1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
//! An asynchronously awaitable multi producer multi consumer channel

use crate::intrusive_double_linked_list::{LinkedList, ListNode};
use crate::{
    buffer::{ArrayBuf, RingBuf},
    utils::update_waker_ref,
    NoopLock,
};
use core::{marker::PhantomData, pin::Pin};
use futures_core::{
    future::Future,
    stream::{FusedStream, Stream},
    task::{Context, Poll, Waker},
};
use lock_api::{Mutex, RawMutex};

use super::{
    ChannelReceiveAccess, ChannelReceiveFuture, ChannelSendAccess,
    ChannelSendFuture, CloseStatus, RecvPollState, RecvWaitQueueEntry,
    SendPollState, SendWaitQueueEntry, TryReceiveError, TrySendError,
};

fn wake_recv_waiters(waiters: LinkedList<RecvWaitQueueEntry>) {
    unsafe {
        // Reverse the waiter list, so that the oldest waker (which is
        // at the end of the list), gets woken first and has the best
        // chance to grab the channel value.

        for waiter in waiters.into_reverse_iter() {
            if let Some(handle) = (*waiter).task.take() {
                handle.wake();
            }
            // The only kind of waiter that could have been stored here are
            // registered waiters (with a value), since others are removed
            // whenever their value had been copied into the channel.
            (*waiter).state = RecvPollState::Unregistered;
        }
    }
}

fn wake_send_waiters<T>(waiters: LinkedList<SendWaitQueueEntry<T>>) {
    unsafe {
        // Reverse the waiter list, so that the oldest waker (which is
        // at the end of the list), gets woken first and has the best
        // chance to grab the channel value.

        for waiter in waiters.into_reverse_iter() {
            if let Some(handle) = (*waiter).task.take() {
                handle.wake();
            }
            (*waiter).state = SendPollState::Unregistered;
        }
    }
}

/// Wakes up the last waiter and removes it from the wait queue
#[must_use]
fn return_oldest_receive_waiter(
    waiters: &mut LinkedList<RecvWaitQueueEntry>,
) -> Option<Waker> {
    // Safety: The list is is guaranteed to be in consistent state
    let last_waiter = unsafe { waiters.remove_last() };

    if !last_waiter.is_null() {
        unsafe {
            (*last_waiter).state = RecvPollState::Notified;

            (*last_waiter).task.take()
        }
    } else {
        None
    }
}

/// Internal state of the channel
struct ChannelState<T, A>
where
    A: RingBuf<Item = T>,
{
    /// Whether the channel had been closed
    is_closed: bool,
    /// The value which is stored inside the channel
    buffer: A,
    /// Futures which are waiting on receive
    receive_waiters: LinkedList<RecvWaitQueueEntry>,
    /// Futures which are waiting on send
    send_waiters: LinkedList<SendWaitQueueEntry<T>>,
}

impl<T, A> ChannelState<T, A>
where
    A: RingBuf<Item = T>,
{
    fn new(buffer: A) -> ChannelState<T, A> {
        ChannelState::<T, A> {
            is_closed: false,
            buffer,
            receive_waiters: LinkedList::new(),
            send_waiters: LinkedList::new(),
        }
    }

    fn close(&mut self) -> CloseStatus {
        if self.is_closed {
            return CloseStatus::AlreadyClosed;
        }
        self.is_closed = true;

        // Wakeup all send and receive waiters, since they are now guaranteed
        // to make progress.
        let recv_waiters = self.receive_waiters.take();
        wake_recv_waiters(recv_waiters);
        let send_waiters = self.send_waiters.take();
        wake_send_waiters(send_waiters);

        CloseStatus::NewlyClosed
    }

    /// Attempt to send a value without waiting.
    /// Returns a `Waker` if sending the value lead enabled a task to run.
    fn try_send(&mut self, value: T) -> Result<Option<Waker>, TrySendError<T>> {
        debug_assert!(
            self.buffer.capacity() > 0,
            "try_send is not supported for unbuffered channels"
        );

        if self.is_closed {
            Err(TrySendError::Closed(value))
        } else if self.buffer.can_push() {
            self.buffer.push(value);

            // Return the oldest receive waiter
            Ok(return_oldest_receive_waiter(&mut self.receive_waiters))
        } else {
            Err(TrySendError::Full(value))
        }
    }

