1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
use crate::iter::*;
use crate::node::*;
use crate::raw::*;
use crossbeam_epoch::{self as epoch, Atomic, Guard, Owned, Shared};
use std::borrow::Borrow;
use std::error::Error;
use std::fmt::{self, Debug, Display, Formatter};
use std::hash::{BuildHasher, Hash, Hasher};
use std::iter::FromIterator;
use std::sync::{
    atomic::{AtomicIsize, AtomicUsize, Ordering},
    Once,
};

const ISIZE_BITS: usize = core::mem::size_of::<isize>() * 8;

/// The largest possible table capacity.  This value must be
/// exactly 1<<30 to stay within Java array allocation and indexing
/// bounds for power of two table sizes, and is further required
/// because the top two bits of 32bit hash fields are used for
/// control purposes.
const MAXIMUM_CAPACITY: usize = 1 << 30; // TODO: use ISIZE_BITS

/// The default initial table capacity.  Must be a power of 2
/// (i.e., at least 1) and at most `MAXIMUM_CAPACITY`.
const DEFAULT_CAPACITY: usize = 16;

/// The bin count threshold for using a tree rather than list for a bin. Bins are
/// converted to trees when adding an element to a bin with at least this many
/// nodes. The value must be greater than 2, and should be at least 8 to mesh
/// with assumptions in tree removal about conversion back to plain bins upon
/// shrinkage.
const TREEIFY_THRESHOLD: usize = 8;

/// The bin count threshold for untreeifying a (split) bin during a resize
/// operation. Should be less than TREEIFY_THRESHOLD, and at most 6 to mesh with
/// shrinkage detection under removal.
const UNTREEIFY_THRESHOLD: usize = 6;

/// The smallest table capacity for which bins may be treeified. (Otherwise the
/// table is resized if too many nodes in a bin.) The value should be at least 4
/// * TREEIFY_THRESHOLD to avoid conflicts between resizing and treeification
/// thresholds.
const MIN_TREEIFY_CAPACITY: usize = 64;

/// Minimum number of rebinnings per transfer step. Ranges are
/// subdivided to allow multiple resizer threads.  This value
/// serves as a lower bound to avoid resizers encountering
/// excessive memory contention.  The value should be at least
/// `DEFAULT_CAPACITY`.
const MIN_TRANSFER_STRIDE: isize = 16;

/// The number of bits used for generation stamp in `size_ctl`.
/// Must be at least 6 for 32bit arrays.
const RESIZE_STAMP_BITS: usize = ISIZE_BITS / 2;

/// The maximum number of threads that can help resize.
/// Must fit in `32 - RESIZE_STAMP_BITS` bits for 32 bit architectures
/// and `64 - RESIZE_STAMP_BITS` bits for 64 bit architectures
const MAX_RESIZERS: isize = (1 << (ISIZE_BITS - RESIZE_STAMP_BITS)) - 1;

/// The bit shift for recording size stamp in `size_ctl`.
const RESIZE_STAMP_SHIFT: usize = ISIZE_BITS - RESIZE_STAMP_BITS;

static NCPU_INITIALIZER: Once = Once::new();
static NCPU: AtomicUsize = AtomicUsize::new(0);

macro_rules! load_factor {
    ($n: expr) => {
        // ¾ n = n - n/4 = n - (n >> 2)
        $n - ($n >> 2)
    };
}

/// A concurrent hash table.
///
/// Flurry uses [`Guards`] to control the lifetime of the resources that get stored and
/// extracted from the map. [`Guards`] are acquired through the [`epoch::pin`], [`HashMap::pin`]
/// and [`HashMap::guard`] functions. For more information, see the [notes in the crate-level
/// documentation].
///
/// [notes in the crate-level documentation]: index.html#a-note-on-guard-and-memory-use
/// [`Guards`]: index.html#a-note-on-guard-and-memory-use
pub struct HashMap<K, V, S = crate::DefaultHashBuilder> {
    /// The array of bins. Lazily initialized upon first insertion.
    /// Size is always a power of two. Accessed directly by iterators.
    table: Atomic<Table<K, V>>,

    /// The next table to use; non-null only while resizing.
    next_table: Atomic<Table<K, V>>,

    /// The next table index (plus one) to split while resizing.
    transfer_index: AtomicIsize,

    count: AtomicIsize,

    /// Table initialization and resizing control.  When negative, the
    /// table is being initialized or resized: -1 for initialization,
    /// else -(1 + the number of active resizing threads).  Otherwise,
    /// when table is null, holds the initial table size to use upon
    /// creation, or 0 for default. After initialization, holds the
    /// next element count value upon which to resize the table.
    size_ctl: AtomicIsize,

    /// Collector that all `Guard` references used for operations on this map must be tied to. It
    /// is important that they all assocate with the _same_ `Collector`, otherwise you end up with
    /// unsoundness as described in https://github.com/jonhoo/flurry/issues/46. Specifically, a
    /// user can do:
    ///
    // this should be:
    // ```rust,should_panic
    // but that won't work with coverage at the moment:
    // https://github.com/xd009642/tarpaulin/issues/344
    // so:
    /// ```rust,no_run
    /// # use flurry::HashMap;
    /// # use crossbeam_epoch;
    /// let map: HashMap<_, _> = HashMap::default();
    /// map.insert(42, String::from("hello"), &crossbeam_epoch::pin());
    ///
    /// let evil = crossbeam_epoch::Collector::new();
    /// let evil = evil.register();
    /// let guard = evil.pin();
    /// let oops = map.get(&42, &guard);
    ///
    /// map.remove(&42, &crossbeam_epoch::pin());
    /// // at this point, the default collector is allowed to free `"hello"`
    /// // since no-one has the global epoch pinned as far as it is aware.
    /// // `oops` is tied to the lifetime of a Guard that is not a part of
    /// // the same epoch group, and so can now be dangling.
    /// // but we can still access it!
    /// assert_eq!(oops.unwrap(), "hello");
    /// ```
    ///
    /// We avoid that by checking that every external guard that is passed in is associated with
    /// the `Collector` that was specified when the map was created (which may be the global
    /// collector).
    ///
    /// Note also that the fact that this can be a global collector is what necessitates the
    /// `'static` bounds on `K` and `V`. Since deallocation can be deferred arbitrarily, it is not
    /// okay for us to take a `K` or `V` with a limited lifetime, since we may drop it far after
    /// that lifetime has passed.
    ///
    /// One possibility is to never use the global allocator, and instead _always_ create and use
    /// our own `Collector`. If we did that, then we could accept non-`'static` keys and values since
    /// the destruction of the collector would ensure that that all deferred destructors are run.
    /// It would, sadly, mean that we don't get to share a collector with other things that use
    /// `crossbeam-epoch` though. For more on this (and a cool optimization), see:
    /// https://github.com/crossbeam-rs/crossbeam/blob/ebecb82c740a1b3d9d10f235387848f7e3fa9c68/crossbeam-skiplist/src/base.rs#L308-L319
    collector: epoch::Collector,

    build_hasher: S,
}

#[derive(Eq, PartialEq, Clone, Debug)]
enum PutResult<'a, T> {
    Inserted {
        new: &'a T,
    },
    Replaced {
        old: &'a T,
        new: &'a T,
    },
    Exists {
        current: &'a T,
        not_inserted: Box<T>,
    },
}

impl<'a, T> PutResult<'a, T> {
    fn before(&self) -> Option<&'a T> {
        match *self {
            PutResult::Inserted { .. } => None,
            PutResult::Replaced { old, .. } => Some(old),
            PutResult::Exists { current, .. } => Some(current),
        }
    }

    #[allow(dead_code)]
    fn after(&self) -> Option<&'a T> {
        match *self {
            PutResult::Inserted { new } => Some(new),
            PutResult::Replaced { new, .. } => Some(new),
            PutResult::Exists { .. } => None,
        }
    }
}

/// The error type for the [`HashMap::try_insert`] method.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub struct TryInsertError<'a, V> {
    /// A reference to the current value mapped to the key.
    pub current: &'a V,
    /// The value that [`HashMap::try_insert`] failed to insert.
    pub not_inserted: V,
}

impl<'a, V> Display for TryInsertError<'a, V>
where
    V: Debug,
{
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
        write!(
            f,
            "Insert of \"{:?}\" failed as key was already present with value \"{:?}\"",
            self.not_inserted, self.current
        )
    }
}

impl<'a, V> Error for TryInsertError<'a, V>
where
    V: Debug,
{
    #[inline]
    fn source(&self) -> Option<&(dyn Error + 'static)> {
        None
    }
}

// ===
// the following methods only see Ks and Vs if there have been inserts.
// modifications to the map are all guarded by thread-safety bounds (Send + Sync + 'static).
// but _these_ methods do not need to be, since they will never introduce keys or values, only give
// out ones that have already been inserted (which implies they must be thread-safe).
// ===

impl<K, V> HashMap<K, V, crate::DefaultHashBuilder> {
    /// Creates an empty `HashMap`.
    ///
    /// The hash map is initially created with a capacity of 0, so it will not allocate until it
    /// is first inserted into.
    ///
    /// # Examples
    ///
    /// ```
    /// use flurry::HashMap;
    /// let map: HashMap<&str, i32> = HashMap::new();
    /// ```
    pub fn new() -> Self {
        Self::default()
    }

