1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
//! The `order` module provides implementations of `operator::CrossoverOp` for
//! permutation encoded `genetic::Genotype`s. Crossover of permutation encoded
//! values must assure that the permutation does not invalidate the order
//! values.
//!
//! The provided `operator::CrossoverOp`s for permutation encoded values are:
//! * `OrderOneCrossover` (OX1)
//! * `PartiallyMappedCrossover` (PMX)

use std::collections::HashMap;

use crate::{
    genetic::{Children, Parents, ParentsSlice},
    operator::{CrossoverOp, GeneticOperator},
    random::{random_cut_points, Rng},
};

/// The `OrderOneCrossover` operator combines permutation encoded
/// `genetic::Genotype`s according the order one crossover scheme (OX1).
///
/// This crossover operator always creates as many child individuals as there
/// are individuals in the given `genetic::Parents` parameter.
#[allow(missing_copy_implementations)]
#[derive(Default, Clone, Debug, PartialEq)]
pub struct OrderOneCrossover {}

impl OrderOneCrossover {
    pub fn new() -> Self {
        OrderOneCrossover {}
    }
}

impl GeneticOperator for OrderOneCrossover {
    fn name() -> String {
        "Order-One-Crossover".to_string()
    }
}

impl CrossoverOp<Vec<usize>> for OrderOneCrossover {
    fn crossover<R>(&self, parents: Parents<Vec<usize>>, rng: &mut R) -> Children<Vec<usize>>
    where
        R: Rng + Sized,
    {
        multi_parents_cyclic_crossover(&parents, order_one_crossover, rng)
    }
}

/// The `PartiallyMappedCrossover` operator combines permutation encoded
/// `genetic::Genotype`s according the partially mapped crossover scheme (PMX).
///
/// This crossover operator always creates as many child individuals as there
/// are individuals in the given `genetic::Parents` parameter.
#[allow(missing_copy_implementations)]
#[derive(Default, Clone, Debug, PartialEq)]
pub struct PartiallyMappedCrossover {}

impl PartiallyMappedCrossover {
    pub fn new() -> Self {
        PartiallyMappedCrossover {}
    }
}

impl GeneticOperator for PartiallyMappedCrossover {
    fn name() -> String {
        "Partially-Mapped-Crossover".to_string()
    }
}

impl CrossoverOp<Vec<usize>> for PartiallyMappedCrossover {
    fn crossover<R>(&self, parents: Parents<Vec<usize>>, rng: &mut R) -> Children<Vec<usize>>
    where
        R: Rng + Sized,
    {
        multi_parents_cyclic_crossover(&parents, partial_mapped_crossover, rng)
    }
}

fn multi_parents_cyclic_crossover<'a, FN, R>(
    parents: ParentsSlice<'a, Vec<usize>>,
    crossover: FN,
    rng: &mut R,
) -> Children<Vec<usize>>
where
    FN: Fn(&'a [usize], &'a [usize], usize, usize) -> Vec<usize>,
    R: Rng + Sized,
{
    let parents_size = parents.len();
    let genome_length = parents[0].len();
    // breed one child for each partner in parents
    let mut offspring: Vec<Vec<usize>> = Vec::with_capacity(parents_size);
    let mut p1_index = 0;
    let mut p2_index = 1;
    while p1_index < parents_size {
        let (cutpoint1, cutpoint2) = random_cut_points(rng, genome_length);
        let genome = crossover(&parents[p1_index], &parents[p2_index], cutpoint1, cutpoint2);
        offspring.push(genome);
        p1_index += 1;
        p2_index += 1;
        if p2_index >= parents_size {
            p2_index = 0;
        }
    }
    offspring
}

fn order_one_crossover(
    parent1: &[usize],
    parent2: &[usize],
    cutpoint1: usize,
    cutpoint2: usize,
) -> Vec<usize> {
    let genome_length = parent1.len();
    let mut genome: Vec<usize> = Vec::with_capacity(genome_length);
    // collect genes of parent1 located at cutpoint1 to cutpoint2
    let mut p1_slice: Vec<usize> = if cutpoint1 == 0 {
        parent1
            .iter()
            .take(cutpoint2 + 1)
            .map(ToOwned::to_owned)
            .collect()
    } else {
        parent1
            .iter()
            .skip(cutpoint1)
            .take(cutpoint2 - cutpoint1 + 1)
            .map(ToOwned::to_owned)
            .collect()
    };
    // collect genes from parent2 which are not in cut slice
    let mut p2_slice: Vec<usize> = Vec::with_capacity(genome_length);
    let mut p2_index = (cutpoint2 + 1) % genome_length;
    for _ in 0..genome_length {
        let p2_genome = parent2[p2_index];
        if p1_slice.iter().all(|g| p2_genome != *g) {
            p2_slice.push(p2_genome);
        }
        p2_index += 1;
        if p2_index >= genome_length {
            p2_index = 0;
        }
    }
    //    println!("{}-{} : {:?} <-> {:?}", cutpoint1, cutpoint2, p1_slice, p2_slice);
    // insert genes into child genome at correct position
    let right_offset = genome_length - cutpoint2 - 1;
    for locus in 0..genome_length {
        if locus < cutpoint1 {
            genome.push(p2_slice.remove(right_offset));
        } else if locus > cutpoint2 {
            genome.push(p2_slice.remove(0));
        } else {
            genome.push(p1_slice.remove(0));
        }
    }
    genome
}

