gemachain-runtime 1.8.2

Gemachain runtime
Documentation
//! Persistent storage for accounts.
//!
//! For more information, see:
//!
//! <https://docs.gemachain.com/implemented-proposals/persistent-account-storage>

use log::*;
use memmap2::MmapMut;
use serde::{Deserialize, Serialize};
use gemachain_sdk::{
    account::{Account, AccountSharedData, ReadableAccount},
    clock::{Epoch, Slot},
    hash::Hash,
    pubkey::Pubkey,
};
use std::{
    borrow::Borrow,
    fs::{remove_file, OpenOptions},
    io,
    io::{Seek, SeekFrom, Write},
    mem,
    path::{Path, PathBuf},
    sync::atomic::{AtomicUsize, Ordering},
    sync::Mutex,
};

// Data placement should be aligned at the next boundary. Without alignment accessing the memory may
// crash on some architectures.
const ALIGN_BOUNDARY_OFFSET: usize = mem::size_of::<u64>();
macro_rules! u64_align {
    ($addr: expr) => {
        ($addr + (ALIGN_BOUNDARY_OFFSET - 1)) & !(ALIGN_BOUNDARY_OFFSET - 1)
    };
}

const MAXIMUM_APPEND_VEC_FILE_SIZE: usize = 16 * 1024 * 1024 * 1024; // 16 GiB

pub type StoredMetaWriteVersion = u64;

/// Meta contains enough context to recover the index from storage itself
/// This struct will be backed by mmaped and snapshotted data files.
/// So the data layout must be stable and consistent across the entire cluster!
#[derive(Clone, PartialEq, Debug)]
pub struct StoredMeta {
    /// global write version
    pub write_version: StoredMetaWriteVersion,
    /// key for the account
    pub pubkey: Pubkey,
    pub data_len: u64,
}

/// This struct will be backed by mmaped and snapshotted data files.
/// So the data layout must be stable and consistent across the entire cluster!
#[derive(Serialize, Deserialize, Clone, Debug, Default, Eq, PartialEq)]
pub struct AccountMeta {
    /// carats in the account
    pub carats: u64,
    /// the program that owns this account. If executable, the program that loads this account.
    pub owner: Pubkey,
    /// this account's data contains a loaded program (and is now read-only)
    pub executable: bool,
    /// the epoch at which this account will next owe rent
    pub rent_epoch: Epoch,
}

impl<'a, T: ReadableAccount> From<&'a T> for AccountMeta {
    fn from(account: &'a T) -> Self {
        Self {
            carats: account.carats(),
            owner: *account.owner(),
            executable: account.executable(),
            rent_epoch: account.rent_epoch(),
        }
    }
}

impl<'a, T: ReadableAccount> From<Option<&'a T>> for AccountMeta {
    fn from(account: Option<&'a T>) -> Self {
        match account {
            Some(account) => AccountMeta::from(account),
            None => AccountMeta::default(),
        }
    }
}

/// References to account data stored elsewhere. Getting an `Account` requires cloning
/// (see `StoredAccountMeta::clone_account()`).
#[derive(PartialEq, Debug)]
pub struct StoredAccountMeta<'a> {
    pub meta: &'a StoredMeta,
    /// account data
    pub account_meta: &'a AccountMeta,
    pub data: &'a [u8],
    pub offset: usize,
    pub stored_size: usize,
    pub hash: &'a Hash,
}

impl<'a> StoredAccountMeta<'a> {
    /// Return a new Account by copying all the data referenced by the `StoredAccountMeta`.
    pub fn clone_account(&self) -> AccountSharedData {
        AccountSharedData::from(Account {
            carats: self.account_meta.carats,
            owner: self.account_meta.owner,
            executable: self.account_meta.executable,
            rent_epoch: self.account_meta.rent_epoch,
            data: self.data.to_vec(),
        })
    }

    fn sanitize(&self) -> bool {
        self.sanitize_executable() && self.sanitize_carats()
    }

    fn sanitize_executable(&self) -> bool {
        // Sanitize executable to ensure higher 7-bits are cleared correctly.
        self.ref_executable_byte() & !1 == 0
    }