    /// Tries to send a value to the channel.
    /// If the value isn't available yet, the ChannelSendFuture gets added to the
    /// wait queue at the channel, and will be signalled once ready.
    /// If the channels is already closed, the value to send is returned.
    /// This function is only safe as long as the `wait_node`s address is guaranteed
    /// to be stable until it gets removed from the queue.
    /// If sending the value succeeded, the `Waker` for a task which can receive
    /// the value is returned.
    unsafe fn send_or_register(
        &mut self,
        wait_node: &mut ListNode<SendWaitQueueEntry<T>>,
        cx: &mut Context<'_>,
    ) -> (Poll<()>, Option<T>, Option<Waker>) {
        match wait_node.state {
            SendPollState::Unregistered => {
                if self.is_closed {
                    let value = wait_node.value.take();
                    return (Poll::Ready(()), value, None);
                }

                if !self.buffer.can_push() {
                    // If the capacity is exhausted, register a waiter
                    wait_node.task = Some(cx.waker().clone());
                    wait_node.state = SendPollState::Registered;
                    self.send_waiters.add_front(wait_node);

                    // Return the oldest receive waiter
                    let waker =
                        return_oldest_receive_waiter(&mut self.receive_waiters);
                    return (Poll::Pending, None, waker);
                } else {
                    // Otherwise copy the value directly into the channel
                    let value = wait_node
                        .value
                        .take()
                        .expect("wait_node must contain value");
                    self.buffer.push(value);

                    // Return the oldest receive waiter
                    let waker =
                        return_oldest_receive_waiter(&mut self.receive_waiters);

                    (Poll::Ready(()), None, waker)
                }
            }
            SendPollState::Registered => {
                // Since the channel wakes up all waiters and moves their states
                // to unregistered there can't be space available in the channel.
                // However the caller might have passed a different `Waker`.
                // In this case we need to update it.
                update_waker_ref(&mut wait_node.task, cx);
                (Poll::Pending, None, None)
            }
            SendPollState::SendComplete => {
                // The transfer is complete, and the sender has already been removed from the
                // list of pending senders
                (Poll::Ready(()), None, None)
            }
        }
    }

    /// If there is a send waiter, copy it's value into the channel buffer and complete it.
    /// The method may only be called if there is space in the receive buffer.
    #[must_use]
    unsafe fn try_copy_value_from_oldest_waiter(&mut self) -> Option<Waker> {
        let last_waiter = self.send_waiters.remove_last();

        if !last_waiter.is_null() {
            let last_waiter = &mut (*last_waiter);
            let value = last_waiter
                .value
                .take()
                .expect("wait_node must contain value");
            self.buffer.push(value);

            last_waiter.state = SendPollState::SendComplete;

            last_waiter.task.take()
        } else {
            None
        }
    }

    /// Tries to extract a value from the sending waiter which has been waiting
    /// longest on the send operation to complete.
    fn try_take_value_from_sender(&mut self) -> Option<(T, Option<Waker>)> {
        if self.send_waiters.is_empty() {
            return None;
        }
        // This path should be only used for 0 capacity queues.
        // Since the list is not empty, a value is available.
        // Extract it from the sender in order to return it
        debug_assert_eq!(0, self.buffer.capacity());
        let last_sender = unsafe { self.send_waiters.remove_last() };
        debug_assert!(!last_sender.is_null());

        // Safety: The sender can't be null, since we only add valid
        // senders to the queue
        let last_sender = unsafe { &mut (*last_sender) };
        let val = last_sender.value.take().expect("Value must be available");
        last_sender.state = SendPollState::SendComplete;

        // Return the waiter
        Some((val, last_sender.task.take()))
    }

    /// Tries to receive a value from the channel without waiting.
    fn try_receive(&mut self) -> Result<(T, Option<Waker>), TryReceiveError> {
        if !self.buffer.is_empty() {
            let val = self.buffer.pop();

            // Since this means a space in the buffer had been freed,
            // try to copy a value from a potential waiter into the channel.
            let waker = unsafe { self.try_copy_value_from_oldest_waiter() };

            Ok((val, waker))
        } else if let Some((val, waker)) = self.try_take_value_from_sender() {
            Ok((val, waker))
        } else if self.is_closed {
            Err(TryReceiveError::Closed)
        } else {
            Err(TryReceiveError::Empty)
        }
    }

    /// Tries to read the value from the channel.
    /// If the value isn't available yet, the ChannelReceiveFuture gets added to the
    /// wait queue at the channel, and will be signalled once ready.
    /// This function is only safe as long as the `wait_node`s address is guaranteed
    /// to be stable until it gets removed from the queue.
    unsafe fn receive_or_register(
        &mut self,
        wait_node: &mut ListNode<RecvWaitQueueEntry>,
        cx: &mut Context<'_>,
    ) -> Poll<Option<(T, Option<Waker>)>> {
        match wait_node.state {
            RecvPollState::Unregistered | RecvPollState::Notified => {
                wait_node.state = RecvPollState::Unregistered;