    /// Creates an empty `HashMap` with the specified capacity.
    ///
    /// The hash map will be able to hold at least `capacity` elements without
    /// reallocating. If `capacity` is 0, the hash map will not allocate.
    ///
    /// # Examples
    ///
    /// ```
    /// use flurry::HashMap;
    /// let map: HashMap<&str, i32> = HashMap::with_capacity(10);
    /// ```
    ///
    /// # Notes
    ///
    /// There is no guarantee that the HashMap will not resize if `capacity`
    /// elements are inserted. The map will resize based on key collision, so
    /// bad key distribution may cause a resize before `capacity` is reached.
    /// For more information see the [`resizing behavior`]
    ///
    /// [`resizing behavior`]: index.html#resizing-behavior
    pub fn with_capacity(capacity: usize) -> Self {
        Self::with_capacity_and_hasher(capacity, crate::DefaultHashBuilder::default())
    }
}

impl<K, V, S> Default for HashMap<K, V, S>
where
    S: Default,
{
    fn default() -> Self {
        Self::with_hasher(S::default())
    }
}

impl<K, V, S> HashMap<K, V, S> {
    /// Creates an empty map which will use `hash_builder` to hash keys.
    ///
    /// The created map has the default initial capacity.
    ///
    /// Warning: `hash_builder` is normally randomly generated, and is designed to
    /// allow the map to be resistant to attacks that cause many collisions and
    /// very poor performance. Setting it manually using this
    /// function can expose a DoS attack vector.
    ///
    /// # Examples
    ///
    /// ```
    /// use flurry::{HashMap, DefaultHashBuilder};
    ///
    /// let map = HashMap::with_hasher(DefaultHashBuilder::default());
    /// map.pin().insert(1, 2);
    /// ```
    pub fn with_hasher(hash_builder: S) -> Self {
        Self {
            table: Atomic::null(),
            next_table: Atomic::null(),
            transfer_index: AtomicIsize::new(0),
            count: AtomicIsize::new(0),
            size_ctl: AtomicIsize::new(0),
            build_hasher: hash_builder,
            collector: epoch::default_collector().clone(),
        }
    }

    /// Creates an empty map with the specified `capacity`, using `hash_builder` to hash the keys.
    ///
    /// The map will be sized to accommodate `capacity` elements with a low chance of reallocating
    /// (assuming uniformly distributed hashes). If `capacity` is 0, the call will not allocate,
    /// and is equivalent to [`HashMap::new`].
    ///
    /// Warning: `hash_builder` is normally randomly generated, and is designed to allow the map
    /// to be resistant to attacks that cause many collisions and very poor performance.
    /// Setting it manually using this function can expose a DoS attack vector.
    ///
    /// # Examples
    ///
    /// ```
    /// use flurry::HashMap;
    /// use std::collections::hash_map::RandomState;
    ///
    /// let s = RandomState::new();
    /// let map = HashMap::with_capacity_and_hasher(10, s);
    /// map.pin().insert(1, 2);
    /// ```
    pub fn with_capacity_and_hasher(capacity: usize, hash_builder: S) -> Self {
        if capacity == 0 {
            return Self::with_hasher(hash_builder);
        }

        let mut map = Self::with_hasher(hash_builder);
        map.presize(capacity);
        map
    }

    /*
    NOTE: This method is intentionally left out atm as it is a potentially large foot-gun.
          See https://github.com/jonhoo/flurry/pull/49#issuecomment-580514518.
    */
    /*
    /// Associate a custom [`epoch::Collector`] with this map.
    ///
    /// By default, the global collector is used. With this method you can use a different
    /// collector instead. This may be desireable if you want more control over when and how memory
    /// reclamation happens.
    ///
    /// Note that _all_ `Guard` references provided to access the returned map _must_ be
    /// constructed using guards produced by `collector`. You can use [`HashMap::register`] to get
    /// a thread-local handle to the collector that then lets you construct an [`epoch::Guard`].
    pub fn with_collector(mut self, collector: epoch::Collector) -> Self {
        self.collector = collector;
        self
    }

    /// Allocate a thread-local handle to the [`epoch::Collector`] associated with this map.
    ///
    /// You can use the returned handle to produce [`epoch::Guard`] references.
    pub fn register(&self) -> epoch::LocalHandle {
        self.collector.register()
    }
    */

    /// Pin a `Guard` for use with this map.
    ///
    /// Keep in mind that for as long as you hold onto this `Guard`, you are preventing the
    /// collection of garbage generated by the map.
    pub fn guard(&self) -> epoch::Guard {
        self.collector.register().pin()
    }

    #[inline]
    fn check_guard(&self, guard: &Guard) {
        // guard.collector() may be `None` if it is unprotected
        if let Some(c) = guard.collector() {
            assert_eq!(c, &self.collector);
        }
    }

    /// Returns the number of entries in the map.
    ///
    /// # Examples
    ///
    /// ```
    /// use flurry::HashMap;
    ///
    /// let map = HashMap::new();
    ///
    /// map.pin().insert(1, "a");
    /// map.pin().insert(2, "b");
    /// assert!(map.pin().len() == 2);
    /// ```
    pub fn len(&self) -> usize {
        let n = self.count.load(Ordering::Relaxed);
        if n < 0 {
            0
        } else {
            n as usize
        }
    }

    /// Returns `true` if the map is empty. Otherwise returns `false`.
    ///
    /// # Examples
    ///
    /// ```
    /// use flurry::HashMap;
    ///
    /// let map = HashMap::new();
    /// assert!(map.pin().is_empty());
    /// map.pin().insert("a", 1);
    /// assert!(!map.pin().is_empty());
    /// ```
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    #[cfg(test)]
    /// Returns the capacity of the map.
    fn capacity(&self, guard: &Guard) -> usize {
        self.check_guard(guard);
        let table = self.table.load(Ordering::Relaxed, &guard);

        if table.is_null() {
            0
        } else {
            // Safety: we loaded `table` under the `guard`,
            // so it must still be valid here
            unsafe { table.deref() }.len()
        }
    }

    /// Returns the stamp bits for resizing a table of size n.
    /// Must be negative when shifted left by `RESIZE_STAMP_SHIFT`.
    fn resize_stamp(n: usize) -> isize {
        n.leading_zeros() as isize | (1_isize << (RESIZE_STAMP_BITS - 1))
    }

    /// An iterator visiting all key-value pairs in arbitrary order.
    ///
    /// The iterator element type is `(&'g K, &'g V)`.
    pub fn iter<'g>(&'g self, guard: &'g Guard) -> Iter<'g, K, V> {
        self.check_guard(guard);
        let table = self.table.load(Ordering::SeqCst, guard);
        let node_iter = NodeIter::new(table, guard);
        Iter { node_iter, guard }
    }

    /// An iterator visiting all keys in arbitrary order.
    ///
    /// The iterator element type is `&'g K`.
    pub fn keys<'g>(&'g self, guard: &'g Guard) -> Keys<'g, K, V> {
        self.check_guard(guard);
        let table = self.table.load(Ordering::SeqCst, guard);
        let node_iter = NodeIter::new(table, guard);
        Keys { node_iter }
    }

    /// An iterator visiting all values in arbitrary order.
    ///
    /// The iterator element type is `&'g V`.
    pub fn values<'g>(&'g self, guard: &'g Guard) -> Values<'g, K, V> {
        self.check_guard(guard);
        let table = self.table.load(Ordering::SeqCst, guard);
        let node_iter = NodeIter::new(table, guard);
        Values { node_iter, guard }
    }

    fn init_table<'g>(&'g self, guard: &'g Guard) -> Shared<'g, Table<K, V>> {
        loop {
            let table = self.table.load(Ordering::SeqCst, guard);
            // safety: we loaded the table while epoch was pinned. table won't be deallocated until
            // next epoch at the earliest.
            if !table.is_null() && !unsafe { table.deref() }.is_empty() {
                break table;
            }
            // try to allocate the table
            let mut sc = self.size_ctl.load(Ordering::SeqCst);
            if sc < 0 {
                // we lost the initialization race; just spin
                std::thread::yield_now();
                continue;
            }

            if self.size_ctl.compare_and_swap(sc, -1, Ordering::SeqCst) == sc {
                // we get to do it!
                let mut table = self.table.load(Ordering::SeqCst, guard);

                // safety: we loaded the table while epoch was pinned. table won't be deallocated
                // until next epoch at the earliest.
                if table.is_null() || unsafe { table.deref() }.is_empty() {
                    let n = if sc > 0 {
                        sc as usize
                    } else {
                        DEFAULT_CAPACITY
                    };
                    let new_table = Owned::new(Table::new(n));
                    table = new_table.into_shared(guard);
                    self.table.store(table, Ordering::SeqCst);
                    sc = load_factor!(n as isize)
                }
                self.size_ctl.store(sc, Ordering::SeqCst);
                break table;
            }
        }
    }

    /// Presize the table to accommodate the given number of elements.
    fn presize(&mut self, size: usize) {
        // NOTE: this is a stripped-down version of try_presize for use only when we _know_ that
        // the table is new, and that therefore we won't have to help out with transfers or deal
        // with contending initializations.

