1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
//! The `population` module defines the `Population` struct and the
//! `PopulationBuilder` for building random populations.
//!
//! To use the `PopulationBuilder` for building `Population`s of a custom
//! `genetic::Genotype` an implementation of the `GenomeBuilder` must be
//! provided. A `GenomeBuilder` can build new individuals of a custom
//! `genetic::Genotype`.
//!
//! Default implementations of `GenomeBuilder` are provided for the binary
//! encoded types `fixedbitset::FixedBitSet` and `Vec<bool>` and for the
//! value encoded type `Vec<T>`.
//!
//! ## Examples
//!
//! In the first example we build a population of binary encoded genomes. Each
//! genome has a length of 12 bits and the population comprises 200 individuals.
//!
//! ```rust
//! use genevo::prelude::*;
//! use genevo::population::BinaryEncodedGenomeBuilder;
//! #[cfg(feature = "fixedbitset")]
//! use fixedbitset::FixedBitSet;
//!
//! fn main() {
//!     #[cfg(feature = "fixedbitset")]
//!     let population: Population<FixedBitSet> = build_population()
//!         .with_genome_builder(BinaryEncodedGenomeBuilder::new(12))
//!         .of_size(200)
//!         .uniform_at_random();
//!     #[cfg(not(feature = "fixedbitset"))]
//!     let population: Population<Vec<bool>> = build_population()
//!         .with_genome_builder(BinaryEncodedGenomeBuilder::new(12))
//!         .of_size(200)
//!         .uniform_at_random();
//!
//!     println!("{:?}", population);
//!     assert_eq!(200, population.size());
//! }
//! ```
//!
//! The next example builds a population of value encoded genomes. Each genome
//! is represented by a `Vec` of 4 `i64` values in the range of -200 to +200.
//! The generated population consists of 200 individuals.
//!
//! ```rust
//! use genevo::prelude::*;
//! use genevo::population::ValueEncodedGenomeBuilder;
//!
//! fn main() {
//!     let population: Population<Vec<i64>> = build_population()
//!         .with_genome_builder(ValueEncodedGenomeBuilder::new(4, -200, 201))
//!         .of_size(200)
//!         .uniform_at_random();
//!
//!     println!("{:?}", population);
//!     assert_eq!(200, population.size());
//! }
//! ```
//!
//! In the following example we demonstrate how to generate a population
//! containing individuals of the custom type `Pos`. Each genome consists of 8
//! `Pos` values. The generated population comprises 200 individuals.
//!
//! ```rust
//! use genevo::prelude::*;
//!
//! #[derive(Clone,Debug,PartialEq)]
//! struct Pos {
//!     x: usize,
//!     y: usize,
//! }
//!
//! struct PositionsBuilder;
//!
//! impl GenomeBuilder<Vec<Pos>> for PositionsBuilder {
//!
//!     fn build_genome<R>(&self, _: usize, rng: &mut R) -> Vec<Pos>
//!         where R: Rng + Sized
//!     {
//!         (0..8).map(|row|
//!             Pos {
//!                 x: row,
//!                 y: rng.gen_range(0..8)
//!             }
//!         ).collect()
//!     }
//! }
//!
//! fn main() {
//!     let population: Population<Vec<Pos>> = build_population()
//!         .with_genome_builder(PositionsBuilder)
//!         .of_size(200)
//!         .uniform_at_random();
//!
//!     println!("{:?}", population);
//!     assert_eq!(200, population.size());
//! }
//! ```

use crate::{
    genetic::Genotype,
    random::{get_rng, random_seed, Prng, Rng, Seed},
};
use rand::distributions::uniform::SampleUniform;
#[cfg(not(target_arch = "wasm32"))]
use rayon;
use std::{fmt::Debug, marker::PhantomData};

/// The `Population` defines a set of possible solutions to the optimization
/// or search problem.
#[derive(Clone, Debug, PartialEq)]
pub struct Population<G>
where
    G: Genotype,
{
    /// The individuals or members of the population.
    individuals: Vec<G>,
}

impl<G> Population<G>
where
    G: Genotype,
{
    /// Creates a new `Population` with the given individuals as members.
    pub fn with_individuals(individuals: Vec<G>) -> Population<G> {
        Population { individuals }
    }

    /// Returns a slice of all individuals of this `Population`.
    pub fn individuals(&self) -> &[G] {
        &self.individuals
    }

    /// Returns the number of individuals in this `Population`.
    pub fn size(&self) -> usize {
        self.individuals.len()
    }
}