    fn sanitize_carats(&self) -> bool {
        // Sanitize 0 carats to ensure to be same as AccountSharedData::default()
        self.account_meta.carats != 0 || self.clone_account() == AccountSharedData::default()
    }

    fn ref_executable_byte(&self) -> &u8 {
        // Use extra references to avoid value silently clamped to 1 (=true) and 0 (=false)
        // Yes, this really happens; see test_new_from_file_crafted_executable
        let executable_bool: &bool = &self.account_meta.executable;
        // UNSAFE: Force to interpret mmap-backed bool as u8 to really read the actual memory content
        let executable_byte: &u8 = unsafe { &*(executable_bool as *const bool as *const u8) };
        executable_byte
    }
}

/// A thread-safe, file-backed block of memory used to store `Account` instances. Append operations
/// are serialized such that only one thread updates the internal `append_lock` at a time. No
/// restrictions are placed on reading. That is, one may read items from one thread while another
/// is appending new items.
#[derive(Debug, AbiExample)]
pub struct AppendVec {
    /// The file path where the data is stored.
    path: PathBuf,

    /// A file-backed block of memory that is used to store the data for each appended item.
    map: MmapMut,

    /// A lock used to serialize append operations.
    append_lock: Mutex<()>,

    /// The number of bytes used to store items, not the number of items.
    current_len: AtomicUsize,

    /// The number of bytes available for storing items.
    file_size: u64,

    /// True if the file should automatically be deleted when this AppendVec is dropped.
    remove_on_drop: bool,
}

impl Drop for AppendVec {
    fn drop(&mut self) {
        if self.remove_on_drop {
            if let Err(_e) = remove_file(&self.path) {
                // promote this to panic soon.
                // disabled due to many false positive warnings while running tests.
                // blocked by rpc's upgrade to jsonrpc v17
                //error!("AppendVec failed to remove {:?}: {:?}", &self.path, e);
            }
        }
    }
}

impl AppendVec {
    pub fn new(file: &Path, create: bool, size: usize) -> Self {
        let initial_len = 0;
        AppendVec::sanitize_len_and_size(initial_len, size).unwrap();

        if create {
            let _ignored = remove_file(file);
        }

        let mut data = OpenOptions::new()
            .read(true)
            .write(true)
            .create(create)
            .open(file)
            .map_err(|e| {
                panic!(
                    "Unable to {} data file {} in current dir({:?}): {:?}",
                    if create { "create" } else { "open" },
                    file.display(),
                    std::env::current_dir(),
                    e
                );
            })
            .unwrap();

        // Theoretical performance optimization: write a zero to the end of
        // the file so that we won't have to resize it later, which may be
        // expensive.
        data.seek(SeekFrom::Start((size - 1) as u64)).unwrap();
        data.write_all(&[0]).unwrap();
        data.seek(SeekFrom::Start(0)).unwrap();
        data.flush().unwrap();

        //UNSAFE: Required to create a Mmap
        let map = unsafe { MmapMut::map_mut(&data) };
        let map = map.unwrap_or_else(|e| {
            error!(
                "Failed to map the data file (size: {}): {}.\n
                    Please increase sysctl vm.max_map_count or equivalent for your platform.",
                size, e
            );
            std::process::exit(1);
        });

        AppendVec {
            path: file.to_path_buf(),
            map,
            // This mutex forces append to be single threaded, but concurrent with reads
            // See UNSAFE usage in `append_ptr`
            append_lock: Mutex::new(()),
            current_len: AtomicUsize::new(initial_len),
            file_size: size as u64,
            remove_on_drop: true,
        }
    }

    pub fn set_no_remove_on_drop(&mut self) {
        self.remove_on_drop = false;
    }

    pub fn new_empty_map(current_len: usize) -> Self {
        let map = MmapMut::map_anon(1).unwrap_or_else(|e| {
            error!(
                "Failed to create VM map for snapshot. {:?}\n
                        Please increase sysctl vm.max_map_count or equivalent for your platform.",
                e
            );
            std::process::exit(1);
        });