                match self.try_receive() {
                    Ok(val) => Poll::Ready(Some(val)),
                    Err(TryReceiveError::Closed) => Poll::Ready(None),
                    Err(TryReceiveError::Empty) => {
                        // Added the task to the wait queue
                        wait_node.task = Some(cx.waker().clone());
                        wait_node.state = RecvPollState::Registered;
                        self.receive_waiters.add_front(wait_node);
                        Poll::Pending
                    }
                }
            }
            RecvPollState::Registered => {
                // Since the channel wakes up all waiters and moves their states
                // to unregistered there can't be any value in the channel in
                // this state. However the caller might have passed a different `Waker`.
                // In this case we need to update it.
                update_waker_ref(&mut wait_node.task, cx);
                Poll::Pending
            }
        }
    }

    fn remove_send_waiter(
        &mut self,
        wait_node: &mut ListNode<SendWaitQueueEntry<T>>,
    ) {
        // ChannelSendFuture only needs to get removed if it had been added to
        // the wait queue of the channel.
        // This has happened in the SendPollState::Registered case.
        match wait_node.state {
            SendPollState::Registered => {
                if !unsafe { self.send_waiters.remove(wait_node) } {
                    // Panic if the address isn't found. This can only happen if the contract was
                    // violated, e.g. the WaitQueueEntry got moved after the initial poll.
                    panic!("Future could not be removed from wait queue");
                }
                wait_node.state = SendPollState::Unregistered;
            }
            SendPollState::Unregistered => {}
            SendPollState::SendComplete => {
                // Send was complete. In that case the queue item is not in the list
            }
        }
    }

    #[must_use]
    fn remove_receive_waiter(
        &mut self,
        wait_node: &mut ListNode<RecvWaitQueueEntry>,
    ) -> Option<Waker> {
        // ChannelReceiveFuture only needs to get removed if it had been added to
        // the wait queue of the channel. This has happened in the RecvPollState::Registered case.
        match wait_node.state {
            RecvPollState::Registered => {
                if !unsafe { self.receive_waiters.remove(wait_node) } {
                    // Panic if the address isn't found. This can only happen if the contract was
                    // violated, e.g. the WaitQueueEntry got moved after the initial poll.
                    panic!("Future could not be removed from wait queue");
                }
                wait_node.state = RecvPollState::Unregistered;
                None
            }
            RecvPollState::Notified => {
                // wakeup another receive waiter instead
                wait_node.state = RecvPollState::Unregistered;
                return_oldest_receive_waiter(&mut self.receive_waiters)
            }
            RecvPollState::Unregistered => None,
        }
    }
}

/// A channel which can be used to exchange values of type `T` between
/// concurrent tasks.
///
/// `A` represents the backing buffer for a Channel. E.g. a channel which
/// can buffer up to 4 u32 values can be created via:
///
/// ```
/// # use futures_intrusive::channel::LocalChannel;
/// let channel: LocalChannel<i32, [i32; 4]> = LocalChannel::new();
/// ```
///
/// Tasks can receive values from the channel through the `receive` method.
/// The returned Future will get resolved when a value is sent into the channel.
/// Values can be sent into the channel through `send`.
/// The returned Future will get resolved when the value has been stored
/// inside the channel.
pub struct GenericChannel<MutexType: RawMutex, T, A>
where
    A: RingBuf<Item = T>,
{
    inner: Mutex<MutexType, ChannelState<T, A>>,
}

// The channel can be sent to other threads as long as it's not borrowed and the
// value in it can be sent to other threads.
unsafe impl<MutexType: RawMutex + Send, T: Send, A> Send
    for GenericChannel<MutexType, T, A>
where
    A: RingBuf<Item = T> + Send,
{
}
// The channel is thread-safe as long as a thread-safe mutex is used
unsafe impl<MutexType: RawMutex + Sync, T: Send, A> Sync
    for GenericChannel<MutexType, T, A>
where
    A: RingBuf<Item = T>,
{
}

impl<MutexType: RawMutex, T, A> core::fmt::Debug
    for GenericChannel<MutexType, T, A>
where
    A: RingBuf<Item = T>,
{
    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
        f.debug_struct("Channel").finish()
    }
}

impl<MutexType: RawMutex, T, A> GenericChannel<MutexType, T, A>
where
    A: RingBuf<Item = T>,
{
    /// Creates a new Channel, utilizing the default capacity that
    /// the RingBuffer in `A` provides.
    pub fn new() -> Self {
        GenericChannel {
            inner: Mutex::new(ChannelState::new(A::new())),
        }
    }

    /// Creates a new Channel, which has storage for a `capacity` items.
    /// Depending on the utilized `RingBuf` type, the capacity argument might
    /// be ignored and the default capacity might be utilized.
    pub fn with_capacity(capacity: usize) -> Self {
        GenericChannel {
            inner: Mutex::new(ChannelState::new(A::with_capacity(capacity))),
        }
    }