        // safety: we are creating this map, so no other thread can access it,
        // while we are initializing it.
        let guard = unsafe { epoch::unprotected() };

        let requested_capacity = if size >= MAXIMUM_CAPACITY / 2 {
            MAXIMUM_CAPACITY
        } else {
            // round the requested_capacity to the next power of to from 1.5 * size + 1
            // TODO: find out if this is neccessary
            let size = size + (size >> 1) + 1;

            std::cmp::min(MAXIMUM_CAPACITY, size.next_power_of_two())
        } as usize;

        // sanity check that the map has indeed not been set up already
        assert_eq!(self.size_ctl.load(Ordering::SeqCst), 0);
        assert!(self.table.load(Ordering::SeqCst, &guard).is_null());

        // the table has not yet been initialized, so we can just create it
        // with as many bins as were requested

        // create a table with `new_capacity` empty bins
        let new_table = Owned::new(Table::new(requested_capacity)).into_shared(guard);

        // store the new table to `self.table`
        self.table.store(new_table, Ordering::SeqCst);

        // resize the table once it is 75% full
        let new_load_to_resize_at = load_factor!(requested_capacity as isize);

        // store the next load at which the table should resize to it's size_ctl field
        // and thus release the initialization "lock"
        self.size_ctl.store(new_load_to_resize_at, Ordering::SeqCst);
    }
}

// ===
// the following methods require Clone and Ord, since they ultimately call
// `transfer`, which needs to be able to clone keys and work with tree bins.
// however, they do _not_ need to require thread-safety bounds (Send + Sync +
// 'static) since if the bounds do not hold, the map is empty, so no keys or
// values will be transfered anyway.
// ===

impl<K, V, S> HashMap<K, V, S>
where
    K: Clone + Ord,
{
    /// Tries to presize table to accommodate the given number of elements.
    fn try_presize(&self, size: usize, guard: &Guard) {
        let requested_capacity = if size >= MAXIMUM_CAPACITY / 2 {
            MAXIMUM_CAPACITY
        } else {
            // round the requested_capacity to the next power of to from 1.5 * size + 1
            // TODO: find out if this is neccessary
            let size = size + (size >> 1) + 1;

            std::cmp::min(MAXIMUM_CAPACITY, size.next_power_of_two())
        } as isize;

        loop {
            let size_ctl = self.size_ctl.load(Ordering::SeqCst);
            if size_ctl < 0 {
                break;
            }

            let table = self.table.load(Ordering::SeqCst, &guard);

            // The current capacity == the number of bins in the current table
            let current_capactity = if table.is_null() {
                0
            } else {
                unsafe { table.deref() }.len()
            };

            if current_capactity == 0 {
                // the table has not yet been initialized, so we can just create it
                // with as many bins as were requested

                // since the map is uninitialized, size_ctl describes the initial capacity
                let initial_capacity = size_ctl;

                // the new capacity is either the requested capacity or the initial capacity (size_ctl)
                let new_capacity = requested_capacity.max(initial_capacity) as usize;

                // try to aquire the initialization "lock" to indicate that we are initializing the table.
                if self
                    .size_ctl
                    .compare_and_swap(size_ctl, -1, Ordering::SeqCst)
                    != size_ctl
                {
                    // somebody else is already initializing the table (or has already finished).
                    continue;
                }

                // we got the initialization `lock`; Make sure the table is still unitialized
                // (or is the same table with 0 bins we read earlier, althought that should not be the case)
                if self.table.load(Ordering::SeqCst, guard) != table {
                    // NOTE: this could probably be `!self.table.load(...).is_null()`
                    // if we decide that tables can never have 0 bins.

                    // the table is already initialized; Write the `size_ctl` value it had back to it's
                    // `size_ctl` field to release the initialization "lock"
                    self.size_ctl.store(size_ctl, Ordering::SeqCst);
                    continue;
                }

                // create a table with `new_capacity` empty bins
                let new_table = Owned::new(Table::new(new_capacity)).into_shared(guard);

                // store the new table to `self.table`
                let old_table = self.table.swap(new_table, Ordering::SeqCst, &guard);

                // old_table should be `null`, since we don't ever initialize a table with 0 bins
                // and this branch only happens if table has not yet been initialized or it's length is 0.
                assert!(old_table.is_null());

                // TODO: if we allow tables with 0 bins. `defer_destroy` `old_table` if it's not `null`:
                // if !old_table.is_null() {
                //     // TODO: safety argument, for why this is okay
                //     unsafe { guard.defer_destroy(old_table) }
                // }

                // resize the table once it is 75% full
                let new_load_to_resize_at = load_factor!(new_capacity as isize);

                // store the next load at which the table should resize to it's size_ctl field
                // and thus release the initialization "lock"
                self.size_ctl.store(new_load_to_resize_at, Ordering::SeqCst);
            } else if requested_capacity <= size_ctl || current_capactity >= MAXIMUM_CAPACITY {
                // Either the `requested_capacity` was smaller than or equal to the load we would resize at (size_ctl)
                // and we don't need to resize, since our load factor will still be acceptable if we don't

                // Or it was larger than the `MAXIMUM_CAPACITY` of the map and we refuse
                // to resize to an invalid capacity
                break;
            } else if table == self.table.load(Ordering::SeqCst, &guard) {
                // The table is initialized, try to resize it to the requested capacity

                let rs: isize = Self::resize_stamp(current_capactity) << RESIZE_STAMP_SHIFT;
                // TODO: see #29: `rs` is postive even though `resize_stamp` says:
                // "Must be negative when shifted left by RESIZE_STAMP_SHIFT"
                // and since our size_control field needs to be negative
                // to indicate a resize this needs to be addressed

                if self
                    .size_ctl
                    .compare_and_swap(size_ctl, rs + 2, Ordering::SeqCst)
                    == size_ctl
                {
                    // someone else already started to resize the table
                    // TODO: can we `self.help_transfer`?
                    self.transfer(table, Shared::null(), &guard);
                }
            }
        }
    }

    // NOTE: transfer requires that K and V are Send + Sync if it will actually transfer anything.
    // If K/V aren't Send + Sync, the map must be empty, and therefore calling tansfer is fine.
    #[inline(never)]
    fn transfer<'g>(
        &'g self,
        table: Shared<'g, Table<K, V>>,
        mut next_table: Shared<'g, Table<K, V>>,
        guard: &'g Guard,
    ) {
        // safety: table was read while `guard` was held. the code that drops table only drops it
        // after it is no longer reachable, and any outstanding references are no longer active.
        // this references is still active (marked by the guard), so the target of the references
        // won't be dropped while the guard remains active.
        let n = unsafe { table.deref() }.len();
        let ncpu = num_cpus();

        let stride = if ncpu > 1 { (n >> 3) / ncpu } else { n };
        let stride = std::cmp::max(stride as isize, MIN_TRANSFER_STRIDE);

        if next_table.is_null() {
            // we are initiating a resize
            let table = Owned::new(Table::new(n << 1));
            let now_garbage = self.next_table.swap(table, Ordering::SeqCst, guard);
            assert!(now_garbage.is_null());
            self.transfer_index.store(n as isize, Ordering::SeqCst);
            next_table = self.next_table.load(Ordering::Relaxed, guard);
        }

        // safety: same argument as for table above
        let next_n = unsafe { next_table.deref() }.len();

        let mut advance = true;
        let mut finishing = false;
        let mut i = 0;
        let mut bound = 0;
        loop {
            // try to claim a range of bins for us to transfer
            while advance {
                i -= 1;
                if i >= bound || finishing {
                    advance = false;
                    break;
                }

                let next_index = self.transfer_index.load(Ordering::SeqCst);
                if next_index <= 0 {
                    i = -1;
                    advance = false;
                    break;
                }

                let next_bound = if next_index > stride {
                    next_index - stride
                } else {
                    0
                };
                if self
                    .transfer_index
                    .compare_and_swap(next_index, next_bound, Ordering::SeqCst)
                    == next_index
                {
                    bound = next_bound;
                    i = next_index;
                    advance = false;
                    break;
                }
            }

            if i < 0 || i as usize >= n || i as usize + n >= next_n {
                // the resize has finished

                if finishing {
                    // this branch is only taken for one thread partaking in the resize!
                    self.next_table.store(Shared::null(), Ordering::SeqCst);
                    let now_garbage = self.table.swap(next_table, Ordering::SeqCst, guard);
                    // safety: need to guarantee that now_garbage is no longer reachable. more
                    // specifically, no thread that executes _after_ this line can ever get a
                    // reference to now_garbage.
                    //
                    // first, we need to argue that there is no _other_ way to get to now_garbage.
                    //
                    //  - it is _not_ accessible through self.table any more
                    //  - it is _not_ accessible through self.next_table any more
                    //  - what about forwarding nodes (BinEntry::Moved)?
                    //    the only BinEntry::Moved that point to now_garbage, are the ones in
                    //    _previous_ tables. to get to those previous tables, one must ultimately
                    //    have arrived through self.table (because that's where all operations
                    //    start their search). since self.table has now changed, only "old" threads
                    //    can still be accessing them. no new thread can get to past tables, and
                    //    therefore they also cannot get to ::Moved that point to now_garbage, so
                    //    we're fine.
                    //
                    // this means that no _future_ thread (i.e., in a later epoch where the value
                    // may be freed) can get a reference to now_garbage.
                    //
                    // next, let's talk about threads with _existing_ references to now_garbage.
                    // such a thread must have gotten that reference before the call to swap.
                    // because of this, that thread must be pinned to an epoch <= the epoch of our
                    // guard (since our guard is pinning the epoch). since the garbage is placed in
                    // our epoch, it won't be freed until the _next_ epoch, at which point, that
                    // thread must have dropped its guard, and with it, any reference to the value.
                    unsafe { guard.defer_destroy(now_garbage) };
                    self.size_ctl
                        .store(((n as isize) << 1) - ((n as isize) >> 1), Ordering::SeqCst);
                    return;
                }

                let sc = self.size_ctl.load(Ordering::SeqCst);
                if self.size_ctl.compare_and_swap(sc, sc - 1, Ordering::SeqCst) == sc {
                    if (sc - 2) != Self::resize_stamp(n) << RESIZE_STAMP_SHIFT {
                        return;
                    }

                    // we are the chosen thread to finish the resize!
                    finishing = true;

                    // ???
                    advance = true;

                    // NOTE: the java code says "recheck before commit" here
                    i = n as isize;
                }

                continue;
            }
            let i = i as usize;