        AppendVec {
            path: PathBuf::from(String::default()),
            map,
            append_lock: Mutex::new(()),
            current_len: AtomicUsize::new(current_len),
            file_size: 0, // will be filled by set_file()
            remove_on_drop: true,
        }
    }

    fn sanitize_len_and_size(current_len: usize, file_size: usize) -> io::Result<()> {
        if file_size == 0 {
            Err(std::io::Error::new(
                std::io::ErrorKind::Other,
                format!("too small file size {} for AppendVec", file_size),
            ))
        } else if file_size > MAXIMUM_APPEND_VEC_FILE_SIZE {
            Err(std::io::Error::new(
                std::io::ErrorKind::Other,
                format!("too large file size {} for AppendVec", file_size),
            ))
        } else if current_len > file_size {
            Err(std::io::Error::new(
                std::io::ErrorKind::Other,
                format!("current_len is larger than file size ({})", file_size),
            ))
        } else {
            Ok(())
        }
    }

    pub fn flush(&self) -> io::Result<()> {
        self.map.flush()
    }

    pub fn reset(&self) {
        // This mutex forces append to be single threaded, but concurrent with reads
        // See UNSAFE usage in `append_ptr`
        let _lock = self.append_lock.lock().unwrap();
        self.current_len.store(0, Ordering::Relaxed);
    }

    pub fn len(&self) -> usize {
        self.current_len.load(Ordering::Relaxed)
    }

    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    pub fn capacity(&self) -> u64 {
        self.file_size
    }

    pub fn file_name(slot: Slot, id: usize) -> String {
        format!("{}.{}", slot, id)
    }

    pub fn new_from_file<P: AsRef<Path>>(path: P, current_len: usize) -> io::Result<(Self, usize)> {
        let data = OpenOptions::new()
            .read(true)
            .write(true)
            .create(false)
            .open(&path)?;

        let file_size = std::fs::metadata(&path)?.len();
        AppendVec::sanitize_len_and_size(current_len, file_size as usize)?;

        let map = unsafe {
            let result = MmapMut::map_mut(&data);
            if result.is_err() {
                // for vm.max_map_count, error is: {code: 12, kind: Other, message: "Cannot allocate memory"}
                info!("memory map error: {:?}. This may be because vm.max_map_count is not set correctly.", result);
            }
            result?
        };

        let new = AppendVec {
            path: path.as_ref().to_path_buf(),
            map,
            append_lock: Mutex::new(()),
            current_len: AtomicUsize::new(current_len),
            file_size,
            remove_on_drop: true,
        };

        let (sanitized, num_accounts) = new.sanitize_layout_and_length();
        if !sanitized {
            return Err(std::io::Error::new(
                std::io::ErrorKind::Other,
                "incorrect layout/length/data",
            ));
        }

        Ok((new, num_accounts))
    }

    fn sanitize_layout_and_length(&self) -> (bool, usize) {
        let mut offset = 0;

        // This discards allocated accounts immediately after check at each loop iteration.
        //
        // This code should not reuse AppendVec.accounts() method as the current form or
        // extend it to be reused here because it would allow attackers to accumulate
        // some measurable amount of memory needlessly.
        let mut num_accounts = 0;
        while let Some((account, next_offset)) = self.get_account(offset) {
            if !account.sanitize() {
                return (false, num_accounts);
            }
            offset = next_offset;
            num_accounts += 1;
        }
        let aligned_current_len = u64_align!(self.current_len.load(Ordering::Relaxed));

        (offset == aligned_current_len, num_accounts)
    }

    /// Get a reference to the data at `offset` of `size` bytes if that slice
    /// doesn't overrun the internal buffer. Otherwise return None.
    /// Also return the offset of the first byte after the requested data that
    /// falls on a 64-byte boundary.
    fn get_slice(&self, offset: usize, size: usize) -> Option<(&[u8], usize)> {
        let (next, overflow) = offset.overflowing_add(size);
        if overflow || next > self.len() {
            return None;
        }
        let data = &self.map[offset..next];
        let next = u64_align!(next);