    /// Returns a future that gets fulfilled when the value has been written to
    /// the channel.
    /// If the channel gets closed while the send is in progress, sending the
    /// value will fail, and the future will deliver the value back.
    pub fn send(&self, value: T) -> ChannelSendFuture<MutexType, T> {
        ChannelSendFuture {
            channel: Some(self),
            wait_node: ListNode::new(SendWaitQueueEntry::new(value)),
            _phantom: PhantomData,
        }
    }

    /// Attempt to send the value without waiting.
    ///
    /// This operation is not supported for unbuffered channels and will
    /// panic if the capacity of the `RingBuf` is zero. The reason for this is
    /// that the actual value transfer on unbuffered channels always happens
    /// when a receiving task copies the value out of the sending task while it
    /// is waiting. If the sending task does not wait, the value can not be
    /// transferred. Since this method can therefore never yield a reasonable
    /// result with unbuffered channels, it panics in order to highlight the
    /// use of an inappropriate API.
    pub fn try_send(&self, value: T) -> Result<(), TrySendError<T>> {
        let result = { self.inner.lock().try_send(value) };

        match result {
            Ok(Some(waker)) => {
                waker.wake();
                Ok(())
            }
            Ok(None) => Ok(()),
            Err(e) => Err(e),
        }
    }

    /// Returns a future that gets fulfilled when a value is written to the channel.
    /// If the channels gets closed, the future will resolve to `None`.
    pub fn receive(&self) -> ChannelReceiveFuture<MutexType, T> {
        ChannelReceiveFuture {
            channel: Some(self),
            wait_node: ListNode::new(RecvWaitQueueEntry::new()),
            _phantom: PhantomData,
        }
    }

    /// Attempt to receive a value of the channel without waiting.
    pub fn try_receive(&self) -> Result<T, TryReceiveError> {
        let result = { self.inner.lock().try_receive() };

        match result {
            Ok((val, waker)) => {
                if let Some(waker) = waker {
                    waker.wake();
                }
                Ok(val)
            }
            Err(e) => Err(e),
        }
    }

    /// Returns a stream that will receive values from this channel.
    ///
    /// This stream does not yield `None` when the channel is empty,
    /// instead it yields `None` when it is terminated.
    pub fn stream(&self) -> ChannelStream<MutexType, T, A> {
        ChannelStream {
            channel: Some(self),
            future: None,
        }
    }

    /// Closes the channel.
    /// All pending and future send attempts will fail.
    /// Receive attempts will continue to succeed as long as there are items
    /// stored inside the channel. Further attempts will fail.
    pub fn close(&self) -> CloseStatus {
        self.inner.lock().close()
    }
}

impl<MutexType: RawMutex, T, A> ChannelSendAccess<T>
    for GenericChannel<MutexType, T, A>
where
    A: RingBuf<Item = T>,
{
    unsafe fn send_or_register(
        &self,
        wait_node: &mut ListNode<SendWaitQueueEntry<T>>,
        cx: &mut Context<'_>,
    ) -> (Poll<()>, Option<T>) {
        let (poll_result, value, waker) =
            { self.inner.lock().send_or_register(wait_node, cx) };

        if let Some(waker) = waker {
            waker.wake();
        }

        (poll_result, value)
    }

    fn remove_send_waiter(
        &self,
        wait_node: &mut ListNode<SendWaitQueueEntry<T>>,
    ) {
        self.inner.lock().remove_send_waiter(wait_node)
    }
}

impl<MutexType: RawMutex, T, A> ChannelReceiveAccess<T>
    for GenericChannel<MutexType, T, A>
where
    A: RingBuf<Item = T>,
{
    unsafe fn receive_or_register(
        &self,
        wait_node: &mut ListNode<RecvWaitQueueEntry>,
        cx: &mut Context<'_>,
    ) -> Poll<Option<T>> {
        let result = { self.inner.lock().receive_or_register(wait_node, cx) };

        match result {
            Poll::Ready(Some((val, waker))) => {
                if let Some(waker) = waker {
                    waker.wake();
                }
                Poll::Ready(Some(val))
            }
            Poll::Ready(None) => Poll::Ready(None),
            Poll::Pending => Poll::Pending,
        }
    }

    fn remove_receive_waiter(
        &self,
        wait_node: &mut ListNode<RecvWaitQueueEntry>,
    ) {
        let waker = { self.inner.lock().remove_receive_waiter(wait_node) };

        if let Some(waker) = waker {
            waker.wake();
        }
    }
}

/// A stream that receives from a `GenericChannel`.
///
/// Not driving the `ChannelStream` to completion after it has been polled
/// might lead to lost wakeup notifications.
#[derive(Debug)]
pub struct ChannelStream<'a, MutexType: RawMutex, T, A>
where
    A: RingBuf<Item = T>,
{
    channel: Option<&'a GenericChannel<MutexType, T, A>>,
    future: Option<ChannelReceiveFuture<'a, MutexType, T>>,
}

impl<'a, MutexType, T, A> Stream for ChannelStream<'a, MutexType, T, A>
where
    A: RingBuf<Item = T>,
    MutexType: RawMutex,
{
    type Item = T;

    fn poll_next(
        self: Pin<&mut Self>,
        cx: &mut Context,
    ) -> Poll<Option<Self::Item>> {
        // It might be possible to use Pin::map_unchecked here instead of the two unsafe APIs.
        // However this didn't seem to work for some borrow checker reasons

