1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
//! This crate implements a structure that can be used as a generic array type.use
//! Core Rust array types `[T; N]` can't be used generically with respect to `N`, so for example this:
//!
//! ```ignore
//! struct Foo<T, N> {
//!     data: [T; N]
//! }
//! ```	
//!
//! won't work.
//!
//! **generic-array** exports a `GenericArray<T,N>` type, which lets the above be implemented as:
//!
//! ```ignore
//! struct Foo<T, N: ArrayLength<T>> {
//!     data: GenericArray<T,N>
//! }
//! ```	
//!
//! The `ArrayLength<T>` trait is implemented by default for tuples consisting of binary structs `_1` and `_0`, like `((_1, _0), _1)`.
//! This allows one to define length types as, for example, `type _6 = ((_1, _1), _0)`.
//!
//! Currently, the crate implements its own numeric types. This might change in the future.
use std::marker::PhantomData;
use std::mem;
use std::ops::{Deref, DerefMut};
use std::slice;

/// Struct representing bit O
#[derive(Debug, Copy, Clone)]
pub struct _0;
/// Struct representing bit 1
#[derive(Debug, Copy, Clone)]
pub struct _1;

/// Nonnegative type-level integer, e.g., `((_1,_0),_1) = 0b101 = 5`.
/// Copied from shoggoth.rs
pub trait Nat {
    fn reify() -> u64;
}
impl Nat for _0 { fn reify() -> u64 { 0 } }
impl Nat for _1 { fn reify() -> u64 { 1 } }
impl<N: Nat> Nat for (N, _0) {
    fn reify() -> u64 { N::reify() << 1 }
}
impl<N: Nat> Nat for (N, _1) {
    fn reify() -> u64 { (N::reify() << 1) | 1 }
}

/// Trait making GenericArray work, marking types to be used as length of an array
pub unsafe trait ArrayLength<T> : Nat {
	/// Associated type representing the array type for the number
	type ArrayType;
}

unsafe impl<T> ArrayLength<T> for _0 {
	type ArrayType = ();
}
unsafe impl<T> ArrayLength<T> for _1 {
	type ArrayType = T;
}

/// Internal type used to generate a struct of appropriate size
#[allow(dead_code)]
#[repr(C)]
pub struct GenericArrayImplEven<T, U> {
	parent1: U,
	parent2: U,
	_marker: PhantomData<T>
}

/// Internal type used to generate a struct of appropriate size
#[allow(dead_code)]
#[repr(C)]
pub struct GenericArrayImplOdd<T, U> {
	parent1: U,
	parent2: U,
	data: T
}

unsafe impl<T, N: ArrayLength<T>> ArrayLength<T> for (N, _0) {
	type ArrayType = GenericArrayImplEven<T, N::ArrayType>;
}

unsafe impl<T, N: ArrayLength<T>> ArrayLength<T> for (N, _1) {
	type ArrayType = GenericArrayImplOdd<T, N::ArrayType>;
}

/// Struct representing a generic array - GenericArray<T, N> works like [T; N]
#[allow(dead_code)]
pub struct GenericArray<T, U: ArrayLength<T>> {
	data: U::ArrayType
}

impl<T, N> Deref for GenericArray<T, N> where N: ArrayLength<T> {
    type Target = [T];

    fn deref(&self) -> &[T] {
        unsafe {
            slice::from_raw_parts(self as *const Self as *const T, N::reify() as usize)
        }
    }
}

impl<T, N> DerefMut for GenericArray<T, N> where N: ArrayLength<T> {
    fn deref_mut(&mut self) -> &mut [T] {
        unsafe {
            slice::from_raw_parts_mut(self as *mut Self as *mut T, N::reify() as usize)
        }
    }
}

impl<T: Default, N> GenericArray<T, N> where N: ArrayLength<T> {

	/// Function constructing an array filled with default values
	pub fn new() -> GenericArray<T, N> {
		let mut res: GenericArray<T, N> = unsafe { mem::zeroed() };
		for i in 0..N::reify() as usize {
			res[i] = T::default();
		}
		res
	}

}

impl<T: Clone, N> GenericArray<T, N> where N: ArrayLength<T> {

	/// Function constructing an array from a slice; the length of the slice must be equal to the length of the array
	pub fn from_slice(list: &[T]) -> GenericArray<T, N> {
		assert_eq!(list.len(), N::reify() as usize);
		let mut res: GenericArray<T, N> = unsafe { mem::zeroed() };
		for i in 0..N::reify() as usize {
			res[i] = list[i].clone();
		}
		res
	}

}

#[cfg(test)]
mod test {
	use super::{_0, _1, GenericArray};

	type P97 = ((((((_1, _1), _0), _0), _0), _0), _1);

	#[test]
	fn test() {
		let mut list97 = [0; 97];
		for i in 0..97 {
			list97[i] = i as i32;
		}
	    let l : GenericArray<i32, P97> = GenericArray::from_slice(&list97);
	    assert_eq!(l[0], 0);
	    assert_eq!(l[1], 1);
	    assert_eq!(l[32], 32);
	    assert_eq!(l[56], 56);
	}	
}