/// The `PopulationBuilder` creates a new `Population` with a number of newly
/// created individuals or just individual `genetic::Genotype`s.
///
/// Typically the `PopulationBuilder` is used to create the initial population
/// with randomly created individuals.
///
/// To use this `PopulationBuilder` for a custom `genetic::Genotype` the trait
/// `GenomeBuilder` must be implemented for the custom `genetic::Genotype`.
#[allow(missing_copy_implementations)]
#[derive(Clone, Debug, PartialEq)]
pub struct PopulationBuilder;

#[cfg(not(target_arch = "wasm32"))]
impl PopulationBuilder {
    fn build_population<B, G>(genome_builder: &B, size: usize, mut rng: Prng) -> Population<G>
    where
        B: GenomeBuilder<G>,
        G: Genotype,
    {
        if size < 50 {
            Population {
                individuals: (0..size)
                    .map(|index| genome_builder.build_genome(index, &mut rng))
                    .collect(),
            }
        } else {
            rng.jump();
            let rng1 = rng.clone();
            rng.jump();
            let rng2 = rng.clone();
            let left_size = size / 2;
            let right_size = size - left_size;
            let (left_population, right_population) = rayon::join(
                || Self::build_population(genome_builder, left_size, rng1),
                || Self::build_population(genome_builder, right_size, rng2),
            );
            let mut right_individuals = right_population.individuals;
            let mut individuals = left_population.individuals;
            individuals.append(&mut right_individuals);
            Population { individuals }
        }
    }
}

#[cfg(target_arch = "wasm32")]
impl PopulationBuilder {
    fn build_population<B, G>(genome_builder: &B, size: usize, mut rng: Prng) -> Population<G>
    where
        B: GenomeBuilder<G>,
        G: Genotype,
    {
        Population {
            individuals: (0..size)
                .map(|index| genome_builder.build_genome(index, &mut rng))
                .collect(),
        }
    }
}

/// A `GenomeBuilder` defines how to build individuals of a population for
/// custom `genetic::Genotype`s.
///
/// Typically the individuals are generated randomly.
pub trait GenomeBuilder<G>: Sync
where
    G: Genotype,
{
    /// Builds a new genome of type `genetic::Genotype` for the given
    /// `index` using the given random number generator `rng`.
    fn build_genome<R>(&self, index: usize, rng: &mut R) -> G
    where
        R: Rng + Sized;
}

#[allow(missing_copy_implementations)]
#[derive(Clone, Debug, PartialEq)]
pub struct EmptyPopulationBuilder {
    // Phantom data to prevent direct instantiation by lib users.
    _empty: PhantomData<bool>,
}

impl EmptyPopulationBuilder {
    pub fn with_genome_builder<B, G>(
        self,
        genome_builder: B,
    ) -> PopulationWithGenomeBuilderBuilder<B, G>
    where
        B: GenomeBuilder<G>,
        G: Genotype,
    {
        PopulationWithGenomeBuilderBuilder {
            _g: PhantomData,
            genome_builder,
        }
    }
}

#[derive(Clone, Debug, PartialEq)]
pub struct PopulationWithGenomeBuilderBuilder<B, G>
where
    B: GenomeBuilder<G>,
    G: Genotype,
{
    _g: PhantomData<G>,
    genome_builder: B,
}

impl<B, G> PopulationWithGenomeBuilderBuilder<B, G>
where
    B: GenomeBuilder<G>,
    G: Genotype,
{
    pub fn of_size(
        self,
        population_size: usize,
    ) -> PopulationWithGenomeBuilderAndSizeBuilder<B, G> {
        PopulationWithGenomeBuilderAndSizeBuilder {
            _g: self._g,
            genome_builder: self.genome_builder,
            population_size,
        }
    }
}

#[derive(Clone, Debug, PartialEq)]
pub struct PopulationWithGenomeBuilderAndSizeBuilder<B, G>
where
    B: GenomeBuilder<G>,
    G: Genotype,
{
    _g: PhantomData<G>,
    genome_builder: B,
    population_size: usize,
}

impl<B, G> PopulationWithGenomeBuilderAndSizeBuilder<B, G>
where
    B: GenomeBuilder<G>,
    G: Genotype,
{
    pub fn uniform_at_random(self) -> Population<G> {
        PopulationBuilder::build_population(
            &self.genome_builder,
            self.population_size,
            get_rng(random_seed()),
        )
    }

    pub fn using_seed(self, seed: Seed) -> Population<G> {
        PopulationBuilder::build_population(
            &self.genome_builder,
            self.population_size,
            get_rng(seed),
        )
    }
}

pub fn build_population() -> EmptyPopulationBuilder {
    EmptyPopulationBuilder {
        _empty: PhantomData,
    }
}