            // safety: these were read while `guard` was held. the code that drops these, only
            // drops them after a) they are no longer reachable, and b) any outstanding references
            // are no longer active. these references are still active (marked by the guard), so
            // the target of these references won't be dropped while the guard remains active.
            let table = unsafe { table.deref() };

            let bin = table.bin(i as usize, guard);
            if bin.is_null() {
                advance = table
                    .cas_bin(i, Shared::null(), table.get_moved(next_table, guard), guard)
                    .is_ok();
                continue;
            }
            // safety: as for table above
            let next_table = unsafe { next_table.deref() };

            // safety: bin is a valid pointer.
            //
            // there are three cases when a bin pointer is invalidated:
            //
            //  1. if the table was resized, bin is a move entry, and the resize has completed. in
            //     that case, the table (and all its heads) will be dropped in the next epoch
            //     following that.
            //  2. if the table is being resized, bin may be swapped with a move entry. the old bin
            //     will then be dropped in the following epoch after that happens.
            //  3. when elements are inserted into or removed from the map, bin may be changed into
            //     or from a TreeBin from or into a regular, linear bin. the old bin will also be
            //     dropped in the following epoch if that happens.
            //
            // in all cases, we held the guard when we got the reference to the bin. if any such
            // swap happened, it must have happened _after_ we read. since we did the read while
            // pinning the epoch, the drop must happen in the _next_ epoch (i.e., the one that we
            // are holding up by holding on to our guard).
            match *unsafe { bin.deref() } {
                BinEntry::Moved => {
                    // already processed
                    advance = true;
                }
                BinEntry::Node(ref head) => {
                    // bin is non-empty, need to link into it, so we must take the lock
                    let head_lock = head.lock.lock();

                    // need to check that this is _still_ the head
                    let current_head = table.bin(i, guard);
                    if current_head.as_raw() != bin.as_raw() {
                        // nope -- try again from the start
                        continue;
                    }

                    // yes, it is still the head, so we can now "own" the bin
                    // note that there can still be readers in the bin!

                    // TODO: ReservationNode

                    let mut run_bit = head.hash & n as u64;
                    let mut last_run = bin;
                    let mut p = bin;
                    loop {
                        // safety: p is a valid pointer.
                        //
                        // p is only dropped in the next epoch following when its bin is replaced
                        // with a move node (see safety comment near table.store_bin below). we
                        // read the bin, and got to p, so its bin has not yet been swapped with a
                        // move node. and, we have the epoch pinned, so the next epoch cannot have
                        // arrived yet. therefore, it will be dropped in a future epoch, and is
                        // safe to use now.
                        let node = unsafe { p.deref() }.as_node().unwrap();
                        let next = node.next.load(Ordering::SeqCst, guard);

                        let b = node.hash & n as u64;
                        if b != run_bit {
                            run_bit = b;
                            last_run = p;
                        }

                        if next.is_null() {
                            break;
                        }
                        p = next;
                    }

                    let mut low_bin = Shared::null();
                    let mut high_bin = Shared::null();
                    if run_bit == 0 {
                        // last run is all in the low bin
                        low_bin = last_run;
                    } else {
                        // last run is all in the high bin
                        high_bin = last_run;
                    }

                    p = bin;
                    while p != last_run {
                        // safety: p is a valid pointer.
                        //
                        // p is only dropped in the next epoch following when its bin is replaced
                        // with a move node (see safety comment near table.store_bin below). we
                        // read the bin, and got to p, so its bin has not yet been swapped with a
                        // move node. and, we have the epoch pinned, so the next epoch cannot have
                        // arrived yet. therefore, it will be dropped in a future epoch, and is
                        // safe to use now.
                        let node = unsafe { p.deref() }.as_node().unwrap();

                        let link = if node.hash & n as u64 == 0 {
                            // to the low bin!
                            &mut low_bin
                        } else {
                            // to the high bin!
                            &mut high_bin
                        };

                        *link = Owned::new(BinEntry::Node(Node::with_next(
                            node.hash,
                            node.key.clone(),
                            node.value.clone(),
                            Atomic::from(*link),
                        )))
                        .into_shared(guard);

                        p = node.next.load(Ordering::SeqCst, guard);
                    }

                    next_table.store_bin(i, low_bin);
                    next_table.store_bin(i + n, high_bin);
                    table.store_bin(
                        i,
                        table.get_moved(Shared::from(next_table as *const _), guard),
                    );

                    // everything up to last_run in the _old_ bin linked list is now garbage.
                    // those nodes have all been re-allocated in the new bin linked list.
                    p = bin;
                    while p != last_run {
                        // safety:
                        //
                        // we need to argue that there is no longer a way to access p. the only way
                        // to get to p is through table[i]. since table[i] has been replaced by a
                        // BinEntry::Moved, p is no longer accessible.
                        //
                        // any existing reference to p must have been taken before table.store_bin.
                        // at that time we had the epoch pinned, so any threads that have such a
                        // reference must be before or at our epoch. since the p isn't destroyed
                        // until the next epoch, those old references are fine since they are tied
                        // to those old threads' pins of the old epoch.
                        let next = unsafe { p.deref() }
                            .as_node()
                            .unwrap()
                            .next
                            .load(Ordering::SeqCst, guard);
                        unsafe { guard.defer_destroy(p) };
                        p = next;
                    }

                    advance = true;

                    drop(head_lock);
                }
                BinEntry::Tree(ref tree_bin) => {
                    let bin_lock = tree_bin.lock.lock();

                    // need to check that this is _still_ the correct bin
                    let current_head = table.bin(i, guard);
                    if current_head != bin {
                        // nope -- try again from the start
                        continue;
                    }

                    let mut low = Shared::null();
                    let mut low_tail = Shared::null();
                    let mut high = Shared::null();
                    let mut high_tail = Shared::null();
                    let mut low_count = 0;
                    let mut high_count = 0;
                    let mut e = tree_bin.first.load(Ordering::Relaxed, guard);
                    while !e.is_null() {
                        // safety: the TreeBin was read under our guard, at
                        // which point the tree structure was valid. Since our
                        // guard pins the current epoch, the TreeNodes remain
                        // valid for at least as long as we hold onto the guard.
                        // Structurally, TreeNodes always point to TreeNodes, so this is sound.
                        let tree_node = unsafe { TreeNode::get_tree_node(e) };
                        let hash = tree_node.node.hash;
                        let new_node = TreeNode::new(
                            hash,
                            tree_node.node.key.clone(),
                            tree_node.node.value.clone(),
                            Atomic::null(),
                            Atomic::null(),
                        );
                        let run_bit = hash & n as u64;
                        if run_bit == 0 {
                            new_node.prev.store(low_tail, Ordering::Relaxed);
                            let new_node =
                                Owned::new(BinEntry::TreeNode(new_node)).into_shared(guard);
                            if low_tail.is_null() {
                                // this is the first element inserted into the low bin
                                low = new_node;
                            } else {
                                // safety: `low_tail` was just created by us and not shared.
                                // Structurally, TreeNodes always point to TreeNodes, so this is sound.
                                unsafe { TreeNode::get_tree_node(low_tail) }
                                    .node
                                    .next
                                    .store(new_node, Ordering::Relaxed);
                            }
                            low_tail = new_node;
                            low_count += 1;
                        } else {
                            new_node.prev.store(high_tail, Ordering::Relaxed);
                            let new_node =
                                Owned::new(BinEntry::TreeNode(new_node)).into_shared(guard);
                            if high_tail.is_null() {
                                // this is the first element inserted into the high bin
                                high = new_node;
                            } else {
                                // safety: `high_tail` was just created by us and not shared.
                                // Structurally, TreeNodes always point to TreeNodes, so this is sound.
                                unsafe { TreeNode::get_tree_node(high_tail) }
                                    .node
                                    .next
                                    .store(new_node, Ordering::Relaxed);
                            }
                            high_tail = new_node;
                            high_count += 1;
                        }
                        e = tree_node.node.next.load(Ordering::Relaxed, guard);
                    }

                    let mut reused_bin = false;
                    let low_bin = if low_count <= UNTREEIFY_THRESHOLD {
                        // use a regular bin instead of a tree bin since the
                        // bin is too small. since the tree nodes are
                        // already behind shared references, we have to
                        // clean them up manually.
                        let low_linear = Self::untreeify(low, guard);
                        // safety: we have just created `low` and its `next`
                        // nodes and have never shared them
                        unsafe { TreeBin::drop_tree_nodes(low, false, guard) };
                        low_linear
                    } else if high_count != 0 {
                        // the new bin will also be a tree bin. if both the high
                        // bin and the low bin are non-empty, we have to
                        // allocate a new TreeBin.
                        Owned::new(BinEntry::Tree(TreeBin::new(
                            // safety: we have just created `low` and its `next`
                            // nodes and have never shared them
                            unsafe { low.into_owned() },
                            guard,
                        )))
                        .into_shared(guard)
                    } else {
                        // if not, we can re-use the old bin here, since it will
                        // be swapped for a Moved entry while we are still
                        // behind the bin lock.
                        reused_bin = true;
                        // since we also don't use the created low nodes here,
                        // we need to clean them up.
                        // safety: we have just created `low` and its `next`
                        // nodes and have never shared them
                        unsafe { TreeBin::drop_tree_nodes(low, false, guard) };
                        bin
                    };
                    let high_bin = if high_count <= UNTREEIFY_THRESHOLD {
                        let high_linear = Self::untreeify(high, guard);
                        // safety: we have just created `high` and its `next`
                        // nodes and have never shared them
                        unsafe { TreeBin::drop_tree_nodes(high, false, guard) };
                        high_linear
                    } else if low_count != 0 {
                        Owned::new(BinEntry::Tree(TreeBin::new(
                            // safety: we have just created `high` and its `next`
                            // nodes and have never shared them
                            unsafe { high.into_owned() },
                            guard,
                        )))
                        .into_shared(guard)
                    } else {
                        reused_bin = true;
                        // since we also don't use the created low nodes here,
                        // we need to clean them up.
                        // safety: we have just created `high` and its `next`
                        // nodes and have never shared them
                        unsafe { TreeBin::drop_tree_nodes(high, false, guard) };
                        bin
                    };

                    next_table.store_bin(i, low_bin);
                    next_table.store_bin(i + n, high_bin);
                    table.store_bin(
                        i,
                        table.get_moved(Shared::from(next_table as *const _), guard),
                    );