fn partial_mapped_crossover(
    parent1: &[usize],
    parent2: &[usize],
    cutpoint1: usize,
    cutpoint2: usize,
) -> Vec<usize> {
    let genome_length = parent1.len();
    let mut genome: Vec<usize> = Vec::with_capacity(genome_length);
    // using HashMap as indexed array of variable length
    let mut result: HashMap<usize, usize> = HashMap::with_capacity(genome_length);
    // mapping of value to index
    let mut inverse: HashMap<usize, usize> = HashMap::with_capacity(genome_length);
    for (i, v2) in parent2.iter().enumerate() {
        result.insert(i, *v2);
        inverse.insert(*v2, i);
    }
    for (j, v1) in parent1
        .iter()
        .enumerate()
        .take(cutpoint2 + 1)
        .skip(cutpoint1)
    {
        let orig = result[&j];
        result.insert(j, *v1);
        let k = inverse[v1];
        result.insert(k, orig);
        inverse.insert(orig, k);
    }
    for i in 0..genome_length {
        genome.push(result[&i])
    }
    genome
}

#[cfg(test)]
mod tests {
    use super::*;
    use galvanic_assert::matchers::*;

    #[test]
    fn order_one_crossover_cutpoints_3_6() {
        let p1 = vec![1, 2, 3, 4, 5, 6, 7, 8, 9];
        let p2 = vec![9, 3, 7, 8, 2, 6, 5, 1, 4];

        let children = order_one_crossover(&p1, &p2, 3, 6);
        expect_that!(&children, eq(vec![3, 8, 2, 4, 5, 6, 7, 1, 9]));

        let children = order_one_crossover(&p2, &p1, 3, 6);
        expect_that!(&children, eq(vec![3, 4, 7, 8, 2, 6, 5, 9, 1]));
    }

    #[test]
    fn order_one_crossover_cutpoints_0_0() {
        let p1 = vec![1, 2, 3, 4, 5, 6, 7, 8, 9];
        let p2 = vec![9, 3, 7, 8, 2, 6, 5, 1, 4];

        let children = order_one_crossover(&p1, &p2, 0, 0);
        expect_that!(&children, eq(vec![1, 3, 7, 8, 2, 6, 5, 4, 9]));

        let children = order_one_crossover(&p2, &p1, 0, 0);
        expect_that!(&children, eq(vec![9, 2, 3, 4, 5, 6, 7, 8, 1]));
    }

    #[test]
    fn order_one_crossover_cutpoints_0_8() {
        let p1 = vec![1, 2, 3, 4, 5, 6, 7, 8, 9];
        let p2 = vec![9, 3, 7, 8, 2, 6, 5, 1, 4];

        let children = order_one_crossover(&p1, &p2, 0, 8);
        expect_that!(&children, eq(vec![1, 2, 3, 4, 5, 6, 7, 8, 9]));

        let children = order_one_crossover(&p2, &p1, 0, 8);
        expect_that!(&children, eq(vec![9, 3, 7, 8, 2, 6, 5, 1, 4]));
    }

    #[test]
    fn order_one_crossover_cutpoints_1_8() {
        let p1 = vec![1, 2, 3, 4, 5, 6, 7, 8, 9];
        let p2 = vec![9, 3, 7, 8, 2, 6, 5, 1, 4];

        let children = order_one_crossover(&p1, &p2, 1, 8);
        expect_that!(&children, eq(vec![1, 2, 3, 4, 5, 6, 7, 8, 9]));

        let children = order_one_crossover(&p2, &p1, 1, 8);
        expect_that!(&children, eq(vec![9, 3, 7, 8, 2, 6, 5, 1, 4]));
    }

    #[test]
    fn order_one_crossover_cutpoints_0_7() {
        let p1 = vec![1, 2, 3, 4, 5, 6, 7, 8, 9];
        let p2 = vec![9, 3, 7, 8, 2, 6, 5, 1, 4];

        let children = order_one_crossover(&p1, &p2, 0, 7);
        expect_that!(&children, eq(vec![1, 2, 3, 4, 5, 6, 7, 8, 9]));

        let children = order_one_crossover(&p2, &p1, 0, 7);
        expect_that!(&children, eq(vec![9, 3, 7, 8, 2, 6, 5, 1, 4]));
    }