/// A `GenomeBuilder` that builds binary encoded `genetic::Genotype`s.
///
/// The default implementation can build `fixedbitset::FixedBitSet` genomes
/// and `Vec<bool>` genomes.
#[allow(missing_copy_implementations)]
#[derive(Clone, Debug, PartialEq)]
pub struct BinaryEncodedGenomeBuilder {
    genome_length: usize,
}

impl BinaryEncodedGenomeBuilder {
    /// Returns a new instance of the `BinaryEncodedGenomeBuilder` that builds
    /// binary encoded genomes of length specified by the given `genome_length`.
    pub fn new(genome_length: usize) -> Self {
        BinaryEncodedGenomeBuilder { genome_length }
    }
}

impl GenomeBuilder<Vec<bool>> for BinaryEncodedGenomeBuilder {
    fn build_genome<R>(&self, _index: usize, rng: &mut R) -> Vec<bool>
    where
        R: Rng + Sized,
    {
        (0..self.genome_length).map(|_| rng.gen()).collect()
    }
}

/// A `GenomeBuilder` that builds value encoded `genetic::Genotype`s.
///
/// The default implementation can build `Vec<T>` genomes. The values of
/// `T` are generated randomly in the range between a min value and a max
/// value.
#[derive(Clone, Debug, PartialEq)]
pub struct ValueEncodedGenomeBuilder<V> {
    genome_length: usize,
    min_value: V,
    max_value: V,
}

impl<V> ValueEncodedGenomeBuilder<V> {
    /// Returns a new instance of the `ValueEncodedGenomeBuilder` that builds
    /// value encoded genomes of length specified by the given `genome_length`.
    ///
    /// The values of the generated genomes are in the range between the given
    /// `min_value` (inclusive) and `max_value` (exclusive).
    pub fn new(genome_length: usize, min_value: V, max_value: V) -> Self {
        ValueEncodedGenomeBuilder {
            genome_length,
            min_value,
            max_value,
        }
    }
}

impl<V> GenomeBuilder<Vec<V>> for ValueEncodedGenomeBuilder<V>
where
    V: Clone + Debug + PartialEq + PartialOrd + SampleUniform + Send + Sync,
{
    fn build_genome<R>(&self, _: usize, rng: &mut R) -> Vec<V>
    where
        R: Rng + Sized,
    {
        (0..self.genome_length)
            .map(|_| rng.gen_range(self.min_value.clone()..self.max_value.clone()))
            .collect()
    }
}

#[cfg(feature = "fixedbitset")]
mod fixedbitset_genome_builder {
    use super::{BinaryEncodedGenomeBuilder, GenomeBuilder};
    use fixedbitset::FixedBitSet;
    use rand::Rng;

    impl GenomeBuilder<FixedBitSet> for BinaryEncodedGenomeBuilder {
        fn build_genome<R>(&self, _index: usize, rng: &mut R) -> FixedBitSet
        where
            R: Rng + Sized,
        {
            let mut genome = FixedBitSet::with_capacity(self.genome_length);
            for bit in 0..self.genome_length {
                genome.set(bit, rng.gen());
            }
            genome
        }
    }
}

#[cfg(feature = "smallvec")]
mod smallvec_genome_builder {
    use super::{BinaryEncodedGenomeBuilder, GenomeBuilder, ValueEncodedGenomeBuilder};
    use rand::{distributions::uniform::SampleUniform, Rng};
    use smallvec::{Array, SmallVec};
    use std::fmt::Debug;

    impl<A> GenomeBuilder<SmallVec<A>> for BinaryEncodedGenomeBuilder
    where
        A: Array<Item = bool> + Sync,
    {
        fn build_genome<R>(&self, _index: usize, rng: &mut R) -> SmallVec<A>
        where
            R: Rng + Sized,
        {
            (0..self.genome_length).map(|_| rng.gen()).collect()
        }
    }

    impl<A, V> GenomeBuilder<SmallVec<A>> for ValueEncodedGenomeBuilder<V>
    where
        A: Array<Item = V> + Sync,
        V: Clone + Debug + PartialEq + PartialOrd + SampleUniform + Send + Sync,
    {
        fn build_genome<R>(&self, _: usize, rng: &mut R) -> SmallVec<A>
        where
            R: Rng + Sized,
        {
            (0..self.genome_length)
                .map(|_| rng.gen_range(self.min_value.clone()..self.max_value.clone()))
                .collect()
        }
    }
}

#[cfg(test)]
mod tests;