        // Safety: The next operations are safe, because Pin promises us that
        // the address of the wait queue entry inside ChannelReceiveFuture is stable,
        // and we don't move any fields inside the future until it gets dropped.
        let mut_self: &mut Self = unsafe { Pin::get_unchecked_mut(self) };
        match mut_self.channel.take() {
            Some(channel) => {
                // Poll the next element.
                if mut_self.future.is_none() {
                    mut_self.future.replace(channel.receive());
                }
                let fut = mut_self.future.as_mut().unwrap();

                // Safety: We guarantee that the pinned future will not move until
                // it resolves by storing it as part of the pinned `Stream`
                let poll = unsafe {
                    let pin_fut = Pin::new_unchecked(fut);
                    pin_fut.poll(cx)
                };

                // Future was resolved, drop it.
                if poll.is_ready() {
                    mut_self.future.take();

                    // If the channel was terminated, we let it drop.
                    if let Poll::Ready(None) = &poll {
                        return poll;
                    }
                }

                // The channel was not terminated, so we reuse it.
                mut_self.channel.replace(channel);

                poll
            }
            // Channel was terminated.
            None => Poll::Ready(None),
        }
    }
}

impl<'a, MutexType, T, A> FusedStream for ChannelStream<'a, MutexType, T, A>
where
    A: RingBuf<Item = T>,
    MutexType: RawMutex,
{
    fn is_terminated(&self) -> bool {
        self.channel.is_none()
    }
}

// Export a non thread-safe version using NoopLock

/// A [`GenericChannel`] implementation which is not thread-safe.
pub type LocalChannel<T, A> = GenericChannel<NoopLock, T, ArrayBuf<T, A>>;

/// An unbuffered [`GenericChannel`] implementation which is not thread-safe.
pub type LocalUnbufferedChannel<T> = LocalChannel<T, [T; 0]>;

#[cfg(feature = "std")]
mod if_std {
    use super::*;
    // Export a thread-safe version using parking_lot::RawMutex

    // TODO: We might also want to bind Channel to GenericChannel<..., FixedHeapBuf>,
    // which performs less type-churn.
    // However since we can't bind LocalChannel to that too due to no-std compatibility,
    // this would to introduce some inconsistency between those types.
    // It's also bit unfortunate that there are now `new()` and `with_capacity`
    // methods on both types, but for the array backed implementation only
    // `new()` is meaningful, while for the heap backed implementation only
    // `with_capacity()` is meaningful.

    /// A [`GenericChannel`] implementation backed by [`parking_lot`].
    pub type Channel<T, A> =
        GenericChannel<parking_lot::RawMutex, T, ArrayBuf<T, A>>;

    /// An unbuffered [`GenericChannel`] implementation backed by [`parking_lot`].
    pub type UnbufferedChannel<T> = Channel<T, [T; 0]>;
}

#[cfg(feature = "std")]
pub use self::if_std::*;

// The next section should really integrated if the alloc feature is active,
// since it mainly requires `Arc` to be available. However for simplicity reasons
// it is currently only activated in std environments.
#[cfg(feature = "std")]
mod if_alloc {
    use super::*;

    /// Channel implementations where Sender and Receiver sides are cloneable
    /// and owned.
    /// The Futures produced by channels in this module don't require a lifetime
    /// parameter.
    pub mod shared {
        use super::*;
        use crate::channel::shared::{ChannelReceiveFuture, ChannelSendFuture};
        use std::sync::atomic::{AtomicUsize, Ordering};

        /// Shared Channel State, which is referenced by Senders and Receivers
        struct GenericChannelSharedState<MutexType, T, A>
        where
            MutexType: RawMutex,
            T: 'static,
            A: RingBuf<Item = T>,
        {
            /// The amount of [`GenericSender`] instances which reference this state.
            senders: AtomicUsize,
            /// The amount of [`GenericReceiver`] instances which reference this state.
            receivers: AtomicUsize,
            /// The channel on which is acted.
            channel: GenericChannel<MutexType, T, A>,
        }