                    // if we did not re-use the old bin, it is now garbage,
                    // since all of its nodes have been reallocated. However,
                    // we always re-use the stored values, so we can't drop those.
                    if !reused_bin {
                        // safety: the entry for this bin in the old table was
                        // swapped for a Moved entry, so no thread can obtain a
                        // new reference to `bin` from there. we only defer
                        // dropping the old bin if it was not used in
                        // `next_table` so there is no other reference to it
                        // anyone could obtain.
                        unsafe { TreeBin::defer_drop_without_values(bin, guard) };
                    }

                    advance = true;
                    drop(bin_lock);
                }
                BinEntry::TreeNode(_) => unreachable!(
                    "The head of a bin cannot be a TreeNode directly without BinEntry::Tree"
                ),
            }
        }
    }

    fn help_transfer<'g>(
        &'g self,
        table: Shared<'g, Table<K, V>>,
        guard: &'g Guard,
    ) -> Shared<'g, Table<K, V>> {
        if table.is_null() {
            return table;
        }

        // safety: table is only dropped on the next epoch change after it is swapped to null.
        // we read it as not null, so it must not be dropped until a subsequent epoch. since we
        // held `guard` at the time, we know that the current epoch continues to persist, and that
        // our reference is therefore valid.
        let next_table = unsafe { table.deref() }.next_table(guard);
        if next_table.is_null() {
            return table;
        }

        // safety: same as above
        let rs = Self::resize_stamp(unsafe { table.deref() }.len()) << RESIZE_STAMP_SHIFT;

        while next_table == self.next_table.load(Ordering::SeqCst, guard)
            && table == self.table.load(Ordering::SeqCst, guard)
        {
            let sc = self.size_ctl.load(Ordering::SeqCst);
            if sc >= 0
                || sc == rs + MAX_RESIZERS
                || sc == rs + 1
                || self.transfer_index.load(Ordering::SeqCst) <= 0
            {
                break;
            }

            if self.size_ctl.compare_and_swap(sc, sc + 1, Ordering::SeqCst) == sc {
                self.transfer(table, next_table, guard);
                break;
            }
        }
        next_table
    }

    fn add_count(&self, n: isize, resize_hint: Option<usize>, guard: &Guard) {
        // TODO: implement the Java CounterCell business here

        use std::cmp;
        let mut count = match n.cmp(&0) {
            cmp::Ordering::Greater => self.count.fetch_add(n, Ordering::SeqCst) + n,
            cmp::Ordering::Less => self.count.fetch_sub(n.abs(), Ordering::SeqCst) - n,
            cmp::Ordering::Equal => self.count.load(Ordering::SeqCst),
        };

        // if resize_hint is None, it means the caller does not want us to consider a resize.
        // if it is Some(n), the caller saw n entries in a bin
        if resize_hint.is_none() {
            return;
        }

        // TODO: use the resize hint
        let _saw_bin_length = resize_hint.unwrap();

        loop {
            let sc = self.size_ctl.load(Ordering::SeqCst);
            if (count as isize) < sc {
                // we're not at the next resize point yet
                break;
            }

            let table = self.table.load(Ordering::SeqCst, guard);
            if table.is_null() {
                // table will be initalized by another thread anyway
                break;
            }

            // safety: table is only dropped on the next epoch change after it is swapped to null.
            // we read it as not null, so it must not be dropped until a subsequent epoch. since we
            // hold a Guard, we know that the current epoch will persist, and that our reference
            // will therefore remain valid.
            let n = unsafe { table.deref() }.len();
            if n >= MAXIMUM_CAPACITY {
                // can't resize any more anyway
                break;
            }

            let rs = Self::resize_stamp(n) << RESIZE_STAMP_SHIFT;
            if sc < 0 {
                // ongoing resize! can we join the resize transfer?
                if sc == rs + MAX_RESIZERS || sc == rs + 1 {
                    break;
                }
                let nt = self.next_table.load(Ordering::SeqCst, guard);
                if nt.is_null() {
                    break;
                }
                if self.transfer_index.load(Ordering::SeqCst) <= 0 {
                    break;
                }

                // try to join!
                if self.size_ctl.compare_and_swap(sc, sc + 1, Ordering::SeqCst) == sc {
                    self.transfer(table, nt, guard);
                }
            } else if self.size_ctl.compare_and_swap(sc, rs + 2, Ordering::SeqCst) == sc {
                // a resize is needed, but has not yet started
                // TODO: figure out why this is rs + 2, not just rs
                // NOTE: this also applies to `try_presize`
                self.transfer(table, Shared::null(), guard);
            }

            // another resize may be needed!
            count = self.count.load(Ordering::SeqCst);
        }
    }

    /// Tries to reserve capacity for at least `additional` more elements to be inserted in the
    /// `HashMap`.
    ///
    /// The collection may reserve more space to avoid frequent reallocations.
    ///
    /// # Examples
    ///
    /// ```
    /// use flurry::HashMap;
    ///
    /// let map: HashMap<&str, i32> = HashMap::new();
    ///
    /// map.pin().reserve(10);
    /// ```
    ///
    /// # Notes
    ///
    /// Reserving does not panic in flurry. If the new size is invalid, no
    /// reallocation takes place.
    pub fn reserve(&self, additional: usize, guard: &Guard) {
        self.check_guard(guard);
        let absolute = self.len() + additional;
        self.try_presize(absolute, guard);
    }
}

// ===
// the following methods never introduce new items (so they do not need the thread-safety bounds),
// but they _do_ perform lookups, which require hashing and equality.
// ===

impl<K, V, S> HashMap<K, V, S>
where
    K: Hash + Ord,
    S: BuildHasher,
{
    #[inline]
    fn hash<Q: ?Sized + Hash>(&self, key: &Q) -> u64 {
        let mut h = self.build_hasher.build_hasher();
        key.hash(&mut h);
        h.finish()
    }

    fn get_node<'g, Q>(&'g self, key: &Q, guard: &'g Guard) -> Option<&'g Node<K, V>>
    where
        K: Borrow<Q>,
        Q: ?Sized + Hash + Ord,
    {
        let table = self.table.load(Ordering::SeqCst, guard);
        if table.is_null() {
            return None;
        }

        // safety: we loaded the table while epoch was pinned. table won't be deallocated until
        // next epoch at the earliest.
        let table = unsafe { table.deref() };
        if table.is_empty() {
            return None;
        }

        let h = self.hash(key);
        let bini = table.bini(h);
        let bin = table.bin(bini, guard);
        if bin.is_null() {
            return None;
        }

        // safety: bin is a valid pointer.
        //
        // there are three cases when a bin pointer is invalidated:
        //
        //  1. if the table was resized, bin is a move entry, and the resize has completed. in
        //     that case, the table (and all its heads) will be dropped in the next epoch
        //     following that.
        //  2. if the table is being resized, bin may be swapped with a move entry. the old bin
        //     will then be dropped in the following epoch after that happens.
        //  3. when elements are inserted into or removed from the map, bin may be changed into
        //     or from a TreeBin from or into a regular, linear bin. the old bin will also be
        //     dropped in the following epoch if that happens.
        //
        // in all cases, we held the guard when we got the reference to the bin. if any such
        // swap happened, it must have happened _after_ we read. since we did the read while
        // pinning the epoch, the drop must happen in the _next_ epoch (i.e., the one that we
        // are holding up by holding on to our guard).
        let node = table.find(unsafe { bin.deref() }, h, key, guard);
        if node.is_null() {
            return None;
        }
        // safety: we read the bin while pinning the epoch. a bin will never be dropped until the
        // next epoch after it is removed. since it wasn't removed, and the epoch was pinned, that
        // cannot be until after we drop our guard.
        let node = unsafe { node.deref() };
        Some(match node {
            BinEntry::Node(ref n) => n,
            BinEntry::TreeNode(ref tn) => &tn.node,
            _ => panic!("`Table::find` should always return a Node"),
        })
    }

    /// Returns `true` if the map contains a value for the specified key.
    ///
    /// The key may be any borrowed form of the map's key type, but
    /// [`Hash`] and [`Ord`] on the borrowed form *must* match those for
    /// the key type.
    ///
    /// [`Ord`]: std::cmp::Ord
    /// [`Hash`]: std::hash::Hash
    ///
    /// # Examples
    ///
    /// ```
    /// use flurry::HashMap;
    ///
    /// let map = HashMap::new();
    /// let mref = map.pin();
    /// mref.insert(1, "a");
    /// assert_eq!(mref.contains_key(&1), true);
    /// assert_eq!(mref.contains_key(&2), false);
    /// ```
    pub fn contains_key<Q>(&self, key: &Q, guard: &Guard) -> bool
    where
        K: Borrow<Q>,
        Q: ?Sized + Hash + Ord,
    {
        self.check_guard(guard);
        self.get(key, &guard).is_some()
    }

