1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
use core::borrow::Borrow;
use std::sync::Arc;

use log::warn;
use serde_bytes::ByteBuf;
use sled::Transactional;
use tokio::sync::Notify;

use garage_util::data::*;
use garage_util::error::*;

use garage_rpc::system::System;

use crate::crdt::Crdt;
use crate::gc::GcTodoEntry;
use crate::replication::*;
use crate::schema::*;

pub struct TableData<F: TableSchema, R: TableReplication> {
	system: Arc<System>,

	pub name: String,
	pub(crate) instance: F,
	pub(crate) replication: R,

	pub store: sled::Tree,

	pub(crate) merkle_tree: sled::Tree,
	pub(crate) merkle_todo: sled::Tree,
	pub(crate) merkle_todo_notify: Notify,
	pub(crate) gc_todo: sled::Tree,
}

impl<F, R> TableData<F, R>
where
	F: TableSchema,
	R: TableReplication,
{
	pub fn new(
		system: Arc<System>,
		name: String,
		instance: F,
		replication: R,
		db: &sled::Db,
	) -> Arc<Self> {
		let store = db
			.open_tree(&format!("{}:table", name))
			.expect("Unable to open DB tree");

		let merkle_tree = db
			.open_tree(&format!("{}:merkle_tree", name))
			.expect("Unable to open DB Merkle tree tree");
		let merkle_todo = db
			.open_tree(&format!("{}:merkle_todo", name))
			.expect("Unable to open DB Merkle TODO tree");

		let gc_todo = db
			.open_tree(&format!("{}:gc_todo_v2", name))
			.expect("Unable to open DB tree");

		Arc::new(Self {
			system,
			name,
			instance,
			replication,
			store,
			merkle_tree,
			merkle_todo,
			merkle_todo_notify: Notify::new(),
			gc_todo,
		})
	}

	// Read functions

	pub fn read_entry(&self, p: &F::P, s: &F::S) -> Result<Option<ByteBuf>, Error> {
		let tree_key = self.tree_key(p, s);
		if let Some(bytes) = self.store.get(&tree_key)? {
			Ok(Some(ByteBuf::from(bytes.to_vec())))
		} else {
			Ok(None)
		}
	}

	pub fn read_range(
		&self,
		p: &F::P,
		s: &Option<F::S>,
		filter: &Option<F::Filter>,
		limit: usize,
	) -> Result<Vec<Arc<ByteBuf>>, Error> {
		let partition_hash = p.hash();
		let first_key = match s {
			None => partition_hash.to_vec(),
			Some(sk) => self.tree_key(p, sk),
		};
		let mut ret = vec![];
		for item in self.store.range(first_key..) {
			let (key, value) = item?;
			if &key[..32] != partition_hash.as_slice() {
				break;
			}
			let keep = match filter {
				None => true,
				Some(f) => {
					let entry = self.decode_entry(value.as_ref())?;
					F::matches_filter(&entry, f)
				}
			};
			if keep {
				ret.push(Arc::new(ByteBuf::from(value.as_ref())));
			}
			if ret.len() >= limit {
				break;
			}
		}
		Ok(ret)
	}

	// Mutation functions
	// When changing this code, take care of propagating modifications correctly:
	// - When an entry is modified or deleted, call the updated() function
	//   on the table instance
	// - When an entry is modified or deleted, add it to the merkle updater's todo list.
	//   This has to be done atomically with the modification for the merkle updater
	//   to maintain consistency. The merkle updater must then be notified with todo_notify.
	// - When an entry is updated to be a tombstone, add it to the gc_todo tree

	pub(crate) fn update_many<T: Borrow<ByteBuf>>(&self, entries: &[T]) -> Result<(), Error> {
		for update_bytes in entries.iter() {
			self.update_entry(update_bytes.borrow().as_slice())?;
		}
		Ok(())
	}

	pub(crate) fn update_entry(&self, update_bytes: &[u8]) -> Result<(), Error> {
		let update = self.decode_entry(update_bytes)?;
		let tree_key = self.tree_key(update.partition_key(), update.sort_key());