        // Implement ChannelAccess trait for SharedChannelState, so that it can
        // be used for dynamic dispatch in futures.
        impl<MutexType, T, A> ChannelReceiveAccess<T>
            for GenericChannelSharedState<MutexType, T, A>
        where
            MutexType: RawMutex,
            A: RingBuf<Item = T>,
        {
            unsafe fn receive_or_register(
                &self,
                wait_node: &mut ListNode<RecvWaitQueueEntry>,
                cx: &mut Context<'_>,
            ) -> Poll<Option<T>> {
                self.channel.receive_or_register(wait_node, cx)
            }

            fn remove_receive_waiter(
                &self,
                wait_node: &mut ListNode<RecvWaitQueueEntry>,
            ) {
                self.channel.remove_receive_waiter(wait_node)
            }
        }

        // Implement ChannelAccess trait for SharedChannelState, so that it can
        // be used for dynamic dispatch in futures.
        impl<MutexType, T, A> ChannelSendAccess<T>
            for GenericChannelSharedState<MutexType, T, A>
        where
            MutexType: RawMutex,
            A: RingBuf<Item = T>,
        {
            unsafe fn send_or_register(
                &self,
                wait_node: &mut ListNode<SendWaitQueueEntry<T>>,
                cx: &mut Context<'_>,
            ) -> (Poll<()>, Option<T>) {
                self.channel.send_or_register(wait_node, cx)
            }

            fn remove_send_waiter(
                &self,
                wait_node: &mut ListNode<SendWaitQueueEntry<T>>,
            ) {
                self.channel.remove_send_waiter(wait_node)
            }
        }

        /// The sending side of a channel which can be used to exchange values
        /// between concurrent tasks.
        ///
        /// Values can be sent into the channel through `send`.
        /// The returned Future will get resolved when the value has been stored inside the channel.
        pub struct GenericSender<MutexType, T, A>
        where
            MutexType: RawMutex,
            A: RingBuf<Item = T>,
            T: 'static,
        {
            inner: std::sync::Arc<GenericChannelSharedState<MutexType, T, A>>,
        }

        /// The receiving side of a channel which can be used to exchange values
        /// between concurrent tasks.
        ///
        /// Tasks can receive values from the channel through the `receive` method.
        /// The returned Future will get resolved when a value is sent into the channel.
        pub struct GenericReceiver<MutexType, T, A>
        where
            MutexType: RawMutex,
            A: RingBuf<Item = T>,
            T: 'static,
        {
            inner: std::sync::Arc<GenericChannelSharedState<MutexType, T, A>>,
        }

        impl<MutexType, T, A> core::fmt::Debug for GenericSender<MutexType, T, A>
        where
            MutexType: RawMutex,
            A: RingBuf<Item = T>,
        {
            fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
                f.debug_struct("Sender").finish()
            }
        }

        impl<MutexType, T, A> core::fmt::Debug for GenericReceiver<MutexType, T, A>
        where
            MutexType: RawMutex,
            A: RingBuf<Item = T>,
        {
            fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
                f.debug_struct("Receiver").finish()
            }
        }

        impl<MutexType, T, A> Clone for GenericSender<MutexType, T, A>
        where
            MutexType: RawMutex,
            A: RingBuf<Item = T>,
        {
            fn clone(&self) -> Self {
                let old_size =
                    self.inner.senders.fetch_add(1, Ordering::Relaxed);
                if old_size > (core::isize::MAX) as usize {
                    panic!("Reached maximum refcount");
                }
                GenericSender {
                    inner: self.inner.clone(),
                }
            }
        }

        impl<MutexType, T, A> Drop for GenericSender<MutexType, T, A>
        where
            MutexType: RawMutex,
            A: RingBuf<Item = T>,
        {
            fn drop(&mut self) {
                if self.inner.senders.fetch_sub(1, Ordering::Release) != 1 {
                    return;
                }
                std::sync::atomic::fence(Ordering::Acquire);
                // Close the channel, before last sender gets destroyed
                // TODO: We could potentially avoid this, if no receiver is left
                self.inner.channel.close();
            }
        }

        impl<MutexType, T, A> Clone for GenericReceiver<MutexType, T, A>
        where
            MutexType: RawMutex,
            A: RingBuf<Item = T>,
        {
            fn clone(&self) -> Self {
                let old_size =
                    self.inner.receivers.fetch_add(1, Ordering::Relaxed);
                if old_size > (core::isize::MAX) as usize {
                    panic!("Reached maximum refcount");
                }
                GenericReceiver {
                    inner: self.inner.clone(),
                }
            }
        }

        impl<MutexType, T, A> Drop for GenericReceiver<MutexType, T, A>
        where
            MutexType: RawMutex,
            A: RingBuf<Item = T>,
        {
            fn drop(&mut self) {
                if self.inner.receivers.fetch_sub(1, Ordering::Release) != 1 {
                    return;
                }
                std::sync::atomic::fence(Ordering::Acquire);
                // Close the channel, before last receiver gets destroyed
                // TODO: We could potentially avoid this, if no sender is left
                self.inner.channel.close();
            }
        }

