1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
//! Fraction is designed to be a precise lossless drop-in replacement for floating types (f32, f64).
//!
//! It comes with a number of predefined type aliases covering the most common use cases such as
//! [Fraction], [Decimal], [BigFraction], [DynaDecimal] and so on (see [prelude] module for more examples).
//!
//! The public API provides you with the generic types that you may use straightforwardly to build your
//! own types, suiting your needs best (see [prelude] module for the examples).
//!
//! # Library features
//!
//! - Drop in replacement for floats with the exception for NaN == NaN so that it's hashable
//! - It's hashable, so may be used as values in Sets and keys in dictionaries and hash maps
//! - [Display](fraction::display) implementation for fractions and decimals
//! - [Fraction](GenericFraction) type, representing fractions
//! - [Decimal](GenericDecimal) type, based on [Fraction](GenericFraction) type represents floats as lossless decimals
//! - [DynaInt](dynaint) implements dynamically growing integer type that perfarms checked math and avoids stack overflows
//! - PostgreSQL binary protocol integration for both fractions and decimals
//! - Juniper support for both fractions and decimals
//! - [Generic integer conversions](generic), such as `i8 -> u8`, `usize -> u8` and so on
//! - [Lossless division](division) with no allocations and infinite precision
//!
//! # Disclaimer
//! Even though we do our best to keep it well covered with tests, there may be bugs out there.
//! The library API is still in flux. When it gets stable we will release the version 1.0.0.
//! You may find more info about Semantic Versioning on [https://semver.org/](https://semver.org/).
//! Bug reports and contributions are appreciated.
//!
//! # Crate features
//! - `with-bigint` (default) integration with [num::BigInt] and [num::BigUint] data types
//! - `with-decimal` (default) [Decimal] type implemented upon [GenericFraction]
//! - `with-dynaint` (default) dynamically growing integer avoiding stack overflows
//! - `with-juniper-support` [Juniper](https://crates.io/crates/juniper) integration
//! - `with-postgres-support` [PostgreSQL](https://crates.io/crates/postgres) integration; Numeric/Decimal type
//! - `with-serde-support` [Serde](https://crates.io/crates/serde) traits implementation
//!
//! # Implementation
//! Basic math implemented upon the [num] crate (in particular the [num::rational] module).
//! The utilised traits from the [num] crate are re-exported, so you don't have to explicitly depend on that crate however,
//! you may import them from either of crates if necessary.
//!
//! # Usage
//! To start using types see the [Prelude](self::prelude) module.
//!
//! # Examples
//!
//! ## Simple use:
//!
//! ```
//! type F = fraction::Fraction; // choose the type accordingly to your needs (see prelude module docs)
//!
//! let two = F::from(0) + F::from(2); // 0 + 2 = 2
//! let two_third = two / F::from(3); // 2/3 = 0.666666[...]
//!
//! assert_eq!(F::from(2), two);
//! assert_eq!(F::new(2u64, 3u64), two_third);
//!
//! assert_eq!("2/3", format!("{}", two_third)); // print as Fraction (by default)
//! assert_eq!("0.6666", format!("{:.4}", two_third)); // format as decimal and print up to 4 digits after floating point
//! ```
//!
//! Decimal is implemented as a representation layer on top of Fraction.
//! Thus, it is also lossless and may require explicit control over "precision"
//! for comparison and formatting operations.
//! ```
//! type D = fraction::Decimal;
//!
//! let result = D::from(0.5) / D::from(0.3);
//!
//! assert_eq!(format!("{}", result), "1.6"); // calculation result uses precision of the operands
//! assert_eq!(format!("{:.4}", result), "1.6666"); // explicitly passing precision to format
//!
//! assert_eq!("1.6666", format!("{}", result.set_precision(4))); // the other way to set precision explicitly on Decimal
//! ```
//!
//! ## Construct:
//!