        Some((
            //UNSAFE: This unsafe creates a slice that represents a chunk of self.map memory
            //The lifetime of this slice is tied to &self, since it points to self.map memory
            unsafe { std::slice::from_raw_parts(data.as_ptr() as *const u8, size) },
            next,
        ))
    }

    /// Copy `len` bytes from `src` to the first 64-byte boundary after position `offset` of
    /// the internal buffer. Then update `offset` to the first byte after the copied data.
    fn append_ptr(&self, offset: &mut usize, src: *const u8, len: usize) {
        let pos = u64_align!(*offset);
        let data = &self.map[pos..(pos + len)];
        //UNSAFE: This mut append is safe because only 1 thread can append at a time
        //Mutex<()> guarantees exclusive write access to the memory occupied in
        //the range.
        unsafe {
            let dst = data.as_ptr() as *mut u8;
            std::ptr::copy(src, dst, len);
        };
        *offset = pos + len;
    }

    /// Copy each value in `vals`, in order, to the first 64-byte boundary after position `offset`.
    /// If there is sufficient space, then update `offset` and the internal `current_len` to the
    /// first byte after the copied data and return the starting position of the copied data.
    /// Otherwise return None and leave `offset` unchanged.
    fn append_ptrs_locked(&self, offset: &mut usize, vals: &[(*const u8, usize)]) -> Option<usize> {
        let mut end = *offset;
        for val in vals {
            end = u64_align!(end);
            end += val.1;
        }

        if (self.file_size as usize) < end {
            return None;
        }

        let pos = u64_align!(*offset);
        for val in vals {
            self.append_ptr(offset, val.0, val.1)
        }
        self.current_len.store(*offset, Ordering::Relaxed);
        Some(pos)
    }

    /// Return a reference to the type at `offset` if its data doesn't overrun the internal buffer.
    /// Otherwise return None. Also return the offset of the first byte after the requested data
    /// that falls on a 64-byte boundary.
    fn get_type<'a, T>(&self, offset: usize) -> Option<(&'a T, usize)> {
        let (data, next) = self.get_slice(offset, mem::size_of::<T>())?;
        let ptr: *const T = data.as_ptr() as *const T;
        //UNSAFE: The cast is safe because the slice is aligned and fits into the memory
        //and the lifetime of the &T is tied to self, which holds the underlying memory map
        Some((unsafe { &*ptr }, next))
    }

    /// Return account metadata for the account at `offset` if its data doesn't overrun
    /// the internal buffer. Otherwise return None. Also return the offset of the first byte
    /// after the requested data that falls on a 64-byte boundary.
    pub fn get_account<'a>(&'a self, offset: usize) -> Option<(StoredAccountMeta<'a>, usize)> {
        let (meta, next): (&'a StoredMeta, _) = self.get_type(offset)?;
        let (account_meta, next): (&'a AccountMeta, _) = self.get_type(next)?;
        let (hash, next): (&'a Hash, _) = self.get_type(next)?;
        let (data, next) = self.get_slice(next, meta.data_len as usize)?;
        let stored_size = next - offset;
        Some((
            StoredAccountMeta {
                meta,
                account_meta,
                data,
                offset,
                stored_size,
                hash,
            },
            next,
        ))
    }
    pub fn get_account_test(&self, offset: usize) -> Option<(StoredMeta, AccountSharedData)> {
        let (stored_account, _) = self.get_account(offset)?;
        let meta = stored_account.meta.clone();
        Some((meta, stored_account.clone_account()))
    }

    pub fn get_path(&self) -> PathBuf {
        self.path.clone()
    }

    /// Return account metadata for each account, starting from `offset`.
    pub fn accounts(&self, mut offset: usize) -> Vec<StoredAccountMeta> {
        let mut accounts = vec![];
        while let Some((account, next)) = self.get_account(offset) {
            accounts.push(account);
            offset = next;
        }
        accounts
    }