    /// Returns a reference to the value corresponding to the key.
    ///
    /// The key may be any borrowed form of the map's key type, but
    /// [`Hash`] and [`Ord`] on the borrowed form *must* match those for
    /// the key type.
    ///
    /// [`Ord`]: std::cmp::Ord
    /// [`Hash`]: std::hash::Hash
    ///
    /// To obtain a `Guard`, use [`HashMap::guard`].
    ///
    /// # Examples
    ///
    /// ```
    /// use flurry::HashMap;
    ///
    /// let map = HashMap::new();
    /// let mref = map.pin();
    /// mref.insert(1, "a");
    /// assert_eq!(mref.get(&1), Some(&"a"));
    /// assert_eq!(mref.get(&2), None);
    /// ```
    #[inline]
    pub fn get<'g, Q>(&'g self, key: &Q, guard: &'g Guard) -> Option<&'g V>
    where
        K: Borrow<Q>,
        Q: ?Sized + Hash + Ord,
    {
        self.check_guard(guard);
        let node = self.get_node(key, guard)?;

        let v = node.value.load(Ordering::SeqCst, guard);
        assert!(!v.is_null());
        // safety: the lifetime of the reference is bound to the guard
        // supplied which means that the memory will not be modified
        // until at least after the guard goes out of scope
        unsafe { v.as_ref() }
    }

    /// Returns the key-value pair corresponding to `key`.
    ///
    /// Returns `None` if this map contains no mapping for `key`.
    ///
    /// The key may be any borrowed form of the map's key type, but
    /// [`Hash`] and [`Ord`] on the borrowed form *must* match those for
    /// the key type.
    ///
    /// [`Ord`]: std::cmp::Ord
    /// [`Hash`]: std::hash::Hash
    #[inline]
    pub fn get_key_value<'g, Q>(&'g self, key: &Q, guard: &'g Guard) -> Option<(&'g K, &'g V)>
    where
        K: Borrow<Q>,
        Q: ?Sized + Hash + Ord,
    {
        self.check_guard(guard);
        let node = self.get_node(key, guard)?;

        let v = node.value.load(Ordering::SeqCst, guard);
        assert!(!v.is_null());
        // safety: the lifetime of the reference is bound to the guard
        // supplied which means that the memory will not be modified
        // until at least after the guard goes out of scope
        unsafe { v.as_ref() }.map(|v| (&node.key, v))
    }

    pub(crate) fn guarded_eq(&self, other: &Self, our_guard: &Guard, their_guard: &Guard) -> bool
    where
        V: PartialEq,
    {
        if self.len() != other.len() {
            return false;
        }

        self.iter(our_guard)
            .all(|(key, value)| other.get(key, their_guard).map_or(false, |v| *value == *v))
    }
}

// ===
// the following methods only ever _remove_ items, but never introduce them, so they do not need
// the thread-safety bounds.
// ===

impl<K, V, S> HashMap<K, V, S>
where
    K: Clone + Ord,
{
    /// Clears the map, removing all key-value pairs.
    ///
    /// # Examples
    ///
    /// ```
    /// use flurry::HashMap;
    ///
    /// let map = HashMap::new();
    ///
    /// map.pin().insert(1, "a");
    /// map.pin().clear();
    /// assert!(map.pin().is_empty());
    /// ```
    pub fn clear(&self, guard: &Guard) {
        // Negative number of deletions
        let mut delta = 0;
        let mut idx = 0usize;

        let mut table = self.table.load(Ordering::SeqCst, guard);
        // Safety: self.table is a valid pointer because we checked it above.
        while !table.is_null() && idx < unsafe { table.deref() }.len() {
            let tab = unsafe { table.deref() };
            let raw_node = tab.bin(idx, guard);
            if raw_node.is_null() {
                idx += 1;
                continue;
            }
            // Safety: node is a valid pointer because we checked
            // it in the above if stmt.
            match unsafe { raw_node.deref() } {
                BinEntry::Moved => {
                    table = self.help_transfer(table, guard);
                    // start from the first bin again in the new table
                    idx = 0;
                }
                BinEntry::Node(ref node) => {
                    let head_lock = node.lock.lock();
                    // need to check that this is _still_ the head
                    let current_head = tab.bin(idx, guard);
                    if current_head != raw_node {
                        // nope -- try the bin again
                        continue;
                    }
                    // we now own the bin
                    // unlink it from the map to prevent others from entering it
                    // NOTE: The Java code stores the null bin _after_ the loop, and thus also has
                    // to hold the lock until that point. However, after the store happens new
                    // threads and threads waiting on the lock will read the new bin, so we can
                    // drop the lock early and do the counting and garbage collection outside the
                    // critical section.
                    tab.store_bin(idx, Shared::null());
                    drop(head_lock);
                    // next, walk the nodes of the bin and free the nodes and their values as we go
                    // note that we do not free the head node yet, since we're holding the lock it contains
                    let mut p = node.next.load(Ordering::SeqCst, guard);
                    while !p.is_null() {
                        delta -= 1;
                        p = {
                            // safety: we loaded p under guard, and guard is still pinned, so p has not been dropped.
                            let node = unsafe { p.deref() }
                                .as_node()
                                .expect("entry following Node should always be a Node");
                            let next = node.next.load(Ordering::SeqCst, guard);
                            let value = node.value.load(Ordering::SeqCst, guard);
                            // NOTE: do not use the reference in `node` after this point!

                            // free the node's value
                            // safety: any thread that sees this p's value must have read the bin before we stored null
                            // into it above. it must also have pinned the epoch before that time. therefore, the
                            // defer_destroy below won't be executed until that thread's guard is dropped, at which
                            // point it holds no outstanding references to the value anyway.
                            unsafe { guard.defer_destroy(value) };
                            // free the bin entry itself
                            // safety: same argument as for value above.
                            unsafe { guard.defer_destroy(p) };
                            next
                        };
                    }
                    // finally, we can drop the head node and its value
                    let value = node.value.load(Ordering::SeqCst, guard);
                    // NOTE: do not use the reference in `node` after this point!
                    // safety: same as the argument for being allowed to free the nodes beyond the head above
                    unsafe { guard.defer_destroy(value) };
                    unsafe { guard.defer_destroy(raw_node) };
                    delta -= 1;
                    idx += 1;
                }
                BinEntry::Tree(ref tree_bin) => {
                    let bin_lock = tree_bin.lock.lock();
                    // need to check that this is _still_ the correct bin
                    let current_head = tab.bin(idx, guard);
                    if current_head != raw_node {
                        // nope -- try the bin again
                        continue;
                    }
                    // we now own the bin
                    // unlink it from the map to prevent others from entering it
                    // NOTE: The Java code stores the null bin _after_ the loop, and thus also has
                    // to hold the lock until that point. However, after the store happens new
                    // threads and threads waiting on the lock will read the new bin, so we can
                    // drop the lock early and do the counting and garbage collection outside the
                    // critical section.
                    tab.store_bin(idx, Shared::null());
                    drop(bin_lock);
                    // next, walk the nodes of the bin and count how many values we remove
                    let mut p = tree_bin.first.load(Ordering::SeqCst, guard);
                    while !p.is_null() {
                        delta -= 1;
                        p = {
                            // safety: the TreeBin was read under our guard, at
                            // which point the tree was valid. Since our guard
                            // pins the current epoch, the TreeNodes remain
                            // valid for at least as long as we hold onto the
                            // guard.
                            // Structurally, TreeNodes always point to TreeNodes, so this is sound.
                            let tree_node = unsafe { TreeNode::get_tree_node(p) };
                            // NOTE: we do not drop the TreeNodes or their
                            // values here, since they will be dropped together
                            // with the containing TreeBin (`tree_bin`) in its
                            // `drop`
                            tree_node.node.next.load(Ordering::SeqCst, guard)
                        };
                    }
                    // safety: same as in the BinEntry::Node case above
                    unsafe { guard.defer_destroy(raw_node) };
                    idx += 1;
                }
                BinEntry::TreeNode(_) => unreachable!(
                    "The head of a bin cannot be a TreeNode directly without BinEntry::Tree"
                ),
            };
        }

        if delta != 0 {
            self.add_count(delta, None, guard);
        }
    }
}

// ===
// the following methods _do_ introduce items into the map, and so must require that the keys and
// values are thread safe, and can be garbage collected at a later time.
// ===

impl<K, V, S> HashMap<K, V, S>
where
    K: 'static + Sync + Send + Clone + Hash + Ord,
    V: 'static + Sync + Send,
    S: BuildHasher,
{
    /// Inserts a key-value pair into the map.
    ///
    /// If the map did not have this key present, [`None`] is returned.
    ///
    /// If the map did have this key present, the value is updated, and the old
    /// value is returned. The key is left unchanged. See the [std-collections
    /// documentation] for more.
    ///
    /// [`None`]: std::option::Option::None
    /// [std-collections documentation]: https://doc.rust-lang.org/std/collections/index.html#insert-and-complex-keys
    ///
    /// # Examples
    ///
    /// ```
    /// use flurry::HashMap;
    ///
    /// let map = HashMap::new();
    /// assert_eq!(map.pin().insert(37, "a"), None);
    /// assert_eq!(map.pin().is_empty(), false);
    ///
    /// // you can also re-use a map pin like so:
    /// let mref = map.pin();
    ///
    /// mref.insert(37, "b");
    /// assert_eq!(mref.insert(37, "c"), Some(&"b"));
    /// assert_eq!(mref.get(&37), Some(&"c"));
    /// ```
    pub fn insert<'g>(&'g self, key: K, value: V, guard: &'g Guard) -> Option<&'g V> {
        self.check_guard(guard);
        self.put(key, value, false, guard).before()
    }

