1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
//! Implementation of the Gemina format.
//!
//! For more information see the [specification].
//!
//! [specification]: https://github.com/andreas19/gemina-spec#specification-of-the-gemina-format

use aes::{
    cipher::{block_padding::Pkcs7, BlockDecryptMut, BlockEncryptMut, KeyIvInit},
    Aes128, Aes192, Aes256,
};
use anyhow::{anyhow, bail, Result};
use cbc::{Decryptor, Encryptor};
use hmac::{Hmac, Mac};
use sha2::Sha256;

const IV_LEN: usize = 16; // bytes
const BLOCK_LEN: usize = 16; // bytes
const MAC_LEN: usize = 32; // bytes
const SALT_LEN: usize = 16; // bytes
const VERSION_LEN: usize = 1; // byte
const MIN_LEN: usize = VERSION_LEN + 2 * BLOCK_LEN + MAC_LEN;
const ITERATIONS: u32 = 100_000;

type HmacSha256 = Hmac<Sha256>;

/// Version enum.
#[derive(Clone, Copy)]
#[non_exhaustive]
pub enum Version {
    /// Version 1
    V1,
    /// Version 2
    V2,
    /// Version 3
    V3,
    /// Version 4
    V4,
}

struct VersionProperties {
    version: Version,
    version_byte: u8,
    enc_key_len: usize, // bytes
    mac_key_len: usize, // bytes
}

const VERSION_PROPS: [VersionProperties; 4] = [
    VersionProperties {
        version: Version::V1,
        version_byte: 0x8a,
        enc_key_len: 16,
        mac_key_len: 16,
    },
    VersionProperties {
        version: Version::V2,
        version_byte: 0x8b,
        enc_key_len: 16,
        mac_key_len: 32,
    },
    VersionProperties {
        version: Version::V3,
        version_byte: 0x8c,
        enc_key_len: 24,
        mac_key_len: 32,
    },
    VersionProperties {
        version: Version::V4,
        version_byte: 0x8d,
        enc_key_len: 32,
        mac_key_len: 32,
    },
];

/// Creates a secret key.
pub fn create_secret_key(version: Version) -> Result<Vec<u8>> {
    let props = &VERSION_PROPS[version as usize];
    let mut key = vec![0u8; props.enc_key_len + props.mac_key_len];
    getrandom::getrandom(&mut key)?;
    Ok(key)
}

/// Decrypts data using a secret key.
pub fn decrypt_with_key(key: &[u8], data: &[u8]) -> Result<Vec<u8>> {
    let props = version_properties(data, false)?;
    decrypt(key, data, props, false)
}

/// Decrypts data using a password.
pub fn decrypt_with_password(password: &[u8], data: &[u8]) -> Result<Vec<u8>> {
    let props = version_properties(data, true)?;
    let (key, _) = derive_key(password, &data[VERSION_LEN..VERSION_LEN + SALT_LEN], props)?;
    decrypt(&key, data, props, true)
}

/// Encrypts data using a secret key.
pub fn encrypt_with_key(key: &[u8], data: &[u8], version: Version) -> Result<Vec<u8>> {
    let props = &VERSION_PROPS[version as usize];
    encrypt(key, &[], data, props)
}

/// Encrypts data using a password.
pub fn encrypt_with_password(password: &[u8], data: &[u8], version: Version) -> Result<Vec<u8>> {
    let props = &VERSION_PROPS[version as usize];
    let (key, salt) = derive_key(password, &[], props)?;
    encrypt(&key, &salt, data, props)
}

/// Verifies encrypted data using a secret key.
pub fn verify_with_key(key: &[u8], data: &[u8]) -> bool {
    if let Ok(props) = version_properties(data, false) {
        verify(key, data, props)
    } else {
        false
    }
}