		let changed = (&self.store, &self.merkle_todo).transaction(|(store, mkl_todo)| {
			let (old_entry, new_entry) = match store.get(&tree_key)? {
				Some(prev_bytes) => {
					let old_entry = self
						.decode_entry(&prev_bytes)
						.map_err(sled::transaction::ConflictableTransactionError::Abort)?;
					let mut new_entry = old_entry.clone();
					new_entry.merge(&update);
					(Some(old_entry), new_entry)
				}
				None => (None, update.clone()),
			};

			if Some(&new_entry) != old_entry.as_ref() {
				let new_bytes = rmp_to_vec_all_named(&new_entry)
					.map_err(Error::RmpEncode)
					.map_err(sled::transaction::ConflictableTransactionError::Abort)?;
				let new_bytes_hash = blake2sum(&new_bytes[..]);
				mkl_todo.insert(tree_key.clone(), new_bytes_hash.as_slice())?;
				store.insert(tree_key.clone(), new_bytes)?;
				Ok(Some((old_entry, new_entry, new_bytes_hash)))
			} else {
				Ok(None)
			}
		})?;

		if let Some((old_entry, new_entry, new_bytes_hash)) = changed {
			let is_tombstone = new_entry.is_tombstone();
			self.instance.updated(old_entry, Some(new_entry));
			self.merkle_todo_notify.notify_one();
			if is_tombstone {
				// We are only responsible for GC'ing this item if we are the
				// "leader" of the partition, i.e. the first node in the
				// set of nodes that replicates this partition.
				// This avoids GC loops and does not change the termination properties
				// of the GC algorithm, as in all cases GC is suspended if
				// any node of the partition is unavailable.
				let pk_hash = Hash::try_from(&tree_key[..32]).unwrap();
				let nodes = self.replication.write_nodes(&pk_hash);
				if nodes.first() == Some(&self.system.id) {
					GcTodoEntry::new(tree_key, new_bytes_hash).save(&self.gc_todo)?;
				}
			}
		}

		Ok(())
	}

	pub(crate) fn delete_if_equal(self: &Arc<Self>, k: &[u8], v: &[u8]) -> Result<bool, Error> {
		let removed = (&self.store, &self.merkle_todo).transaction(|(store, mkl_todo)| {
			if let Some(cur_v) = store.get(k)? {
				if cur_v == v {
					store.remove(k)?;
					mkl_todo.insert(k, vec![])?;
					return Ok(true);
				}
			}
			Ok(false)
		})?;

		if removed {
			let old_entry = self.decode_entry(v)?;
			self.instance.updated(Some(old_entry), None);
			self.merkle_todo_notify.notify_one();
		}
		Ok(removed)
	}

	pub(crate) fn delete_if_equal_hash(
		self: &Arc<Self>,
		k: &[u8],
		vhash: Hash,
	) -> Result<bool, Error> {
		let removed = (&self.store, &self.merkle_todo).transaction(|(store, mkl_todo)| {
			if let Some(cur_v) = store.get(k)? {
				if blake2sum(&cur_v[..]) == vhash {
					store.remove(k)?;
					mkl_todo.insert(k, vec![])?;
					return Ok(Some(cur_v));
				}
			}
			Ok(None)
		})?;

		if let Some(old_v) = removed {
			let old_entry = self.decode_entry(&old_v[..])?;
			self.instance.updated(Some(old_entry), None);
			self.merkle_todo_notify.notify_one();
			Ok(true)
		} else {
			Ok(false)
		}
	}

	// ---- Utility functions ----

	pub(crate) fn tree_key(&self, p: &F::P, s: &F::S) -> Vec<u8> {
		let mut ret = p.hash().to_vec();
		ret.extend(s.sort_key());
		ret
	}

	pub(crate) fn decode_entry(&self, bytes: &[u8]) -> Result<F::E, Error> {
		match rmp_serde::decode::from_read_ref::<_, F::E>(bytes) {
			Ok(x) => Ok(x),
			Err(e) => match F::try_migrate(bytes) {
				Some(x) => Ok(x),
				None => {
					warn!("Unable to decode entry of {}: {}", self.name, e);
					for line in hexdump::hexdump_iter(bytes) {
						debug!("{}", line);
					}
					Err(e.into())
				}
			},
		}
	}

	pub fn gc_todo_len(&self) -> usize {
		self.gc_todo.len()
	}
}