    #[test]
    fn order_one_crossover_cutpoints_1_7() {
        let p1 = vec![1, 2, 3, 4, 5, 6, 7, 8, 9];
        let p2 = vec![1, 3, 7, 8, 2, 6, 5, 9, 4];

        let children = order_one_crossover(&p1, &p2, 1, 7);
        expect_that!(&children, eq(vec![9, 2, 3, 4, 5, 6, 7, 8, 1]));

        let children = order_one_crossover(&p2, &p1, 1, 7);
        expect_that!(&children, eq(vec![4, 3, 7, 8, 2, 6, 5, 9, 1]));
    }

    #[test]
    fn partial_mapped_crossover_cutpoints_3_6() {
        let p1 = vec![1, 2, 3, 4, 5, 6, 7, 8, 9];
        let p2 = vec![9, 3, 7, 8, 2, 6, 5, 1, 4];

        let children = partial_mapped_crossover(&p1, &p2, 3, 6);
        expect_that!(&children, eq(vec![9, 3, 2, 4, 5, 6, 7, 1, 8]));

        let children = partial_mapped_crossover(&p2, &p1, 3, 6);
        expect_that!(&children, eq(vec![1, 7, 3, 8, 2, 6, 5, 4, 9]));
    }

    #[test]
    fn partial_mapped_crossover_cutpoints_0_0() {
        let p1 = vec![1, 2, 3, 4, 5, 6, 7, 8, 9];
        let p2 = vec![9, 3, 7, 8, 2, 6, 5, 1, 4];

        let children = partial_mapped_crossover(&p1, &p2, 0, 0);
        expect_that!(&children, eq(vec![1, 3, 7, 8, 2, 6, 5, 9, 4]));

        let children = partial_mapped_crossover(&p2, &p1, 0, 0);
        expect_that!(&children, eq(vec![9, 2, 3, 4, 5, 6, 7, 8, 1]));
    }

    #[test]
    fn partial_mapped_crossover_cutpoints_0_8() {
        let p1 = vec![1, 2, 3, 4, 5, 6, 7, 8, 9];
        let p2 = vec![9, 3, 7, 8, 2, 6, 5, 1, 4];

        let children = partial_mapped_crossover(&p1, &p2, 0, 8);
        expect_that!(&children, eq(vec![1, 2, 3, 4, 5, 6, 7, 8, 9]));

        let children = partial_mapped_crossover(&p2, &p1, 0, 8);
        expect_that!(&children, eq(vec![9, 3, 7, 8, 2, 6, 5, 1, 4]));
    }

    #[test]
    fn partial_mapped_crossover_cutpoints_1_8() {
        let p1 = vec![1, 2, 3, 4, 5, 6, 7, 8, 9];
        let p2 = vec![9, 3, 7, 8, 2, 6, 5, 1, 4];

        let children = partial_mapped_crossover(&p1, &p2, 1, 8);
        expect_that!(&children, eq(vec![1, 2, 3, 4, 5, 6, 7, 8, 9]));

        let children = partial_mapped_crossover(&p2, &p1, 1, 8);
        expect_that!(&children, eq(vec![9, 3, 7, 8, 2, 6, 5, 1, 4]));
    }

    #[test]
    fn partial_mapped_crossover_cutpoints_0_7() {
        let p1 = vec![1, 2, 3, 4, 5, 6, 7, 8, 9];
        let p2 = vec![9, 3, 7, 8, 2, 6, 5, 1, 4];

        let children = partial_mapped_crossover(&p1, &p2, 0, 7);
        expect_that!(&children, eq(vec![1, 2, 3, 4, 5, 6, 7, 8, 9]));

        let children = partial_mapped_crossover(&p2, &p1, 0, 7);
        expect_that!(&children, eq(vec![9, 3, 7, 8, 2, 6, 5, 1, 4]));
    }

    #[test]
    fn partial_mapped_crossover_cutpoints_1_7() {
        let p1 = vec![1, 2, 3, 4, 5, 6, 7, 8, 9];
        let p2 = vec![1, 3, 7, 8, 2, 6, 5, 9, 4];

        let children = partial_mapped_crossover(&p1, &p2, 1, 7);
        expect_that!(&children, eq(vec![1, 2, 3, 4, 5, 6, 7, 8, 9]));

        let children = partial_mapped_crossover(&p2, &p1, 1, 7);
        expect_that!(&children, eq(vec![1, 3, 7, 8, 2, 6, 5, 9, 4]));
    }
}