        /// Creates a new Channel which can be used to exchange values of type `T` between
        /// concurrent tasks. The ends of the Channel are represented through
        /// the returned Sender and Receiver.
        /// Both the Sender and Receiver can be cloned in order to let more tasks
        /// interact with the Channel.
        ///
        /// As soon es either all Senders or all Receivers are closed, the Channel
        /// itself will be closed.
        ///
        /// The channel can buffer up to `capacity` items internally.
        ///
        /// ```
        /// # use futures_intrusive::channel::shared::channel;
        /// let (sender, receiver) = channel::<i32>(4);
        /// ```
        pub fn generic_channel<MutexType, T, A>(
            capacity: usize,
        ) -> (
            GenericSender<MutexType, T, A>,
            GenericReceiver<MutexType, T, A>,
        )
        where
            MutexType: RawMutex,
            A: RingBuf<Item = T>,
            T: Send,
        {
            let inner = std::sync::Arc::new(GenericChannelSharedState {
                channel: GenericChannel::with_capacity(capacity),
                senders: AtomicUsize::new(1),
                receivers: AtomicUsize::new(1),
            });

            let sender = GenericSender {
                inner: inner.clone(),
            };
            let receiver = GenericReceiver { inner };

            (sender, receiver)
        }

        impl<MutexType, T, A> GenericSender<MutexType, T, A>
        where
            MutexType: 'static + RawMutex,
            A: 'static + RingBuf<Item = T>,
        {
            /// Returns a future that gets fulfilled when the value has been written to
            /// the channel.
            /// If the channel gets closed while the send is in progress, sending the
            /// value will fail, and the future will deliver the value back.
            pub fn send(&self, value: T) -> ChannelSendFuture<MutexType, T> {
                ChannelSendFuture {
                    channel: Some(self.inner.clone()),
                    wait_node: ListNode::new(SendWaitQueueEntry::new(value)),
                    _phantom: PhantomData,
                }
            }

            /// Attempt to send the value without waiting.
            ///
            /// This operation is not supported for unbuffered channels and will
            /// panic if the capacity of the `RingBuf` is zero. The reason for this is
            /// that the actual value transfer on unbuffered channels always happens
            /// when a receiving task copies the value out of the sending task while it
            /// is waiting. If the sending task does not wait, the value can not be
            /// transferred. Since this method can therefore never yield a reasonable
            /// result with unbuffered channels, it panics in order to highlight the
            /// use of an inappropriate API.
            pub fn try_send(&self, value: T) -> Result<(), TrySendError<T>> {
                self.inner.channel.try_send(value)
            }

            /// Closes the channel.
            /// All pending future send attempts will fail.
            /// Receive attempts will continue to succeed as long as there are items
            /// stored inside the channel. Further attempts will return `None`.
            pub fn close(&self) -> CloseStatus {
                self.inner.channel.close()
            }
        }

        impl<MutexType, T, A> GenericReceiver<MutexType, T, A>
        where
            MutexType: 'static + RawMutex,
            A: 'static + RingBuf<Item = T>,
        {
            /// Returns a future that gets fulfilled when a value is written to the channel.
            /// If the channels gets closed, the future will resolve to `None`.
            pub fn receive(&self) -> ChannelReceiveFuture<MutexType, T> {
                ChannelReceiveFuture {
                    channel: Some(self.inner.clone()),
                    wait_node: ListNode::new(RecvWaitQueueEntry::new()),
                    _phantom: PhantomData,
                }
            }

            /// Attempt to receive form the channel without waiting.
            pub fn try_receive(&self) -> Result<T, TryReceiveError> {
                self.inner.channel.try_receive()
            }

            /// Closes the channel.
            /// All pending future send attempts will fail.
            /// Receive attempts will continue to succeed as long as there are items
            /// stored inside the channel. Further attempts will return `None`.
            pub fn close(&self) -> CloseStatus {
                self.inner.channel.close()
            }

            /// Returns a stream that will receive values from this channel.
            ///
            /// This stream does not yield `None` when the channel is empty,
            /// instead it yields `None` when it is terminated.
            pub fn into_stream(self) -> SharedStream<MutexType, T, A> {
                SharedStream {
                    receiver: Some(self),
                    future: None,
                }
            }
        }