    /// Copy each account metadata, account and hash to the internal buffer.
    /// Return the starting offset of each account metadata.
    /// After each account is appended, the internal `current_len` is updated
    /// and will be available to other threads.
    pub fn append_accounts(
        &self,
        accounts: &[(StoredMeta, Option<&impl ReadableAccount>)],
        hashes: &[impl Borrow<Hash>],
    ) -> Vec<usize> {
        let _lock = self.append_lock.lock().unwrap();
        let mut offset = self.len();
        let mut rv = Vec::with_capacity(accounts.len());
        for ((stored_meta, account), hash) in accounts.iter().zip(hashes) {
            let meta_ptr = stored_meta as *const StoredMeta;
            let account_meta = AccountMeta::from(*account);
            let account_meta_ptr = &account_meta as *const AccountMeta;
            let data_len = stored_meta.data_len as usize;
            let data_ptr = account
                .map(|account| account.data())
                .unwrap_or_default()
                .as_ptr();
            let hash_ptr = hash.borrow().as_ref().as_ptr();
            let ptrs = [
                (meta_ptr as *const u8, mem::size_of::<StoredMeta>()),
                (account_meta_ptr as *const u8, mem::size_of::<AccountMeta>()),
                (hash_ptr as *const u8, mem::size_of::<Hash>()),
                (data_ptr, data_len),
            ];
            if let Some(res) = self.append_ptrs_locked(&mut offset, &ptrs) {
                rv.push(res)
            } else {
                break;
            }
        }

        // The last entry in this offset needs to be the u64 aligned offset, because that's
        // where the *next* entry will begin to be stored.
        rv.push(u64_align!(offset));

        rv
    }

    /// Copy the account metadata, account and hash to the internal buffer.
    /// Return the starting offset of the account metadata.
    /// After the account is appended, the internal `current_len` is updated.
    pub fn append_account(
        &self,
        storage_meta: StoredMeta,
        account: &AccountSharedData,
        hash: Hash,
    ) -> Option<usize> {
        let res = self.append_accounts(&[(storage_meta, Some(account))], &[&hash]);
        if res.len() == 1 {
            None
        } else {
            res.first().cloned()
        }
    }
}

pub mod test_utils {
    use super::StoredMeta;
    use rand::distributions::Alphanumeric;
    use rand::{thread_rng, Rng};
    use gemachain_sdk::account::AccountSharedData;
    use gemachain_sdk::pubkey::Pubkey;
    use std::fs::create_dir_all;
    use std::path::PathBuf;

    pub struct TempFile {
        pub path: PathBuf,
    }

    impl Drop for TempFile {
        fn drop(&mut self) {
            let mut path = PathBuf::new();
            std::mem::swap(&mut path, &mut self.path);
            let _ignored = std::fs::remove_file(path);
        }
    }

    pub fn get_append_vec_dir() -> String {
        std::env::var("FARF_DIR").unwrap_or_else(|_| "farf/append_vec_tests".to_string())
    }

    pub fn get_append_vec_path(path: &str) -> TempFile {
        let out_dir = get_append_vec_dir();
        let rand_string: String = thread_rng().sample_iter(&Alphanumeric).take(30).collect();
        let dir = format!("{}/{}", out_dir, rand_string);
        let mut buf = PathBuf::new();
        buf.push(&format!("{}/{}", dir, path));
        create_dir_all(dir).expect("Create directory failed");
        TempFile { path: buf }
    }

    pub fn create_test_account(sample: usize) -> (StoredMeta, AccountSharedData) {
        let data_len = sample % 256;
        let mut account = AccountSharedData::new(sample as u64, 0, &Pubkey::default());
        account.set_data((0..data_len).map(|_| data_len as u8).collect());
        let stored_meta = StoredMeta {
            write_version: 0,
            pubkey: Pubkey::default(),
            data_len: data_len as u64,
        };
        (stored_meta, account)
    }
}