/// Verifies encrypted data using a password.
pub fn verify_with_password(password: &[u8], data: &[u8]) -> bool {
    if let Ok(props) = version_properties(data, true) {
        if let Ok((key, _)) =
            derive_key(password, &data[VERSION_LEN..VERSION_LEN + SALT_LEN], props)
        {
            return verify(&key, data, props);
        }
    }
    false
}

fn decrypt(key: &[u8], data: &[u8], props: &VersionProperties, with_salt: bool) -> Result<Vec<u8>> {
    let (enc_key, mac_key) = split_key(key, props)?;
    if !verify2(mac_key, data) {
        bail!("signature could not be verified")
    }
    let iv_start_pos = if with_salt {
        VERSION_LEN + SALT_LEN
    } else {
        VERSION_LEN
    };
    let ct_start_pos = iv_start_pos + IV_LEN;
    let iv = &data[iv_start_pos..ct_start_pos];
    let ct = &data[ct_start_pos..data.len() - MAC_LEN];
    let res =
        match props.version {
            Version::V1 | Version::V2 => Decryptor::<Aes128>::new(enc_key.into(), iv.into())
                .decrypt_padded_vec_mut::<Pkcs7>(ct),
            Version::V3 => Decryptor::<Aes192>::new(enc_key.into(), iv.into())
                .decrypt_padded_vec_mut::<Pkcs7>(ct),
            Version::V4 => Decryptor::<Aes256>::new(enc_key.into(), iv.into())
                .decrypt_padded_vec_mut::<Pkcs7>(ct),
        };
    Ok(res?)
}

fn encrypt(key: &[u8], salt: &[u8], data: &[u8], props: &VersionProperties) -> Result<Vec<u8>> {
    let (enc_key, mac_key) = split_key(key, props)?;
    let mut vec = vec![props.version_byte];
    vec.extend_from_slice(salt);
    let mut iv = [0u8; IV_LEN];
    getrandom::getrandom(&mut iv)?;
    vec.extend_from_slice(&iv[..]);
    let mut ct = match props.version {
        Version::V1 | Version::V2 => Encryptor::<Aes128>::new(enc_key.into(), &iv.into())
            .encrypt_padded_vec_mut::<Pkcs7>(data),
        Version::V3 => Encryptor::<Aes192>::new(enc_key.into(), &iv.into())
            .encrypt_padded_vec_mut::<Pkcs7>(data),
        Version::V4 => Encryptor::<Aes256>::new(enc_key.into(), &iv.into())
            .encrypt_padded_vec_mut::<Pkcs7>(data),
    };
    vec.append(&mut ct);
    let mut mac = HmacSha256::new_from_slice(mac_key).unwrap();
    mac.update(&vec);
    vec.extend_from_slice(mac.finalize().into_bytes().as_slice());
    Ok(vec)
}

fn verify(key: &[u8], data: &[u8], props: &VersionProperties) -> bool {
    if let Ok((_, mac_key)) = split_key(key, props) {
        verify2(mac_key, data)
    } else {
        false
    }
}

fn verify2(mac_key: &[u8], data: &[u8]) -> bool {
    let pos = data.len() - MAC_LEN;
    let mut mac = HmacSha256::new_from_slice(mac_key).unwrap();
    mac.update(&data[..pos]);
    mac.verify_slice(&data[pos..]).is_ok()
}

fn derive_key(
    password: &[u8],
    salt: &[u8],
    props: &VersionProperties,
) -> Result<(Vec<u8>, Vec<u8>)> {
    let mut key = vec![0u8; props.enc_key_len + props.mac_key_len];
    let salt_vec = if salt.is_empty() {
        let mut buf = [0u8; SALT_LEN];
        getrandom::getrandom(&mut buf)?;
        Vec::from(buf)
    } else {
        Vec::from(salt)
    };

    pbkdf2::pbkdf2::<HmacSha256>(password, &salt_vec, ITERATIONS, &mut key);
    Ok((key, salt_vec))
}

fn split_key<'a>(key: &'a [u8], props: &VersionProperties) -> Result<(&'a [u8], &'a [u8])> {
    if key.len() == props.enc_key_len + props.mac_key_len {
        Ok((&key[..props.enc_key_len], &key[props.enc_key_len..]))
    } else {
        Err(anyhow!("incorrect secret key size"))
    }
}

fn version_properties(data: &[u8], with_salt: bool) -> Result<&VersionProperties> {
    let min_len = if with_salt {
        MIN_LEN + SALT_LEN
    } else {
        MIN_LEN
    };
    if data.len() < min_len {
        bail!("not enough data");
    }
    for props in &VERSION_PROPS {
        if props.version_byte == data[0] {
            return Ok(props);
        }
    }
    Err(anyhow!("unknown version"))
}