pub struct Engine { /* private fields */ }
Expand description

core singleton class Engine inherits Object (manually managed).

Official documentation

See the documentation of this class in the Godot engine’s official documentation. The method descriptions are generated from it and typically contain code samples in GDScript, not Rust.

Class hierarchy

Engine inherits methods from:

Safety

All types in the Godot API have interior mutability in Rust parlance. To enforce that the official thread-safety guidelines are followed, the typestate pattern is used in the Ref and TRef smart pointers, and the Instance API. The typestate Ownership in these types tracks whether ownership is unique, shared, or exclusive to the current thread. For more information, see the type-level documentation on Ref.

Implementations§

source§

impl Engine

source

pub fn godot_singleton() -> &'static Self

Returns a reference to the singleton instance.

source

pub fn get_author_info(&self) -> Dictionary

Returns engine author information in a Dictionary. lead_developers - Array of Strings, lead developer names founders - Array of Strings, founder names project_managers - Array of Strings, project manager names developers - Array of Strings, developer names

Returns an Array of copyright information Dictionaries. name - String, component name parts - Array of Dictionaries {files, copyright, license} describing subsections of the component

source

pub fn get_donor_info(&self) -> Dictionary

Returns a Dictionary of Arrays of donor names. {platinum_sponsors, gold_sponsors, silver_sponsors, bronze_sponsors, mini_sponsors, gold_donors, silver_donors, bronze_donors}

source

pub fn get_frames_drawn(&self) -> i64

Returns the total number of frames drawn. On headless platforms, or if the render loop is disabled with --disable-render-loop via command line, get_frames_drawn always returns 0. See get_idle_frames.

source

pub fn get_frames_per_second(&self) -> f64

Returns the frames per second of the running game.

source

pub fn get_idle_frames(&self) -> i64

Sample code is GDScript unless otherwise noted.

Returns the total number of frames passed since engine initialization which is advanced on each idle frame, regardless of whether the render loop is enabled. See also get_frames_drawn and get_physics_frames. get_idle_frames can be used to run expensive logic less often without relying on a Timer:

func _process(_delta):
    if Engine.get_idle_frames() % 2 == 0:
        pass  # Run expensive logic only once every 2 idle (render) frames here.
source

pub fn iterations_per_second(&self) -> i64

The number of fixed iterations per second. This controls how often physics simulation and [Node._physics_process][Node::_physics_process] methods are run. This value should generally always be set to 60 or above, as Godot doesn’t interpolate the physics step. As a result, values lower than 60 will look stuttery. This value can be increased to make input more reactive or work around collision tunneling issues, but keep in mind doing so will increase CPU usage. See also target_fps and [member ProjectSettings.physics/common/physics_fps]. Note: Only 8 physics ticks may be simulated per rendered frame at most. If more than 8 physics ticks have to be simulated per rendered frame to keep up with rendering, the game will appear to slow down (even if delta is used consistently in physics calculations). Therefore, it is recommended not to increase Engine.iterations_per_second above 240. Otherwise, the game will slow down when the rendering framerate goes below 30 FPS.

source

pub fn get_license_info(&self) -> Dictionary

Returns Dictionary of licenses used by Godot and included third party components.

source

pub fn get_license_text(&self) -> GodotString

Returns Godot license text.

source

pub fn get_main_loop(&self) -> Option<Ref<MainLoop, Shared>>

Returns the main loop object (see MainLoop and SceneTree).

source

pub fn get_physics_frames(&self) -> i64

Sample code is GDScript unless otherwise noted.

Returns the total number of frames passed since engine initialization which is advanced on each physics frame. See also get_idle_frames. get_physics_frames can be used to run expensive logic less often without relying on a Timer:

func _physics_process(_delta):
    if Engine.get_physics_frames() % 2 == 0:
        pass  # Run expensive logic only once every 2 physics frames here.
source

pub fn get_physics_interpolation_fraction(&self) -> f64

Returns the fraction through the current physics tick we are at the time of rendering the frame. This can be used to implement fixed timestep interpolation.