        /// A stream that receives from channel using a `GenericReceiver`.
        ///
        /// Not driving the `SharedStream` to completion after it has been polled
        /// might lead to lost wakeup notifications.
        #[derive(Debug)]
        pub struct SharedStream<MutexType, T, A>
        where
            MutexType: 'static + RawMutex,
            T: 'static,
            A: 'static + RingBuf<Item = T>,
        {
            receiver: Option<GenericReceiver<MutexType, T, A>>,
            future: Option<ChannelReceiveFuture<MutexType, T>>,
        }

        impl<MutexType, T, A> Stream for SharedStream<MutexType, T, A>
        where
            MutexType: RawMutex,
            A: 'static + RingBuf<Item = T>,
        {
            type Item = T;

            fn poll_next(
                self: Pin<&mut Self>,
                cx: &mut Context,
            ) -> Poll<Option<Self::Item>> {
                // It might be possible to use Pin::map_unchecked here instead of the two unsafe APIs.
                // However this didn't seem to work for some borrow checker reasons

                // Safety: The next operations are safe, because Pin promises us that
                // the address of the wait queue entry inside ChannelReceiveFuture is stable,
                // and we don't move any fields inside the future until it gets dropped.
                let mut_self: &mut Self =
                    unsafe { Pin::get_unchecked_mut(self) };
                match mut_self.receiver.take() {
                    Some(receiver) => {
                        // Poll the next element.
                        if mut_self.future.is_none() {
                            mut_self.future.replace(receiver.receive());
                        }
                        let fut = mut_self.future.as_mut().unwrap();

                        // Safety: We guarantee that the pinned future will not move until
                        // it resolves by storing it as part of the pinned `Stream`
                        let poll = unsafe {
                            let pin_fut = Pin::new_unchecked(fut);
                            pin_fut.poll(cx)
                        };

                        // Future was resolved, drop it.
                        if poll.is_ready() {
                            mut_self.future.take();

                            // If the channel was terminated, we let the
                            // receiver drop.
                            if let Poll::Ready(None) = &poll {
                                return poll;
                            }
                        }

                        // The channel was not terminated, so we keep the receiver.
                        mut_self.receiver.replace(receiver);

                        poll
                    }
                    // Channel was terminated.
                    None => Poll::Ready(None),
                }
            }
        }

        impl<MutexType, T, A> FusedStream for SharedStream<MutexType, T, A>
        where
            MutexType: RawMutex,
            A: 'static + RingBuf<Item = T>,
        {
            fn is_terminated(&self) -> bool {
                self.receiver.is_none()
            }
        }

        // Export parking_lot based shared channels in std mode
        #[cfg(feature = "std")]
        mod if_std {
            use super::*;

            use crate::buffer::GrowingHeapBuf;

            /// A [`GenericSender`] implementation backed by [`parking_lot`].
            ///
            /// Uses a `GrowingHeapBuf` whose capacity grows dynamically up to
            /// the given limit. Refer to [`GrowingHeapBuf`] for more information.
            ///
            /// [`GrowingHeapBuf`]: ../../buffer/struct.GrowingHeapBuf.html
            pub type Sender<T> =
                GenericSender<parking_lot::RawMutex, T, GrowingHeapBuf<T>>;
            /// A [`GenericReceiver`] implementation backed by [`parking_lot`].
            ///
            /// Uses a `GrowingHeapBuf` whose capacity grows dynamically up to
            /// the given limit. Refer to [`GrowingHeapBuf`] for more information.
            ///
            /// [`GrowingHeapBuf`]: ../../buffer/struct.GrowingHeapBuf.html
            pub type Receiver<T> =
                GenericReceiver<parking_lot::RawMutex, T, GrowingHeapBuf<T>>;

            /// Creates a new channel with the given buffering capacity
            ///
            /// Uses a `GrowingHeapBuf` whose capacity grows dynamically up to
            /// the given limit. Refer to [`generic_channel`] and [`GrowingHeapBuf`] for more information.
            ///
            /// [`GrowingHeapBuf`]: ../../buffer/struct.GrowingHeapBuf.html
            pub fn channel<T>(capacity: usize) -> (Sender<T>, Receiver<T>)
            where
                T: Send,
            {
                generic_channel::<parking_lot::RawMutex, T, GrowingHeapBuf<T>>(
                    capacity,
                )
            }
            /// A [`GenericSender`] implementation backed by [`parking_lot`].
            pub type UnbufferedSender<T> =
                GenericSender<parking_lot::RawMutex, T, GrowingHeapBuf<T>>;
            /// A [`GenericReceiver`] implementation backed by [`parking_lot`].
            pub type UnbufferedReceiver<T> =
                GenericReceiver<parking_lot::RawMutex, T, GrowingHeapBuf<T>>;

            /// Creates a new unbuffered channel.
            ///
            /// Refer to [`generic_channel`] for details.
            pub fn unbuffered_channel<T>() -> (Sender<T>, Receiver<T>)
            where
                T: Send,
            {
                generic_channel::<parking_lot::RawMutex, T, GrowingHeapBuf<T>>(
                    0,
                )
            }
        }

        #[cfg(feature = "std")]
        pub use self::if_std::*;
    }
}

#[cfg(feature = "std")]
pub use self::if_alloc::*;