    /// Inserts a key-value pair into the map unless the key already exists.
    ///
    /// If the map does not contain the key, the key-value pair is inserted
    /// and this method returns `Ok`.
    ///
    /// If the map does contain the key, the map is left unchanged and this
    /// method returns `Err`.
    ///
    /// [std-collections documentation]: https://doc.rust-lang.org/std/collections/index.html#insert-and-complex-keys
    ///
    /// # Examples
    ///
    /// ```
    /// use flurry::{HashMap, TryInsertError};
    ///
    /// let map = HashMap::new();
    /// let mref = map.pin();
    ///
    /// mref.insert(37, "a");
    /// assert_eq!(
    ///     mref.try_insert(37, "b"),
    ///     Err(TryInsertError { current: &"a", not_inserted: &"b"})
    /// );
    /// assert_eq!(mref.try_insert(42, "c"), Ok(&"c"));
    /// assert_eq!(mref.get(&37), Some(&"a"));
    /// assert_eq!(mref.get(&42), Some(&"c"));
    /// ```
    #[inline]
    pub fn try_insert<'g>(
        &'g self,
        key: K,
        value: V,
        guard: &'g Guard,
    ) -> Result<&'g V, TryInsertError<'g, V>> {
        match self.put(key, value, true, guard) {
            PutResult::Exists {
                current,
                not_inserted,
            } => Err(TryInsertError {
                current,
                not_inserted: *not_inserted,
            }),
            PutResult::Inserted { new } => Ok(new),
            PutResult::Replaced { .. } => {
                unreachable!("no_replacement cannot result in PutResult::Replaced")
            }
        }
    }

    fn put<'g>(
        &'g self,
        mut key: K,
        value: V,
        no_replacement: bool,
        guard: &'g Guard,
    ) -> PutResult<'g, V> {
        let hash = self.hash(&key);
        let mut table = self.table.load(Ordering::SeqCst, guard);
        let mut bin_count;
        let value = Owned::new(value).into_shared(guard);
        let mut old_val = None;
        loop {
            // safety: see argument below for !is_null case
            if table.is_null() || unsafe { table.deref() }.is_empty() {
                table = self.init_table(guard);
                continue;
            }

            // safety: table is a valid pointer.
            //
            // we are in one of three cases:
            //
            //  1. if table is the one we read before the loop, then we read it while holding the
            //     guard, so it won't be dropped until after we drop that guard b/c the drop logic
            //     only queues a drop for the next epoch after removing the table.
            //
            //  2. if table is read by init_table, then either we did a load, and the argument is
            //     as for point 1. or, we allocated a table, in which case the earliest it can be
            //     deallocated is in the next epoch. we are holding up the epoch by holding the
            //     guard, so this deref is safe.
            //
            //  3. if table is set by a Moved node (below) through help_transfer, it will _either_
            //     keep using `table` (which is fine by 1. and 2.), or use the `next_table` raw
            //     pointer from inside the Moved. to see that if a Moved(t) is _read_, then t must
            //     still be valid, see the safety comment on Table.next_table.
            let t = unsafe { table.deref() };

            let bini = t.bini(hash);
            let mut bin = t.bin(bini, guard);
            if bin.is_null() {
                // fast path -- bin is empty so stick us at the front
                let node = Owned::new(BinEntry::Node(Node::new(hash, key, value)));
                match t.cas_bin(bini, bin, node, guard) {
                    Ok(_old_null_ptr) => {
                        self.add_count(1, Some(0), guard);
                        guard.flush();
                        // safety: we have not moved the node's value since we placed it into
                        // its `Atomic` in the very beginning of the method, so the ref is still
                        // valid. since the value is not currently marked as garbage, we know it
                        // will not collected until at least one epoch passes, and since `value`
                        // was produced under a guard the pins the current epoch, the returned
                        // reference will remain valid for the guard's lifetime.
                        return PutResult::Inserted {
                            new: unsafe { value.deref() },
                        };
                    }
                    Err(changed) => {
                        assert!(!changed.current.is_null());
                        bin = changed.current;
                        if let BinEntry::Node(node) = *changed.new.into_box() {
                            key = node.key;
                        } else {
                            unreachable!("we declared node and it is a BinEntry::Node");
                        }
                    }
                }
            }

            // slow path -- bin is non-empty

            // safety: bin is a valid pointer.
            //
            // there are three cases when a bin pointer is invalidated:
            //
            //  1. if the table was resized, bin is a move entry, and the resize has completed. in
            //     that case, the table (and all its heads) will be dropped in the next epoch
            //     following that.
            //  2. if the table is being resized, bin may be swapped with a move entry. the old bin
            //     will then be dropped in the following epoch after that happens.
            //  3. when elements are inserted into or removed from the map, bin may be changed into
            //     or from a TreeBin from or into a regular, linear bin. the old bin will also be
            //     dropped in the following epoch if that happens.
            //
            // in all cases, we held the guard when we got the reference to the bin. if any such
            // swap happened, it must have happened _after_ we read. since we did the read while
            // pinning the epoch, the drop must happen in the _next_ epoch (i.e., the one that we
            // are holding up by holding on to our guard).
            match *unsafe { bin.deref() } {
                BinEntry::Moved => {
                    table = self.help_transfer(table, guard);
                    continue;
                }
                BinEntry::Node(ref head)
                    if no_replacement && head.hash == hash && head.key == key =>
                {
                    // fast path if replacement is disallowed and first bin matches
                    let v = head.value.load(Ordering::SeqCst, guard);
                    // safety (for v): since the value is present now, and we've held a guard from
                    // the beginning of the search, the value cannot be dropped until the next
                    // epoch, which won't arrive until after we drop our guard.
                    // safety (for value): since we never inserted the value in the tree, `value`
                    // is the last remaining pointer to the initial value.
                    return PutResult::Exists {
                        current: unsafe { v.deref() },
                        not_inserted: unsafe { value.into_owned().into_box() },
                    };
                }
                BinEntry::Node(ref head) => {
                    // bin is non-empty, need to link into it, so we must take the lock
                    let head_lock = head.lock.lock();

                    // need to check that this is _still_ the head
                    let current_head = t.bin(bini, guard);
                    if current_head != bin {
                        // nope -- try again from the start
                        continue;
                    }

                    // yes, it is still the head, so we can now "own" the bin
                    // note that there can still be readers in the bin!

                    // TODO: ReservationNode

                    bin_count = 1;
                    let mut p = bin;

                    old_val = loop {
                        // safety: we read the bin while pinning the epoch. a bin will never be
                        // dropped until the next epoch after it is removed. since it wasn't
                        // removed, and the epoch was pinned, that cannot be until after we drop
                        // our guard.
                        let n = unsafe { p.deref() }.as_node().unwrap();
                        if n.hash == hash && n.key == key {
                            // the key already exists in the map!
                            let current_value = n.value.load(Ordering::SeqCst, guard);

                            // safety: since the value is present now, and we've held a guard from
                            // the beginning of the search, the value cannot be dropped until the
                            // next epoch, which won't arrive until after we drop our guard.
                            let current_value = unsafe { current_value.deref() };

                            if no_replacement {
                                // the key is not absent, so don't update
                                // because of `no_replacement`, we don't use the
                                // new value, so we need to clean it up
                                // safety: we own value and did not share it
                                let _ = unsafe { value.into_owned() };
                            } else {
                                // update the value in the existing node
                                let now_garbage = n.value.swap(value, Ordering::SeqCst, guard);
                                // NOTE: now_garbage == current_value

                                // safety: need to guarantee that now_garbage is no longer
                                // reachable. more specifically, no thread that executes _after_
                                // this line can ever get a reference to now_garbage.
                                //
                                // here are the possible cases:
                                //
                                //  - another thread already has a reference to now_garbage.
                                //    they must have read it before the call to swap.
                                //    because of this, that thread must be pinned to an epoch <=
                                //    the epoch of our guard. since the garbage is placed in our
                                //    epoch, it won't be freed until the _next_ epoch, at which
                                //    point, that thread must have dropped its guard, and with it,
                                //    any reference to the value.
                                //  - another thread is about to get a reference to this value.
                                //    they execute _after_ the swap, and therefore do _not_ get a
                                //    reference to now_garbage (they get value instead). there are
                                //    no other ways to get to a value except through its Node's
                                //    `value` field (which is what we swapped), so freeing
                                //    now_garbage is fine.
                                unsafe { guard.defer_destroy(now_garbage) };
                            }
                            break Some(current_value);
                        }

                        // TODO: This Ordering can probably be relaxed due to the Mutex
                        let next = n.next.load(Ordering::SeqCst, guard);
                        if next.is_null() {
                            // we're at the end of the bin -- stick the node here!
                            let node = Owned::new(BinEntry::Node(Node::new(hash, key, value)));
                            n.next.store(node, Ordering::SeqCst);
                            break None;
                        }
                        p = next;

                        bin_count += 1;
                    };
                    drop(head_lock);
                }
                // NOTE: BinEntry::Tree(ref tree_bin) if no_replacement && head.hash == h && &head.key == key
                // cannot occur as in the Java code, TreeBins have a special, indicator hash value
                BinEntry::Tree(ref tree_bin) => {
                    // bin is non-empty, need to link into it, so we must take the lock
                    let head_lock = tree_bin.lock.lock();

                    // need to check that this is _still_ the correct bin
                    let current_head = t.bin(bini, guard);
                    if current_head != bin {
                        // nope -- try again from the start
                        continue;
                    }

                    // yes, it is still the head, so we can now "own" the bin
                    // note that there can still be readers in the bin!