source

pub fn physics_jitter_fix(&self) -> f64

Controls how much physics ticks are synchronized with real time. For 0 or less, the ticks are synchronized. Such values are recommended for network games, where clock synchronization matters. Higher values cause higher deviation of the in-game clock and real clock but smooth out framerate jitters. The default value of 0.5 should be fine for most; values above 2 could cause the game to react to dropped frames with a noticeable delay and are not recommended. Note: For best results, when using a custom physics interpolation solution, the physics jitter fix should be disabled by setting physics_jitter_fix to 0.

source

pub fn get_singleton(
    &self,
    name: impl Into<GodotString>
) -> Option<Ref<Object, Shared>>

Returns a global singleton with given name. Often used for plugins, e.g. GodotPayment on Android.

source

pub fn target_fps(&self) -> i64

The desired frames per second. If the hardware cannot keep up, this setting may not be respected. A value of 0 means no limit.

source

pub fn time_scale(&self) -> f64

Controls how fast or slow the in-game clock ticks versus the real life one. It defaults to 1.0. A value of 2.0 means the game moves twice as fast as real life, whilst a value of 0.5 means the game moves at half the regular speed.

source

pub fn get_version_info(&self) -> Dictionary

Sample code is GDScript unless otherwise noted.

Returns the current engine version information in a Dictionary. major - Holds the major version number as an int minor - Holds the minor version number as an int patch - Holds the patch version number as an int hex - Holds the full version number encoded as a hexadecimal int with one byte (2 places) per number (see example below) status - Holds the status (e.g. “beta”, “rc1”, “rc2”, … “stable”) as a String build - Holds the build name (e.g. “custom_build”) as a String hash - Holds the full Git commit hash as a String year - Holds the year the version was released in as an int string - major + minor + patch + status + build in a single String The hex value is encoded as follows, from left to right: one byte for the major, one byte for the minor, one byte for the patch version. For example, “3.1.12” would be 0x03010C. Note: It’s still an int internally, and printing it will give you its decimal representation, which is not particularly meaningful. Use hexadecimal literals for easy version comparisons from code:

if Engine.get_version_info().hex >= 0x030200:
    # Do things specific to version 3.2 or later
else:
    # Do things specific to versions before 3.2
source

pub fn has_singleton(&self, name: impl Into<GodotString>) -> bool

Returns true if a singleton with given name exists in global scope.

source

pub fn is_editor_hint(&self) -> bool

Sample code is GDScript unless otherwise noted.

If true, the script is currently running inside the editor. This is useful for tool scripts to conditionally draw editor helpers, or prevent accidentally running “game” code that would affect the scene state while in the editor:

if Engine.editor_hint:
    draw_gizmos()
else:
    simulate_physics()

See Running code in the editor in the documentation for more information. Note: To detect whether the script is run from an editor build (e.g. when pressing F5), use OS.has_feature with the "editor" argument instead. OS.has_feature("editor") will evaluate to true both when the code is running in the editor and when running the project from the editor, but it will evaluate to false when the code is run from an exported project.

source

pub fn is_in_physics_frame(&self) -> bool

Returns true if the game is inside the fixed process and physics phase of the game loop.

source

pub fn is_printing_error_messages(&self) -> bool

If false, stops printing error and warning messages to the console and editor Output log. This can be used to hide error and warning messages during unit test suite runs. This property is equivalent to the [member ProjectSettings.application/run/disable_stderr] project setting. Warning: If you set this to false anywhere in the project, important error messages may be hidden even if they are emitted from other scripts. If this is set to false in a tool script, this will also impact the editor itself. Do not report bugs before ensuring error messages are enabled (as they are by default). Note: This property does not impact the editor’s Errors tab when running a project from the editor.

source

pub fn set_editor_hint(&self, enabled: bool)

Sample code is GDScript unless otherwise noted.

