1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
//! # Two-dmensional space
//!
//! # Example
//! Space2: Real - Real then Real - Complex transforms
//! ```
//! use funspace::{cheb_dirichlet, fourier_r2c , Space2};
//! use funspace::space::traits::BaseSpaceTransform;
//! use ndarray::prelude::*;
//! let mut space = Space2::new(&fourier_r2c::<f64>(5), &cheb_dirichlet::<f64>(5));
//! let mut v: Array2<f64> = space.ndarray_physical();
//! v += 1.;
//! let vhat = space.forward(&v);
//! println!("{:?}", vhat);
//! // Not how the cheb dirichlet base imposes dirichlet conditions on
//! // the array: the first and last point are now zero,
//! let v = space.backward(&vhat);
//! println!("{:?}", v);
//! ```
#![allow(clippy::module_name_repetitions)]
use crate::enums::{BaseKind, TransformKind};
use crate::space::traits::{
    BaseSpaceElements, BaseSpaceFromOrtho, BaseSpaceGradient, BaseSpaceMatOpLaplacian,
    BaseSpaceMatOpStencil, BaseSpaceSize, BaseSpaceTransform,
};
use crate::traits::{
    BaseElements, BaseFromOrtho, BaseGradient, BaseMatOpLaplacian, BaseMatOpStencil, BaseSize,
    BaseTransform,
};
use crate::{BaseC2c, BaseR2c, BaseR2r, FloatNum, ScalarNum};
use ndarray::{prelude::*, Data, DataMut};
use num_complex::Complex;
use num_traits::Zero;
use std::ops::{Add, Div, Mul, Sub};

/// Create two-dimensional space
#[derive(Clone)]
pub struct Space2<B0, B1> {
    // Intermediate -> Spectral
    pub base0: B0,
    // Phsical -> Intermediate
    pub base1: B1,
}

impl<B0, B1> Space2<B0, B1>
where
    B0: Clone,
    B1: Clone,
{
    /// Create a new space
    pub fn new(base0: &B0, base1: &B1) -> Self {
        Self {
            base0: base0.clone(),
            base1: base1.clone(),
        }
    }
}

macro_rules! impl_space2 {
    ($space: ident, $base0: ident, $base1: ident, $p: ty, $s: ty) => {
        impl<A> BaseSpaceSize<2> for $space<$base0<A>, $base1<A>>
        where
            A: FloatNum,
        {
            fn shape_physical(&self) -> [usize; 2] {
                [self.base0.len_phys(), self.base1.len_phys()]
            }

            fn shape_spectral(&self) -> [usize; 2] {
                [self.base0.len_spec(), self.base1.len_spec()]
            }

            fn shape_spectral_ortho(&self) -> [usize; 2] {
                [self.base0.len_orth(), self.base1.len_orth()]
            }

            fn ndarray_from_shape<T: Clone + Zero>(&self, shape: [usize; 2]) -> Array2<T> {
                Array2::zeros(shape)
            }
        }

        impl<A> BaseSpaceElements<2> for $space<$base0<A>, $base1<A>>
        where
            A: FloatNum,
        {
            type RealNum = A;

            /// Array of coordinates
            fn coords(&self) -> [Array1<Self::RealNum>; 2] {
                [self.coords_axis(0), self.coords_axis(1)]
            }

            /// Coordinates of grid points (in physical space)
            ///
            /// # Arguments
            ///
            /// * `axis` - usize
            fn coords_axis(&self, axis: usize) -> Array1<A> {
                if axis == 0 {
                    self.base0.coords().into()
                } else {
                    self.base1.coords().into()
                }
            }

            /// Return base key
            fn base_kind(&self, axis: usize) -> BaseKind {
                if axis == 0 {
                    self.base0.base_kind()
                } else {
                    self.base1.base_kind()
                }
            }

            /// Return transform kind
            fn transform_kind(&self, axis: usize) -> TransformKind {
                if axis == 0 {
                    self.base0.transform_kind()
                } else {
                    self.base1.transform_kind()
                }
            }
        }

        impl<A> BaseSpaceMatOpStencil for $space<$base0<A>, $base1<A>>
        where
            A: FloatNum,
        {
            type NumType = A;

            /// Transformation stencil
            ///
            /// Multiplication of this matrix with a coefficient vector has
            /// the same effect as  [`BaseSpaceFromOrtho::to_ortho()`],
            /// but is less efficient.
            ///
            /// Returns identity matrix for orthogonal bases
            ///
            /// # Arguments
            ///
            /// * `axis` - usize
            fn stencil(&self, axis: usize) -> Array2<A> {
                if axis == 0 {
                    self.base0.stencil()
                } else {
                    self.base1.stencil()
                }
            }

            /// Inverse of transformation stencil
            ///
            /// Multiplication of this matrix with a coefficient vector has
            /// the same effect as  [`BaseSpaceFromOrtho::from_ortho()`],
            /// but is less efficient.
            ///
            /// Returns identity matrix for orthogonal bases
            ///
            /// # Arguments
            ///
            /// * `axis` - usize
            fn stencil_inv(&self, axis: usize) -> Array2<A> {
                if axis == 0 {
                    self.base0.stencil_inv()
                } else {
                    self.base1.stencil_inv()
                }
            }
        }

        impl<A> BaseSpaceMatOpLaplacian for $space<$base0<A>, $base1<A>>
        where
            A: FloatNum,
        {
            type NumType = A;