#[cfg(test)]
pub mod tests {
    use super::test_utils::*;
    use super::*;
    use assert_matches::assert_matches;
    use rand::{thread_rng, Rng};
    use gemachain_sdk::{account::WritableAccount, timing::duration_as_ms};
    use std::time::Instant;

    impl AppendVec {
        fn append_account_test(&self, data: &(StoredMeta, AccountSharedData)) -> Option<usize> {
            self.append_account(data.0.clone(), &data.1, Hash::default())
        }
    }

    impl<'a> StoredAccountMeta<'a> {
        #[allow(clippy::cast_ref_to_mut)]
        fn set_data_len_unsafe(&self, new_data_len: u64) {
            // UNSAFE: cast away & (= const ref) to &mut to force to mutate append-only (=read-only) AppendVec
            unsafe {
                *(&self.meta.data_len as *const u64 as *mut u64) = new_data_len;
            }
        }

        fn get_executable_byte(&self) -> u8 {
            let executable_bool: bool = self.account_meta.executable;
            // UNSAFE: Force to interpret mmap-backed bool as u8 to really read the actual memory content
            let executable_byte: u8 = unsafe { std::mem::transmute::<bool, u8>(executable_bool) };
            executable_byte
        }

        #[allow(clippy::cast_ref_to_mut)]
        fn set_executable_as_byte(&self, new_executable_byte: u8) {
            // UNSAFE: Force to interpret mmap-backed &bool as &u8 to write some crafted value;
            unsafe {
                *(&self.account_meta.executable as *const bool as *mut u8) = new_executable_byte;
            }
        }
    }

    #[test]
    fn test_account_meta_default() {
        let def1 = AccountMeta::default();
        let def2 = AccountMeta::from(&Account::default());
        assert_eq!(&def1, &def2);
        let def2 = AccountMeta::from(&AccountSharedData::default());
        assert_eq!(&def1, &def2);
        let def2 = AccountMeta::from(Some(&AccountSharedData::default()));
        assert_eq!(&def1, &def2);
        let none: Option<&AccountSharedData> = None;
        let def2 = AccountMeta::from(none);
        assert_eq!(&def1, &def2);
    }

    #[test]
    fn test_account_meta_non_default() {
        let def1 = AccountMeta {
            carats: 1,
            owner: Pubkey::new_unique(),
            executable: true,
            rent_epoch: 3,
        };
        let def2_account = Account {
            carats: def1.carats,
            owner: def1.owner,
            executable: def1.executable,
            rent_epoch: def1.rent_epoch,
            data: Vec::new(),
        };
        let def2 = AccountMeta::from(&def2_account);
        assert_eq!(&def1, &def2);
        let def2 = AccountMeta::from(&AccountSharedData::from(def2_account.clone()));
        assert_eq!(&def1, &def2);
        let def2 = AccountMeta::from(Some(&AccountSharedData::from(def2_account)));
        assert_eq!(&def1, &def2);
    }

    #[test]
    #[should_panic(expected = "too small file size 0 for AppendVec")]
    fn test_append_vec_new_bad_size() {
        let path = get_append_vec_path("test_append_vec_new_bad_size");
        let _av = AppendVec::new(&path.path, true, 0);
    }

    #[test]
    fn test_append_vec_new_from_file_bad_size() {
        let file = get_append_vec_path("test_append_vec_new_from_file_bad_size");
        let path = &file.path;

        let _data = OpenOptions::new()
            .read(true)
            .write(true)
            .create(true)
            .open(&path)
            .expect("create a test file for mmap");

        let result = AppendVec::new_from_file(path, 0);
        assert_matches!(result, Err(ref message) if message.to_string() == *"too small file size 0 for AppendVec");
    }

    #[test]
    fn test_append_vec_sanitize_len_and_size_too_small() {
        const LEN: usize = 0;
        const SIZE: usize = 0;
        let result = AppendVec::sanitize_len_and_size(LEN, SIZE);
        assert_matches!(result, Err(ref message) if message.to_string() == *"too small file size 0 for AppendVec");
    }

    #[test]
    fn test_append_vec_sanitize_len_and_size_maximum() {
        const LEN: usize = 0;
        const SIZE: usize = 16 * 1024 * 1024 * 1024;
        let result = AppendVec::sanitize_len_and_size(LEN, SIZE);
        assert_matches!(result, Ok(_));
    }

    #[test]
    fn test_append_vec_sanitize_len_and_size_too_large() {
        const LEN: usize = 0;
        const SIZE: usize = 16 * 1024 * 1024 * 1024 + 1;
        let result = AppendVec::sanitize_len_and_size(LEN, SIZE);
        assert_matches!(result, Err(ref message) if message.to_string() == *"too large file size 17179869185 for AppendVec");
    }