If true, the script is currently running inside the editor. This is useful for tool scripts to conditionally draw editor helpers, or prevent accidentally running “game” code that would affect the scene state while in the editor:

if Engine.editor_hint:
    draw_gizmos()
else:
    simulate_physics()

See Running code in the editor in the documentation for more information. Note: To detect whether the script is run from an editor build (e.g. when pressing F5), use OS.has_feature with the "editor" argument instead. OS.has_feature("editor") will evaluate to true both when the code is running in the editor and when running the project from the editor, but it will evaluate to false when the code is run from an exported project.

source

pub fn set_iterations_per_second(&self, iterations_per_second: i64)

The number of fixed iterations per second. This controls how often physics simulation and [Node._physics_process][Node::_physics_process] methods are run. This value should generally always be set to 60 or above, as Godot doesn’t interpolate the physics step. As a result, values lower than 60 will look stuttery. This value can be increased to make input more reactive or work around collision tunneling issues, but keep in mind doing so will increase CPU usage. See also target_fps and [member ProjectSettings.physics/common/physics_fps]. Note: Only 8 physics ticks may be simulated per rendered frame at most. If more than 8 physics ticks have to be simulated per rendered frame to keep up with rendering, the game will appear to slow down (even if delta is used consistently in physics calculations). Therefore, it is recommended not to increase Engine.iterations_per_second above 240. Otherwise, the game will slow down when the rendering framerate goes below 30 FPS.

source

pub fn set_physics_jitter_fix(&self, physics_jitter_fix: f64)

Controls how much physics ticks are synchronized with real time. For 0 or less, the ticks are synchronized. Such values are recommended for network games, where clock synchronization matters. Higher values cause higher deviation of the in-game clock and real clock but smooth out framerate jitters. The default value of 0.5 should be fine for most; values above 2 could cause the game to react to dropped frames with a noticeable delay and are not recommended. Note: For best results, when using a custom physics interpolation solution, the physics jitter fix should be disabled by setting physics_jitter_fix to 0.

source

pub fn set_print_error_messages(&self, enabled: bool)

If false, stops printing error and warning messages to the console and editor Output log. This can be used to hide error and warning messages during unit test suite runs. This property is equivalent to the [member ProjectSettings.application/run/disable_stderr] project setting. Warning: If you set this to false anywhere in the project, important error messages may be hidden even if they are emitted from other scripts. If this is set to false in a tool script, this will also impact the editor itself. Do not report bugs before ensuring error messages are enabled (as they are by default). Note: This property does not impact the editor’s Errors tab when running a project from the editor.

source

pub fn set_target_fps(&self, target_fps: i64)

The desired frames per second. If the hardware cannot keep up, this setting may not be respected. A value of 0 means no limit.

source

pub fn set_time_scale(&self, time_scale: f64)

Controls how fast or slow the in-game clock ticks versus the real life one. It defaults to 1.0. A value of 2.0 means the game moves twice as fast as real life, whilst a value of 0.5 means the game moves at half the regular speed.

Methods from Deref<Target = Object>§

source

pub fn add_user_signal(
    &self,
    signal: impl Into<GodotString>,
    arguments: VariantArray
)

Adds a user-defined signal. Arguments are optional, but can be added as an Array of dictionaries, each containing name: String and type: int (see [enum Variant.Type]) entries.

Default Arguments
  • arguments - [ ]
source

pub unsafe fn call(
    &self,
    method: impl Into<GodotString>,
    varargs: &[Variant]
) -> Variant

Sample code is GDScript unless otherwise noted.

Calls the method on the object and returns the result. This method supports a variable number of arguments, so parameters are passed as a comma separated list. Example:

call("set", "position", Vector2(42.0, 0.0))

Note: In C#, the method name must be specified as snake_case if it is defined by a built-in Godot node. This doesn’t apply to user-defined methods where you should use the same convention as in the C# source (typically PascalCase).

Safety

This function bypasses Rust’s static type checks (aliasing, thread boundaries, calls to free(), …).

source

pub unsafe fn call_deferred(
    &self,
    method: impl Into<GodotString>,
    varargs: &[Variant]
) -> Variant

Sample code is GDScript unless otherwise noted.

Calls the method on the object during idle time. This method supports a variable number of arguments, so parameters are passed as a comma separated list. Example:

call_deferred("set", "position", Vector2(42.0, 0.0))

Note: In C#, the method name must be specified as snake_case if it is defined by a built-in Godot node. This doesn’t apply to user-defined methods where you should use the same convention as in the C# source (typically PascalCase).

Safety

This function bypasses Rust’s static type checks (aliasing, thread boundaries, calls to free(), …).

source

pub unsafe fn callv(
    &self,
    method: impl Into<GodotString>,
    arg_array: VariantArray
) -> Variant

Sample code is GDScript unless otherwise noted.