            /// Laplacian `L`
            ///
            /// ```text
            /// L_pinv @ L = I_pinv
            /// ```
            ///
            /// # Arguments
            ///
            /// * `axis` - usize
            fn laplacian(&self, axis: usize) -> Array2<A> {
                if axis == 0 {
                    self.base0.laplacian()
                } else {
                    self.base1.laplacian()
                }
            }

            /// Pseudoinverse matrix `L_pinv` of Laplacian
            ///
            /// Returns (`L_pinv`, `I_pinv`)
            ///
            /// ```text
            /// L_pinv @ L = I_pinv
            /// ```
            ///
            /// # Arguments
            ///
            /// * `axis` - usize
            fn laplacian_pinv(&self, axis: usize) -> (Array2<A>, Array2<A>) {
                if axis == 0 {
                    self.base0.laplacian_pinv()
                } else {
                    self.base1.laplacian_pinv()
                }
            }
        }

        impl<A, T> BaseSpaceGradient<A, T, 2> for $space<$base0<A>, $base1<A>>
        where
            A: FloatNum + ScalarNum,
            T: ScalarNum
                + From<A>
                + Add<A, Output = T>
                + Mul<A, Output = T>
                + Div<A, Output = T>
                + Sub<A, Output = T>
                + Add<$s, Output = T>
                + Mul<$s, Output = T>
                + Div<$s, Output = T>
                + Sub<$s, Output = T>,
        {
            /// Take gradient. Optional: Rescale result by a constant.
            ///
            /// # Arguments
            ///
            /// * `input` - *ndarray* with num type of spectral space
            /// * `deriv` - [usize; N], derivative along each axis
            /// * `scale` - [float; N], scaling factor along each axis (default [1.;n])
            fn gradient<S>(
                &self,
                input: &ArrayBase<S, Dim<[usize; 2]>>,
                deriv: [usize; 2],
                scale: Option<[A; 2]>,
            ) -> Array<T, Dim<[usize; 2]>>
            where
                S: Data<Elem = T>,
            {
                let buffer = self.base0.gradient(input, deriv[0], 0);
                let mut output = self.base1.gradient(&buffer, deriv[1], 1);
                if let Some(s) = scale {
                    let sc: T = (s[0].powi(deriv[0] as i32) * s[1].powi(deriv[1] as i32)).into();
                    for x in output.iter_mut() {
                        *x /= sc;
                    }
                }
                output
            }
            /// Take gradient. Optional: Rescale result by a constant.
            ///
            /// # Arguments
            ///
            /// * `input` - *ndarray* with num type of spectral space
            /// * `deriv` - [usize; N], derivative along each axis
            /// * `scale` - [float; N], scaling factor along each axis (default [1.;n])
            fn gradient_par<S>(
                &self,
                input: &ArrayBase<S, Dim<[usize; 2]>>,
                deriv: [usize; 2],
                scale: Option<[A; 2]>,
            ) -> Array<T, Dim<[usize; 2]>>
            where
                S: Data<Elem = T>,
            {
                let buffer = self.base0.gradient_par(input, deriv[0], 0);
                let mut output = self.base1.gradient_par(&buffer, deriv[1], 1);
                if let Some(s) = scale {
                    let sc: T = (s[0].powi(deriv[0] as i32) * s[1].powi(deriv[1] as i32)).into();
                    for x in output.iter_mut() {
                        *x /= sc;
                    }
                }
                output
            }
        }
        impl<A, T> BaseSpaceFromOrtho<A, T, 2> for $space<$base0<A>, $base1<A>>
        where
            A: FloatNum + ScalarNum,
            T: ScalarNum
                + From<A>
                + Add<A, Output = T>
                + Mul<A, Output = T>
                + Div<A, Output = T>
                + Sub<A, Output = T>
                + Add<$s, Output = T>
                + Mul<$s, Output = T>
                + Div<$s, Output = T>
                + Sub<$s, Output = T>,
        {
            /// Transformation from composite and to orthonormal space (inplace).
            ///
            /// # Arguments
            ///
            /// * `input` - *ndarray* with num type of spectral space
            /// * `output` - *ndarray* with num type of spectral space
            fn to_ortho_inplace<S1, S2>(
                &self,
                input: &ArrayBase<S1, Dim<[usize; 2]>>,
                output: &mut ArrayBase<S2, Dim<[usize; 2]>>,
            ) where
                S1: Data<Elem = T>,
                S2: Data<Elem = T> + DataMut,
            {
                let buffer = self.base0.to_ortho(input, 0);
                self.base1.to_ortho_inplace(&buffer, output, 1);
            }