    #[test]
    fn test_append_vec_sanitize_len_and_size_full_and_same_as_current_len() {
        const LEN: usize = 1024 * 1024;
        const SIZE: usize = 1024 * 1024;
        let result = AppendVec::sanitize_len_and_size(LEN, SIZE);
        assert_matches!(result, Ok(_));
    }

    #[test]
    fn test_append_vec_sanitize_len_and_size_larger_current_len() {
        const LEN: usize = 1024 * 1024 + 1;
        const SIZE: usize = 1024 * 1024;
        let result = AppendVec::sanitize_len_and_size(LEN, SIZE);
        assert_matches!(result, Err(ref message) if message.to_string() == *"current_len is larger than file size (1048576)");
    }

    #[test]
    fn test_append_vec_one() {
        let path = get_append_vec_path("test_append");
        let av = AppendVec::new(&path.path, true, 1024 * 1024);
        let account = create_test_account(0);
        let index = av.append_account_test(&account).unwrap();
        assert_eq!(av.get_account_test(index).unwrap(), account);
    }

    #[test]
    fn test_append_vec_data() {
        let path = get_append_vec_path("test_append_data");
        let av = AppendVec::new(&path.path, true, 1024 * 1024);
        let account = create_test_account(5);
        let index = av.append_account_test(&account).unwrap();
        assert_eq!(av.get_account_test(index).unwrap(), account);
        let account1 = create_test_account(6);
        let index1 = av.append_account_test(&account1).unwrap();
        assert_eq!(av.get_account_test(index).unwrap(), account);
        assert_eq!(av.get_account_test(index1).unwrap(), account1);
    }

    #[test]
    fn test_append_vec_append_many() {
        let path = get_append_vec_path("test_append_many");
        let av = AppendVec::new(&path.path, true, 1024 * 1024);
        let size = 1000;
        let mut indexes = vec![];
        let now = Instant::now();
        for sample in 0..size {
            let account = create_test_account(sample);
            let pos = av.append_account_test(&account).unwrap();
            assert_eq!(av.get_account_test(pos).unwrap(), account);
            indexes.push(pos)
        }
        trace!("append time: {} ms", duration_as_ms(&now.elapsed()),);

        let now = Instant::now();
        for _ in 0..size {
            let sample = thread_rng().gen_range(0, indexes.len());
            let account = create_test_account(sample);
            assert_eq!(av.get_account_test(indexes[sample]).unwrap(), account);
        }
        trace!("random read time: {} ms", duration_as_ms(&now.elapsed()),);

        let now = Instant::now();
        assert_eq!(indexes.len(), size);
        assert_eq!(indexes[0], 0);
        let mut accounts = av.accounts(indexes[0]);
        assert_eq!(accounts.len(), size);
        for (sample, v) in accounts.iter_mut().enumerate() {
            let account = create_test_account(sample);
            let recovered = v.clone_account();
            assert_eq!(recovered, account.1)
        }
        trace!(
            "sequential read time: {} ms",
            duration_as_ms(&now.elapsed()),
        );
    }

    #[test]
    fn test_new_from_file_crafted_zero_carat_account() {
        let file = get_append_vec_path("test_append");
        let path = &file.path;
        let mut av = AppendVec::new(path, true, 1024 * 1024);
        av.set_no_remove_on_drop();

        let pubkey = gemachain_sdk::pubkey::new_rand();
        let owner = Pubkey::default();
        let data_len = 3_u64;
        let mut account = AccountSharedData::new(0, data_len as usize, &owner);
        account.set_data(b"abc".to_vec());
        let stored_meta = StoredMeta {
            write_version: 0,
            pubkey,
            data_len,
        };
        let account_with_meta = (stored_meta, account);
        let index = av.append_account_test(&account_with_meta).unwrap();
        assert_eq!(av.get_account_test(index).unwrap(), account_with_meta);

        av.flush().unwrap();
        let accounts_len = av.len();
        drop(av);
        let result = AppendVec::new_from_file(path, accounts_len);
        assert_matches!(result, Err(ref message) if message.to_string() == *"incorrect layout/length/data");
    }