Calls the method on the object and returns the result. Contrarily to call, this method does not support a variable number of arguments but expects all parameters to be via a single Array.

callv("set", [ "position", Vector2(42.0, 0.0) ])
Safety

This function bypasses Rust’s static type checks (aliasing, thread boundaries, calls to free(), …).

source

pub fn can_translate_messages(&self) -> bool

Returns true if the object can translate strings. See set_message_translation and tr.

source

pub fn connect(
    &self,
    signal: impl Into<GodotString>,
    target: impl AsArg<Object>,
    method: impl Into<GodotString>,
    binds: VariantArray,
    flags: i64
) -> GodotResult

Sample code is GDScript unless otherwise noted.

Connects a signal to a method on a target object. Pass optional binds to the call as an Array of parameters. These parameters will be passed to the method after any parameter used in the call to emit_signal. Use flags to set deferred or one-shot connections. See ConnectFlags constants. A signal can only be connected once to a method. It will print an error if already connected, unless the signal was connected with CONNECT_REFERENCE_COUNTED. To avoid this, first, use is_connected to check for existing connections. If the target is destroyed in the game’s lifecycle, the connection will be lost. Examples:

connect("pressed", self, "_on_Button_pressed") # BaseButton signal
connect("text_entered", self, "_on_LineEdit_text_entered") # LineEdit signal
connect("hit", self, "_on_Player_hit", [ weapon_type, damage ]) # User-defined signal

An example of the relationship between binds passed to connect and parameters used when calling emit_signal:

connect("hit", self, "_on_Player_hit", [ weapon_type, damage ]) # weapon_type and damage are passed last
emit_signal("hit", "Dark lord", 5) # "Dark lord" and 5 are passed first
func _on_Player_hit(hit_by, level, weapon_type, damage):
    print("Hit by %s (lvl %d) with weapon %s for %d damage" % [hit_by, level, weapon_type, damage])
Default Arguments
  • binds - [ ]
  • flags - 0
source

pub fn disconnect(
    &self,
    signal: impl Into<GodotString>,
    target: impl AsArg<Object>,
    method: impl Into<GodotString>
)

Disconnects a signal from a method on the given target. If you try to disconnect a connection that does not exist, the method will print an error. Use is_connected to ensure that the connection exists.

source

pub fn emit_signal(
    &self,
    signal: impl Into<GodotString>,
    varargs: &[Variant]
) -> Variant

Sample code is GDScript unless otherwise noted.

Emits the given signal. The signal must exist, so it should be a built-in signal of this class or one of its parent classes, or a user-defined signal. This method supports a variable number of arguments, so parameters are passed as a comma separated list. Example:

emit_signal("hit", weapon_type, damage)
emit_signal("game_over")
source

pub fn get(&self, property: impl Into<GodotString>) -> Variant

Returns the Variant value of the given property. If the property doesn’t exist, this will return null. Note: In C#, the property name must be specified as snake_case if it is defined by a built-in Godot node. This doesn’t apply to user-defined properties where you should use the same convention as in the C# source (typically PascalCase).

source

pub fn get_class(&self) -> GodotString

Returns the object’s class as a String. See also is_class. Note: get_class does not take class_name declarations into account. If the object has a class_name defined, the base class name will be returned instead.

source

pub fn get_incoming_connections(&self) -> VariantArray

Returns an Array of dictionaries with information about signals that are connected to the object. Each Dictionary contains three String entries:

  • source is a reference to the signal emitter.
  • signal_name is the name of the connected signal.
  • method_name is the name of the method to which the signal is connected.
source

pub fn get_indexed(&self, property: impl Into<NodePath>) -> Variant

Gets the object’s property indexed by the given NodePath. The node path should be relative to the current object and can use the colon character (:) to access nested properties. Examples: "position:x" or "material:next_pass:blend_mode". Note: Even though the method takes NodePath argument, it doesn’t support actual paths to Nodes in the scene tree, only colon-separated sub-property paths. For the purpose of nodes, use Node.get_node_and_resource instead.

source

pub fn get_instance_id(&self) -> i64

Returns the object’s unique instance ID. This ID can be saved in EncodedObjectAsID, and can be used to retrieve the object instance with [method @GDScript.instance_from_id].

source

pub fn get_meta(
    &self,
    name: impl Into<GodotString>,
    default: impl OwnedToVariant
) -> Variant

Returns the object’s metadata entry for the given name. Throws error if the entry does not exist, unless default is not null (in which case the default value will be returned).