            /// Transformation from orthonormal and to composite space (inplace).
            ///
            /// # Arguments
            ///
            /// * `input` - *ndarray* with num type of spectral space
            /// * `output` - *ndarray* with num type of spectral space
            fn from_ortho_inplace<S1, S2>(
                &self,
                input: &ArrayBase<S1, Dim<[usize; 2]>>,
                output: &mut ArrayBase<S2, Dim<[usize; 2]>>,
            ) where
                S1: Data<Elem = T>,
                S2: Data<Elem = T> + DataMut,
            {
                let buffer = self.base0.from_ortho(input, 0);
                self.base1.from_ortho_inplace(&buffer, output, 1);
            }

            /// Transformation from composite and to orthonormal space (inplace).
            ///
            /// # Arguments
            ///
            /// * `input` - *ndarray* with num type of spectral space
            /// * `output` - *ndarray* with num type of spectral space
            fn to_ortho_inplace_par<S1, S2>(
                &self,
                input: &ArrayBase<S1, Dim<[usize; 2]>>,
                output: &mut ArrayBase<S2, Dim<[usize; 2]>>,
            ) where
                S1: Data<Elem = T>,
                S2: Data<Elem = T> + DataMut,
            {
                let buffer = self.base0.to_ortho_par(input, 0);
                self.base1.to_ortho_inplace_par(&buffer, output, 1);
            }

            /// Transformation from orthonormal and to composite space (inplace).
            ///
            /// # Arguments
            ///
            /// * `input` - *ndarray* with num type of spectral space
            /// * `output` - *ndarray* with num type of spectral space
            fn from_ortho_inplace_par<S1, S2>(
                &self,
                input: &ArrayBase<S1, Dim<[usize; 2]>>,
                output: &mut ArrayBase<S2, Dim<[usize; 2]>>,
            ) where
                S1: Data<Elem = T>,
                S2: Data<Elem = T> + DataMut,
            {
                let buffer = self.base0.from_ortho_par(input, 0);
                self.base1.from_ortho_inplace_par(&buffer, output, 1);
            }
        }

        impl<A> BaseSpaceTransform<A, 2> for $space<$base0<A>, $base1<A>>
        where
            A: FloatNum + ScalarNum,
            Complex<A>: ScalarNum,
        {
            type Physical = $p;

            type Spectral = $s;

            /// Transform physical -> spectral space (inplace)
            ///
            /// # Arguments
            ///
            /// * `input` - *ndarray* with num type of physical space
            /// * `output` - *ndarray* with num type of spectral space
            fn forward_inplace<S1, S2>(
                &self,
                input: &ArrayBase<S1, Dim<[usize; 2]>>,
                output: &mut ArrayBase<S2, Dim<[usize; 2]>>,
            ) where
                S1: Data<Elem = Self::Physical>,
                S2: Data<Elem = Self::Spectral> + DataMut,
            {
                let buffer = self.base1.forward(input, 1);
                self.base0.forward_inplace(&buffer, output, 0);
            }

            /// Transform spectral -> physical space (inplace)
            ///
            /// # Arguments
            ///
            /// * `input` - *ndarray* with num type of spectral space
            /// * `output` - *ndarray* with num type of physical space
            fn backward_inplace<S1, S2>(
                &self,
                input: &ArrayBase<S1, Dim<[usize; 2]>>,
                output: &mut ArrayBase<S2, Dim<[usize; 2]>>,
            ) where
                S1: Data<Elem = Self::Spectral>,
                S2: Data<Elem = Self::Physical> + DataMut,
            {
                let buffer = self.base0.backward(input, 0);
                self.base1.backward_inplace(&buffer, output, 1);
            }

            /// Transform physical -> spectral space (inplace)
            ///
            /// # Arguments
            ///
            /// * `input` - *ndarray* with num type of physical space
            /// * `output` - *ndarray* with num type of spectral space
            fn forward_inplace_par<S1, S2>(
                &self,
                input: &ArrayBase<S1, Dim<[usize; 2]>>,
                output: &mut ArrayBase<S2, Dim<[usize; 2]>>,
            ) where
                S1: Data<Elem = Self::Physical>,
                S2: Data<Elem = Self::Spectral> + DataMut,
            {
                let buffer = self.base1.forward_par(input, 1);
                self.base0.forward_inplace_par(&buffer, output, 0);
            }

            /// Transform spectral -> physical space (inplace)
            ///
            /// # Arguments
            ///
            /// * `input` - *ndarray* with num type of spectral space
            /// * `output` - *ndarray* with num type of physical space
            fn backward_inplace_par<S1, S2>(
                &self,
                input: &ArrayBase<S1, Dim<[usize; 2]>>,
                output: &mut ArrayBase<S2, Dim<[usize; 2]>>,
            ) where
                S1: Data<Elem = Self::Spectral>,
                S2: Data<Elem = Self::Physical> + DataMut,
            {
                let buffer = self.base0.backward_par(input, 0);
                self.base1.backward_inplace_par(&buffer, output, 1);
            }
        }
    };
}
impl_space2!(Space2, BaseR2r, BaseR2r, A, A);
impl_space2!(Space2, BaseR2c, BaseR2r, A, Complex<A>);
impl_space2!(Space2, BaseC2c, BaseR2c, A, Complex<A>);
impl_space2!(Space2, BaseC2c, BaseC2c, Complex<A>, Complex<A>);