//! Fraction:
//! ```
//! use std::str::FromStr;
//! use fraction::{Fraction, Sign}; // choose the type accordingly with your needs (see prelude module docs)
//!
//! fn main() {
//! // There are several ways to construct a fraction, depending on your use case
//!
//! let f = Fraction::new(1u8, 2u8); // constructs with numerator/denominator and normalizes the fraction (finds least common denominator)
//! assert_eq!(f, Fraction::new_generic(Sign::Plus, 1i32, 2u8).unwrap()); // with numerator/denominator of different integer types
//! assert_eq!(f, Fraction::from(0.5)); // convert from float (f32, f64)
//! assert_eq!(f, Fraction::from_str("0.5").unwrap()); // parse a string
//!
//! // Raw construct with no extra calculations.
//! // Most performant, but does not look for common denominator and may lead to unexpected results
//! // in following calculations. Only use if you are sure numerator/denominator are already normalized.
//! assert_eq!(f, Fraction::new_raw(1u64, 2u64));
//! }
//! ```
//!
//! Decimal:
//! ```
//! use std::str::FromStr;
//! use fraction::{Decimal, Fraction}; // choose the type accordingly with your needs (see prelude module docs)
//!
//! fn main() {
//! // There are similar ways to construct Decimal. Underneath it is always represented as Fraction.
//! // When constructed, Decimal preserves its precision (number of digits after floating point).
//! // When two decimals are calculated, the result takes the biggest precision of both.
//! // The precision is used for visual representation (formatting and printing) and for comparison of two decimals.
//! // Precision is NOT used in any calculations. All calculations are lossless and implemented through Fraction.
//! // To override the precision use Decimal::set_precision.
//!
//! let d = Decimal::from(1); // from integer, precision = 0
//! assert_eq!(d, Decimal::from_fraction(Fraction::from(1))); // from fraction, precision is calculated from fraction
//!
//! let d = Decimal::from(1.3); // from float (f32, f64)
//! assert_eq!(d, Decimal::from_str("1.3").unwrap());
//! }
//! ```
//!
//! ## Format (convert to string)
//! Formatting works similar for both Decimal and Fraction (Decimal uses Fraction internally).
//! The format implementation closely follows the rust Format trait documentation.
//!
//! ```
//! type F = fraction::Fraction;
//!
//! let result = F::from(0.7) / F::from(0.4);
//! assert_eq!(format!("{}", result), "7/4"); // Printed as fraction by default
//! assert_eq!(format!("{:.2}", result), "1.75"); // if precision is defined, printed as decimal
//! assert_eq!(format!("{:#.3}", result), "1.750"); // to print leading zeroes, pass hash to the format
//! ```
//!
//! ### Generic integer conversion
//! ```
//! use fraction::{Sign, GenericFraction};
//!
//! type F = GenericFraction<u32>;
//!
//! let fra = F::new_generic(Sign::Plus, 1i8, 42usize).unwrap();
//! assert_eq!(fra, F::new(1u32, 42u32));
//! ```
//!
//! ### Postgres usage
//! Postgres uses i16 for its binary protocol, so you'll have to use at least u16
//! as the base type for fractions/decimals.
//! Otherwise you may workaround with DynaInt<u8, _something_more_than_u8_>.
//! The safest way to go with would be DynaInt based types
//! such as DynaFraction or DynaDecimal as they would prevent
//! stack overflows for high values.
//!
//! Beware bad numbers such as 1/3, 1/7.
//! Fraction keeps the highest achievable precision (up to 16383 digits after floating point).
//! Decimal uses its own precision.
//! So, if you may end up with bad numbers, it may be preferable to go with Decimals over Fractions.
//!
//! Both types (fractions and decimals) should work transparently
//! in accordance with Postgres crate documentation
extern crate num;
extern crate lazy_static;
pub use ;
pub use ;
pub use ;
pub use *;
pub use *;
// ====================================== FEATURES ======================================
extern crate juniper;
extern crate postgres_types;
extern crate serde_derive;
extern crate serde;