1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
use rand::{thread_rng, Rng};
use std::time::{Duration, Instant};

/// Make a zero delay backoff
pub fn instant() -> impl Backoff + Sized {
    Duration::from_secs(0)
}

/// Make a constant duration backoff
pub fn constant(duration: Duration) -> impl Backoff + Sized {
    duration
}

pub trait Backoff: Send {
    /// Get the duration to wait for before attempting again
    fn next_retry(&mut self) -> Option<Duration>;

    /// Grow the backoff duration exponentially
    fn exponential(self) -> Exponential<Self>
    where
        Self: Sized,
    {
        Exponential {
            factor: 1,
            inner: self,
        }
    }

    /// Set the maximum backoff duration
    fn max_backoff(self, max: Duration) -> Max<Self>
    where
        Self: Sized,
    {
        Max { max, inner: self }
    }

    /// Set the minimum backoff duration
    fn min_backoff(self, min: Duration) -> Min<Self>
    where
        Self: Sized,
    {
        Min { min, inner: self }
    }

    /// Randomize the backoff duration.
    ///
    /// The returned duration will never be larger than the base duration and will
    /// never be smaller than `base * (1.0 - scale)`.
    fn jitter(self, scale: f64) -> Jitter<Self>
    where
        Self: Sized,
    {
        assert!(scale > 0.0, "scale must be larger than zero");
        assert!(scale <= 1.0, "scale must be smaller or equal to one");
        Jitter { scale, inner: self }
    }

    fn num_attempts(self, num: u32) -> MaxAttempts<Self>
    where
        Self: Sized,
    {
        assert!(num > 0, "num must be larger than zero");
        let num_attempts_left = num - 1;
        MaxAttempts {
            num_attempts_left,
            inner: self,
        }
    }

    fn deadline(self, deadline: Instant) -> Deadline<Self>
    where
        Self: Sized,
    {
        Deadline {
            deadline,
            inner: self,
        }
    }
}

impl Backoff for Duration {
    fn next_retry(&mut self) -> Option<Duration> {
        Some(*self)
    }
}

pub struct Exponential<S>
where
    S: Backoff,
{
    inner: S,
    factor: u32,
}

impl<S> Backoff for Exponential<S>
where
    S: Backoff,
{
    fn next_retry(&mut self) -> Option<Duration> {
        let dur = self.inner.next_retry().map(|dur| dur * (self.factor as _));
        self.factor *= 2;
        dur
    }
}

pub struct Max<S>
where
    S: Backoff,
{
    inner: S,
    max: Duration,
}

impl<S> Backoff for Max<S>
where
    S: Backoff,
{
    fn next_retry(&mut self) -> Option<Duration> {
        self.inner
            .next_retry()
            .map(|dur| std::cmp::min(self.max, dur))
    }
}

pub struct Min<S>
where
    S: Backoff,
{
    inner: S,
    min: Duration,
}

impl<S> Backoff for Min<S>
where
    S: Backoff,
{
    fn next_retry(&mut self) -> Option<Duration> {
        self.inner
            .next_retry()
            .map(|dur| std::cmp::max(self.min, dur))
    }
}

pub struct Jitter<S>
where
    S: Backoff,
{
    inner: S,
    scale: f64,
}

impl<S> Backoff for Jitter<S>
where
    S: Backoff,
{
    fn next_retry(&mut self) -> Option<Duration> {
        self.inner.next_retry().map(|dur| {
            let margin = Duration::from_secs_f64(dur.as_secs_f64() * self.scale);
            thread_rng().gen_range(dur - margin, dur)
        })
    }
}

pub struct MaxAttempts<S>
where
    S: Backoff,
{
    inner: S,
    num_attempts_left: u32,
}

impl<S> Backoff for MaxAttempts<S>
where
    S: Backoff,
{
    fn next_retry(&mut self) -> Option<Duration> {
        if self.num_attempts_left > 0 {
            self.num_attempts_left -= 1;
            self.inner.next_retry()
        } else {
            None
        }
    }
}

pub struct Deadline<S>
where
    S: Backoff,
{
    inner: S,
    deadline: Instant,
}

impl<S> Backoff for Deadline<S>
where
    S: Backoff,
{
    fn next_retry(&mut self) -> Option<Duration> {
        if self.deadline < Instant::now() {
            None
        } else {
            self.inner.next_retry()
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_instant() {
        let mut bo = instant();
        assert_eq!(bo.next_retry(), Some(Duration::from_secs(0)));
        assert_eq!(bo.next_retry(), Some(Duration::from_secs(0)));
    }

    #[test]
    fn test_constant() {
        let mut bo = constant(Duration::from_secs(5));
        assert_eq!(bo.next_retry(), Some(Duration::from_secs(5)));
        assert_eq!(bo.next_retry(), Some(Duration::from_secs(5)));
    }

    #[test]
    fn test_min_backoff() {
        let mut bo = constant(Duration::from_secs(5)).min_backoff(Duration::from_secs(10));
        assert_eq!(bo.next_retry(), Some(Duration::from_secs(10)));
        assert_eq!(bo.next_retry(), Some(Duration::from_secs(10)));

        let mut bo = constant(Duration::from_secs(5)).min_backoff(Duration::from_secs(3));
        assert_eq!(bo.next_retry(), Some(Duration::from_secs(5)));
        assert_eq!(bo.next_retry(), Some(Duration::from_secs(5)));
    }

    #[test]
    fn test_max_backoff() {
        let mut bo = constant(Duration::from_secs(5)).max_backoff(Duration::from_secs(10));
        assert_eq!(bo.next_retry(), Some(Duration::from_secs(5)));
        assert_eq!(bo.next_retry(), Some(Duration::from_secs(5)));

        let mut bo = constant(Duration::from_secs(5)).max_backoff(Duration::from_secs(3));
        assert_eq!(bo.next_retry(), Some(Duration::from_secs(3)));
        assert_eq!(bo.next_retry(), Some(Duration::from_secs(3)));
    }

    #[test]
    fn test_exponential() {
        let mut bo = constant(Duration::from_secs(1)).exponential();
        assert_eq!(bo.next_retry(), Some(Duration::from_secs(1)));
        assert_eq!(bo.next_retry(), Some(Duration::from_secs(2)));
        assert_eq!(bo.next_retry(), Some(Duration::from_secs(4)));
        assert_eq!(bo.next_retry(), Some(Duration::from_secs(8)));
    }

    #[test]
    fn test_jitter() {
        let mut bo = constant(Duration::from_secs(1)).jitter(0.1);
        let range = Duration::from_millis(900)..=Duration::from_secs(1);
        for _i in 0..100_000 {
            let dur = bo.next_retry().unwrap();
            assert!(range.contains(&dur));
        }
    }

    #[test]
    fn test_num_attempts() {
        let mut bo = constant(Duration::from_secs(1)).num_attempts(3);
        assert_eq!(bo.next_retry(), Some(Duration::from_secs(1)));
        assert_eq!(bo.next_retry(), Some(Duration::from_secs(1)));
        assert_eq!(bo.next_retry(), None);
        assert_eq!(bo.next_retry(), None);
    }

    #[test]
    fn deadline() {
        let mut bo =
            constant(Duration::from_secs(1)).deadline(Instant::now() + Duration::from_millis(20));
        assert_eq!(bo.next_retry(), Some(Duration::from_secs(1)));
        assert_eq!(bo.next_retry(), Some(Duration::from_secs(1)));
        std::thread::sleep(Duration::from_millis(21));
        assert_eq!(bo.next_retry(), None);
        assert_eq!(bo.next_retry(), None);
    }
}