Default Arguments
  • default - null
source

pub fn get_meta_list(&self) -> PoolArray<GodotString>

Returns the object’s metadata as a PoolStringArray.

source

pub fn get_method_list(&self) -> VariantArray

Returns the object’s methods and their signatures as an Array.

source

pub fn get_property_list(&self) -> VariantArray

Returns the object’s property list as an Array of dictionaries. Each property’s Dictionary contain at least name: String and type: int (see [enum Variant.Type]) entries. Optionally, it can also include hint: int (see [PropertyHint][PropertyHint]), hint_string: String, and usage: int (see [PropertyUsageFlags][PropertyUsageFlags]).

source

pub fn get_script(&self) -> Option<Ref<Reference, Shared>>

Returns the object’s Script instance, or null if none is assigned.

source

pub fn get_signal_connection_list(
    &self,
    signal: impl Into<GodotString>
) -> VariantArray

Returns an Array of connections for the given signal.

source

pub fn get_signal_list(&self) -> VariantArray

Returns the list of signals as an Array of dictionaries.

source

pub fn has_meta(&self, name: impl Into<GodotString>) -> bool

Returns true if a metadata entry is found with the given name.

source

pub fn has_method(&self, method: impl Into<GodotString>) -> bool

Returns true if the object contains the given method.

source

pub fn has_signal(&self, signal: impl Into<GodotString>) -> bool

Returns true if the given signal exists.

source

pub fn has_user_signal(&self, signal: impl Into<GodotString>) -> bool

Returns true if the given user-defined signal exists. Only signals added using add_user_signal are taken into account.

source

pub fn is_blocking_signals(&self) -> bool

Returns true if signal emission blocking is enabled.

source

pub fn is_class(&self, class: impl Into<GodotString>) -> bool

Returns true if the object inherits from the given class. See also get_class. Note: is_class does not take class_name declarations into account. If the object has a class_name defined, is_class will return false for that name.

source

pub fn is_connected(
    &self,
    signal: impl Into<GodotString>,
    target: impl AsArg<Object>,
    method: impl Into<GodotString>
) -> bool

Returns true if a connection exists for a given signal, target, and method.

source

pub fn is_queued_for_deletion(&self) -> bool

Returns true if the Node.queue_free method was called for the object.

source

pub fn notification(&self, what: i64, reversed: bool)

Send a given notification to the object, which will also trigger a call to the [_notification][Self::_notification] method of all classes that the object inherits from. If reversed is true, [_notification][Self::_notification] is called first on the object’s own class, and then up to its successive parent classes. If reversed is false, [_notification][Self::_notification] is called first on the highest ancestor (Object itself), and then down to its successive inheriting classes.

Default Arguments
  • reversed - false
source

pub fn property_list_changed_notify(&self)

Notify the editor that the property list has changed, so that editor plugins can take the new values into account. Does nothing on export builds.

source

pub fn remove_meta(&self, name: impl Into<GodotString>)

Removes a given entry from the object’s metadata. See also set_meta.

source

pub fn set(&self, property: impl Into<GodotString>, value: impl OwnedToVariant)

Assigns a new value to the given property. If the property does not exist or the given value’s type doesn’t match, nothing will happen. Note: In C#, the property name must be specified as snake_case if it is defined by a built-in Godot node. This doesn’t apply to user-defined properties where you should use the same convention as in the C# source (typically PascalCase).

source

pub fn set_block_signals(&self, enable: bool)

If set to true, signal emission is blocked.

source

pub fn set_deferred(
    &self,
    property: impl Into<GodotString>,
    value: impl OwnedToVariant
)

Assigns a new value to the given property, after the current frame’s physics step. This is equivalent to calling set via call_deferred, i.e. call_deferred("set", property, value). Note: In C#, the property name must be specified as snake_case if it is defined by a built-in Godot node. This doesn’t apply to user-defined properties where you should use the same convention as in the C# source (typically PascalCase).

source

pub fn set_indexed(
    &self,
    property: impl Into<NodePath>,
    value: impl OwnedToVariant
)

Sample code is GDScript unless otherwise noted.