    #[test]
    fn test_new_from_file_crafted_data_len() {
        let file = get_append_vec_path("test_new_from_file_crafted_data_len");
        let path = &file.path;
        let mut av = AppendVec::new(path, true, 1024 * 1024);
        av.set_no_remove_on_drop();

        let crafted_data_len = 1;

        av.append_account_test(&create_test_account(10)).unwrap();

        let accounts = av.accounts(0);
        let account = accounts.first().unwrap();
        account.set_data_len_unsafe(crafted_data_len);
        assert_eq!(account.meta.data_len, crafted_data_len);

        // Reload accounts and observe crafted_data_len
        let accounts = av.accounts(0);
        let account = accounts.first().unwrap();
        assert_eq!(account.meta.data_len, crafted_data_len);

        av.flush().unwrap();
        let accounts_len = av.len();
        drop(av);
        let result = AppendVec::new_from_file(path, accounts_len);
        assert_matches!(result, Err(ref message) if message.to_string() == *"incorrect layout/length/data");
    }

    #[test]
    fn test_new_from_file_too_large_data_len() {
        let file = get_append_vec_path("test_new_from_file_too_large_data_len");
        let path = &file.path;
        let mut av = AppendVec::new(path, true, 1024 * 1024);
        av.set_no_remove_on_drop();

        let too_large_data_len = u64::max_value();
        av.append_account_test(&create_test_account(10)).unwrap();

        let accounts = av.accounts(0);
        let account = accounts.first().unwrap();
        account.set_data_len_unsafe(too_large_data_len);
        assert_eq!(account.meta.data_len, too_large_data_len);

        // Reload accounts and observe no account with bad offset
        let accounts = av.accounts(0);
        assert_matches!(accounts.first(), None);

        av.flush().unwrap();
        let accounts_len = av.len();
        drop(av);
        let result = AppendVec::new_from_file(path, accounts_len);
        assert_matches!(result, Err(ref message) if message.to_string() == *"incorrect layout/length/data");
    }

    #[test]
    fn test_new_from_file_crafted_executable() {
        let file = get_append_vec_path("test_new_from_crafted_executable");
        let path = &file.path;
        let mut av = AppendVec::new(path, true, 1024 * 1024);
        av.set_no_remove_on_drop();
        av.append_account_test(&create_test_account(10)).unwrap();
        {
            let mut executable_account = create_test_account(10);
            executable_account.1.set_executable(true);
            av.append_account_test(&executable_account).unwrap();
        }

        // reload accounts
        let accounts = av.accounts(0);

        // ensure false is 0u8 and true is 1u8 actually
        assert_eq!(*accounts[0].ref_executable_byte(), 0);
        assert_eq!(*accounts[1].ref_executable_byte(), 1);

        let account = &accounts[0];
        let crafted_executable = u8::max_value() - 1;

        account.set_executable_as_byte(crafted_executable);

        // reload crafted accounts
        let accounts = av.accounts(0);
        let account = accounts.first().unwrap();

        // we can observe crafted value by ref
        {
            let executable_bool: &bool = &account.account_meta.executable;
            // Depending on use, *executable_bool can be truthy or falsy due to direct memory manipulation
            // assert_eq! thinks *executable_bool is equal to false but the if condition thinks it's not, contradictorily.
            assert!(!*executable_bool);
            const FALSE: bool = false; // keep clippy happy
            if *executable_bool == FALSE {
                panic!("This didn't occur if this test passed.");
            }
            assert_eq!(*account.ref_executable_byte(), crafted_executable);
        }

        // we can NOT observe crafted value by value
        {
            let executable_bool: bool = account.account_meta.executable;
            assert!(!executable_bool);
            assert_eq!(account.get_executable_byte(), 0); // Wow, not crafted_executable!
        }

        av.flush().unwrap();
        let accounts_len = av.len();
        drop(av);
        let result = AppendVec::new_from_file(path, accounts_len);
        assert_matches!(result, Err(ref message) if message.to_string() == *"incorrect layout/length/data");
    }
}