src]

type Output = DndAction

fn sub(self, other: DndAction) -> DndAction[src]

Returns the set difference of the two sets of flags.

impl Sub<Transient> for Transient[src]

type Output = Transient

fn sub(self, other: Transient) -> Transient[src]

Returns the set difference of the two sets of flags.

impl Sub<Resize> for Resize[src]

type Output = Resize

fn sub(self, other: Resize) -> Resize[src]

Returns the set difference of the two sets of flags.

impl Sub<PollOpt> for PollOpt[src]

type Output = PollOpt

impl<T> Sub<T> for Ready where
    T: Into<Ready>, 
[src]

type Output = Ready

impl Sub<UnixReady> for UnixReady[src]

type Output = UnixReady

impl Sub<ContentHint> for ContentHint[src]

type Output = ContentHint

fn sub(self, other: ContentHint) -> ContentHint[src]

Returns the set difference of the two sets of flags.

impl Sub<Anchor> for Anchor[src]

type Output = Anchor

fn sub(self, other: Anchor) -> Anchor[src]

Returns the set difference of the two sets of flags.

impl Sub<ConstraintAdjustment> for ConstraintAdjustment[src]

type Output = ConstraintAdjustment

fn sub(self, other: ConstraintAdjustment) -> ConstraintAdjustment[src]

Returns the set difference of the two sets of flags.

impl Sub<ConstraintAdjustment> for ConstraintAdjustment[src]

type Output = ConstraintAdjustment

fn sub(self, other: ConstraintAdjustment) -> ConstraintAdjustment[src]

Returns the set difference of the two sets of flags.

impl Sub<Anchor> for Anchor[src]

type Output = Anchor

fn sub(self, other: Anchor) -> Anchor[src]

Returns the set difference of the two sets of flags.

impl Sub<Flags> for Flags[src]

type Output = Flags

fn sub(self, other: Flags) -> Flags[src]

Returns the set difference of the two sets of flags.

impl Sub<Gravity> for Gravity[src]

type Output = Gravity

fn sub(self, other: Gravity) -> Gravity[src]

Returns the set difference of the two sets of flags.

impl<'a, T> Sub<&'a T> for Ratio<T> where
    T: Clone + Integer
[src]

type Output = Ratio<T>

impl<'a, T> Sub<T> for &'a Ratio<T> where
    T: Clone + Integer
[src]

type Output = Ratio<T>

impl<'a, 'b, T> Sub<&'b Ratio<T>> for &'a Ratio<T> where
    T: Clone + Integer
[src]

type Output = Ratio<T>

impl<T> Sub<Ratio<T>> for Ratio<T> where
    T: Clone + Integer
[src]

type Output = Ratio<T>

impl<T> Sub<T> for Ratio<T> where
    T: Clone + Integer
[src]

type Output = Ratio<T>

impl<'a, T> Sub<Ratio<T>> for &'a Ratio<T> where
    T: Clone + Integer
[src]

type Output = Ratio<T>

impl<'a, T> Sub<&'a Ratio<T>> for Ratio<T> where
    T: Clone + Integer
[src]

type Output = Ratio<T>

impl<'a, 'b, T> Sub<&'b T> for &'a Ratio<T> where
    T: Clone + Integer
[src]

type Output = Ratio<T>

impl Sub<Transformations> for Transformations[src]

type Output = Transformations

fn sub(self, other: Transformations) -> Transformations[src]

Returns the set difference of the two sets of flags.

impl<N> Sub<Vector<N>> for Vector<N> where
    N: Sub<N, Output = N>, 
[src]

type Output = Vector<N>

impl<N> Sub<Vector<N>> for Point<N> where
    N: Sub<N, Output = N>, 
[src]

type Output = Point<N>

impl<N> Sub<Point<N>> for Point<N> where
    N: Sub<N, Output = N>, 
[src]

type Output = Vector<N>

impl Sub<Point> for Point

type Output = Point

fn sub(self, rhs: Point) -> Point

Subtract rhs.x from x, rhs.y from y.

let p1 = point(1.0, 2.0) - point(2.0, 1.5);

assert!((p1.x - -1.0).abs() <= core::f32::EPSILON);
assert!((p1.y - 0.5).abs() <= core::f32::EPSILON);

impl Sub<Op> for Op[src]

type Output = Op

fn sub(self, other: Op) -> Op[src]

Returns the set difference of the two sets of flags.

impl Sub<EventMask> for EventMask[src]

type Output = EventMask

fn sub(self, other: EventMask) -> EventMask[src]

Returns the set difference of the two sets of flags.

impl Sub<WatchMask> for WatchMask[src]

type Output = WatchMask

fn sub(self, other: WatchMask) -> WatchMask[src]

Returns the set difference of the two sets of flags.

Loading content...

Implementors

impl<'_, '_, T, S> Sub<&'_ HashSet<T, S>> for &'_ geng_core::prelude::HashSet<T, S> where
    S: BuildHasher + Default,
    T: Eq + Hash + Clone
[src]

type Output = HashSet<T, S>

fn sub(self, rhs: &HashSet<T, S>) -> HashSet<T, S>[src]

Returns the difference of self and rhs as a new HashSet<T, S>.

Examples

use std::collections::HashSet;

let a: HashSet<_> = vec![1, 2, 3].into_iter().collect();
let b: HashSet<_> = vec![3, 4, 5].into_iter().collect();

let set = &a - &b;

let mut i = 0;
let expected = [1, 2];
for x in &set {
    assert!(expected.contains(x));
    i += 1;
}
assert_eq!(i, expected.len());

impl<T> Sub<Mat4<T>> for Mat4<T> where
    T: Num + Copy
[src]

type Output = Mat4<T>

impl<T> Sub<RealImpl<T>> for RealImpl<T> where
    T: Float
[src]

type Output = RealImpl<T>

impl<T> Sub<Vec2<T>> for Vec2<T> where
    T: Sub<T, Output = T>, 
[src]

type Output = Vec2<T>

impl<T> Sub<Vec3<T>> for Vec3<T> where
    T: Sub<T, Output = T>, 
[src]

type Output = Vec3<T>

impl<T> Sub<Vec4<T>> for Vec4<T> where
    T: Sub<T, Output = T>, 
[src]

type Output = Vec4<T>

Loading content...