Assigns a new value to the property identified by the NodePath. The node path should be relative to the current object and can use the colon character (:) to access nested properties. Example:

set_indexed("position", Vector2(42, 0))
set_indexed("position:y", -10)
print(position) # (42, -10)
source

pub fn set_message_translation(&self, enable: bool)

Defines whether the object can translate strings (with calls to tr). Enabled by default.

source

pub fn set_meta(&self, name: impl Into<GodotString>, value: impl OwnedToVariant)

Adds, changes or removes a given entry in the object’s metadata. Metadata are serialized and can take any Variant value. To remove a given entry from the object’s metadata, use remove_meta. Metadata is also removed if its value is set to null. This means you can also use set_meta("name", null) to remove metadata for "name".

source

pub fn set_script(&self, script: impl AsArg<Reference>)

Assigns a script to the object. Each object can have a single script assigned to it, which are used to extend its functionality. If the object already had a script, the previous script instance will be freed and its variables and state will be lost. The new script’s [_init][Self::_init] method will be called.

source

pub fn to_string(&self) -> GodotString

Returns a String representing the object. If not overridden, defaults to "[ClassName:RID]". Override the method [_to_string][Self::_to_string] to customize the String representation.

source

pub fn tr(&self, message: impl Into<GodotString>) -> GodotString

Translates a message using translation catalogs configured in the Project Settings. Only works if message translation is enabled (which it is by default), otherwise it returns the message unchanged. See set_message_translation.

Trait Implementations§

source§

impl Debug for Engine

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl Deref for Engine

§

type Target = Object

The resulting type after dereferencing.
source§

fn deref(&self) -> &Object

Dereferences the value.
source§

impl DerefMut for Engine

source§

fn deref_mut(&mut self) -> &mut Object

Mutably dereferences the value.
source§

impl GodotObject for Engine

§

type Memory = ManuallyManaged

The memory management kind of this type. This modifies the behavior of the Ref smart pointer. See its type-level documentation for more information.
source§

fn class_name() -> &'static str

source§

fn null() -> Null<Self>

Creates an explicitly null reference of Self as a method argument. This makes type inference easier for the compiler compared to Option.
source§

fn cast<T>(&self) -> Option<&T>where
    T: GodotObject + SubClass<Self>,

Performs a dynamic reference downcast to target type. Read more
source§

fn upcast<T>(&self) -> &Twhere
    T: GodotObject,
    Self: SubClass<T>,

Performs a static reference upcast to a supertype that is guaranteed to be valid. Read more
source§

unsafe fn assume_shared(&self) -> Ref<Self, Shared>where
    Self: Sized,

Creates a persistent reference to the same Godot object with shared thread access. Read more
source§

unsafe fn assume_unique(&self) -> Ref<Self, Unique>where
    Self: Sized,

Creates a persistent reference to the same Godot object with unique access. Read more
source§

unsafe fn try_from_instance_id<'a>(id: i64) -> Option<TRef<'a, Self, Shared>>

Recovers a instance ID previously returned by Object::get_instance_id if the object is still alive. See also TRef::try_from_instance_id. Read more
source§

unsafe fn from_instance_id<'a>(id: i64) -> TRef<'a, Self, Shared>

Recovers a instance ID previously returned by Object::get_instance_id if the object is still alive, and panics otherwise. This does NOT guarantee that the resulting reference is safe to use. Read more
source§

impl Sealed for Engine

source§

impl Send for Engine

source§

impl SubClass<Object> for Engine

source§

impl Sync for Engine

Auto Trait Implementations§

Blanket Implementations§

source§

impl<T> Any for Twhere
    T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for Twhere
    T: ?Sized,

const: unstable · source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for Twhere
    T: ?Sized,

const: unstable · source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> From<T> for T

const: unstable · source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for Twhere
    U: From<T>,

const: unstable · source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T, U> TryFrom<U> for Twhere
    U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
const: unstable · source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for Twhere
    U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
const: unstable · source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
source§

impl<T> SubClass<T> for Twhere
    T: GodotObject,