                    // we don't actually count bins, just set this low enough
                    // that we don't try to treeify the bin later
                    bin_count = 2;
                    let p = tree_bin.find_or_put_tree_val(hash, key, value, guard);
                    if p.is_null() {
                        // no TreeNode was returned, so the key did not previously exist in the
                        // TreeBin. This means it was successfully put there by the call above
                        // and we are done.
                        break;
                    }
                    // safety: the TreeBin was read under our guard, at
                    // which point the tree structure was valid. Since our
                    // guard pins the current epoch, the TreeNodes remain
                    // valid for at least as long as we hold onto the guard.
                    // Structurally, TreeNodes always point to TreeNodes, so this is sound.
                    let tree_node = unsafe { TreeNode::get_tree_node(p) };
                    old_val = {
                        let current_value = tree_node.node.value.load(Ordering::SeqCst, guard);
                        // safety: since the value is present now, and we've held a guard from
                        // the beginning of the search, the value cannot be dropped until the
                        // next epoch, which won't arrive until after we drop our guard.
                        let current_value = unsafe { current_value.deref() };
                        if no_replacement {
                            // the key is not absent, so don't update
                            // because of `no_replacement`, we don't use the
                            // new value, so we need to clean it up
                            // safety: we own value and did not share it
                            let _ = unsafe { value.into_owned() };
                        } else {
                            let now_garbage =
                                tree_node.node.value.swap(value, Ordering::SeqCst, guard);
                            // NOTE: now_garbage == current_value

                            // safety: need to guarantee that now_garbage is no longer
                            // reachable. more specifically, no thread that executes _after_
                            // this line can ever get a reference to now_garbage.
                            //
                            // here are the possible cases:
                            //
                            //  - another thread already has a reference to now_garbage.
                            //    they must have read it before the call to swap.
                            //    because of this, that thread must be pinned to an epoch <=
                            //    the epoch of our guard. since the garbage is placed in our
                            //    epoch, it won't be freed until the _next_ epoch, at which
                            //    point, that thread must have dropped its guard, and with it,
                            //    any reference to the value.
                            //  - another thread is about to get a reference to this value.
                            //    they execute _after_ the swap, and therefore do _not_ get a
                            //    reference to now_garbage (they get `value` instead). there are
                            //    no other ways to get to a value except through its Node's
                            //    `value` field (which is what we swapped), so freeing
                            //    now_garbage is fine.
                            unsafe { guard.defer_destroy(now_garbage) };
                        }
                        Some(current_value)
                    };
                    drop(head_lock);
                }
                BinEntry::TreeNode(_) => unreachable!(
                    "The head of a bin cannot be a TreeNode directly without BinEntry::Tree"
                ),
            }
            // NOTE: the Java code checks `bin_count` here because they also
            // reach this point if the bin changed while obtaining the lock.
            // However, our code doesn't (it uses continue) and `bin_count`
            // _cannot_ be 0 at this point.
            debug_assert_ne!(bin_count, 0);
            if bin_count >= TREEIFY_THRESHOLD {
                self.treeify_bin(t, bini, guard);
            }
            if let Some(old_val) = old_val {
                return PutResult::Replaced {
                    old: old_val,
                    // safety: we have not moved the node's value since we placed it into its
                    // `Atomic` in the very beginning of the method, so the ref is still valid.
                    // since the value is not currently marked as garbage, we know it will not
                    // collected until at least one epoch passes, and since `value` was produced
                    // under a guard the pins the current epoch, the returned reference will remain
                    // valid for the guard's lifetime.
                    new: unsafe { value.deref() },
                };
            }
            break;
        }
        // increment count, since we only get here if we did not return an old (updated) value
        debug_assert!(old_val.is_none());
        self.add_count(1, Some(bin_count), guard);
        guard.flush();
        PutResult::Inserted {
            // safety: we have not moved the node's value since we placed it into its
            // `Atomic` in the very beginning of the method, so the ref is still valid.
            // since the value is not currently marked as garbage, we know it will not
            // collected until at least one epoch passes, and since `value` was produced
            // under a guard the pins the current epoch, the returned reference will remain
            // valid for the guard's lifetime.
            new: unsafe { value.deref() },
        }
    }

    fn put_all<I: Iterator<Item = (K, V)>>(&self, iter: I, guard: &Guard) {
        for (key, value) in iter {
            self.put(key, value, false, guard);
        }
    }

    /// If the value for the specified `key` is present, attempts to
    /// compute a new mapping given the key and its current mapped value.
    ///
    /// The new mapping is computed by the `remapping_function`, which may
    /// return `None` to signalize that the mapping should be removed.
    /// The entire method invocation is performed atomically.
    /// The supplied function is invoked exactly once per invocation of
    /// this method if the key is present, else not at all.  Some
    /// attempted update operations on this map by other threads may be
    /// blocked while computation is in progress, so the computation
    /// should be short and simple.
    ///
    /// Returns the new value associated with the specified `key`, or `None`
    /// if no value for the specified `key` is present.
    ///
    /// The key may be any borrowed form of the map's key type, but
    /// [`Hash`] and [`Ord`] on the borrowed form *must* match those for
    /// the key type.
    ///
    /// [`Ord`]: std::cmp::Ord
    /// [`Hash`]: std::hash::Hash
    pub fn compute_if_present<'g, Q, F>(
        &'g self,
        key: &Q,
        remapping_function: F,
        guard: &'g Guard,
    ) -> Option<&'g V>
    where
        K: Borrow<Q>,
        Q: ?Sized + Hash + Ord,
        F: FnOnce(&K, &V) -> Option<V>,
    {
        self.check_guard(guard);
        let hash = self.hash(&key);

        let mut table = self.table.load(Ordering::SeqCst, guard);
        let mut new_val = None;
        let mut removed_node = false;
        let mut bin_count;
        loop {
            // safety: see argument below for !is_null case
            if table.is_null() || unsafe { table.deref() }.is_empty() {
                table = self.init_table(guard);
                continue;
            }

            // safety: table is a valid pointer.
            //
            // we are in one of three cases:
            //
            //  1. if table is the one we read before the loop, then we read it while holding the
            //     guard, so it won't be dropped until after we drop that guard b/c the drop logic
            //     only queues a drop for the next epoch after removing the table.
            //
            //  2. if table is read by init_table, then either we did a load, and the argument is
            //     as for point 1. or, we allocated a table, in which case the earliest it can be
            //     deallocated is in the next epoch. we are holding up the epoch by holding the
            //     guard, so this deref is safe.
            //
            //  3. if table is set by a Moved node (below) through help_transfer, it will _either_
            //     keep using `table` (which is fine by 1. and 2.), or use the `next_table` raw
            //     pointer from inside the Moved. to see that if a Moved(t) is _read_, then t must
            //     still be valid, see the safety comment on Table.next_table.
            let t = unsafe { table.deref() };

            let bini = t.bini(hash);
            let bin = t.bin(bini, guard);
            if bin.is_null() {
                // fast path -- bin is empty so key is not present
                return None;
            }

            // slow path -- bin is non-empty
            // safety: bin is a valid pointer.
            //
            // there are three cases when a bin pointer is invalidated:
            //
            //  1. if the table was resized, bin is a move entry, and the resize has completed. in
            //     that case, the table (and all its heads) will be dropped in the next epoch
            //     following that.
            //  2. if the table is being resized, bin may be swapped with a move entry. the old bin
            //     will then be dropped in the following epoch after that happens.
            //  3. when elements are inserted into or removed from the map, bin may be changed into
            //     or from a TreeBin from or into a regular, linear bin. the old bin will also be
            //     dropped in the following epoch if that happens.
            //
            // in all cases, we held the guard when we got the reference to the bin. if any such
            // swap happened, it must have happened _after_ we read. since we did the read while
            // pinning the epoch, the drop must happen in the _next_ epoch (i.e., the one that we
            // are holding up by holding on to our guard).
            match *unsafe { bin.deref() } {
                BinEntry::Moved => {
                    table = self.help_transfer(table, guard);
                    continue;
                }
                BinEntry::Node(ref head) => {
                    // bin is non-empty, need to link into it, so we must take the lock
                    let head_lock = head.lock.lock();

                    // need to check that this is _still_ the head
                    let current_head = t.bin(bini, guard);
                    if current_head != bin {
                        // nope -- try again from the start
                        continue;
                    }

                    // yes, it is still the head, so we can now "own" the bin
                    // note that there can still be readers in the bin!

                    // TODO: ReservationNode
                    bin_count = 1;
                    let mut p = bin;
                    let mut pred: Shared<'_, BinEntry<K, V>> = Shared::null();

                    new_val = loop {
                        // safety: we read the bin while pinning the epoch. a bin will never be
                        // dropped until the next epoch after it is removed. since it wasn't
                        // removed, and the epoch was pinned, that cannot be until after we drop
                        // our guard.
                        let n = unsafe { p.deref() }.as_node().unwrap();
                        // TODO: This Ordering can probably be relaxed due to the Mutex
                        let next = n.next.load(Ordering::SeqCst, guard);
                        if n.hash == hash && n.key.borrow() == key {
                            // the key already exists in the map!
                            let current_value = n.value.load(Ordering::SeqCst, guard);

                            // safety: since the value is present now, and we've held a guard from
                            // the beginning of the search, the value cannot be dropped until the
                            // next epoch, which won't arrive until after we drop our guard.
                            let new_value =
                                remapping_function(&n.key, unsafe { current_value.deref() });

                            if let Some(value) = new_value {
                                let value = Owned::new(value).into_shared(guard);
                                let now_garbage = n.value.swap(value, Ordering::SeqCst, guard);
                                // NOTE: now_garbage == current_value

                                // safety: need to guarantee that now_garbage is no longer
                                // reachable. more specifically, no thread that executes _after_
                                // this line can ever get a reference to now_garbage.
                                //
                                // here are the possible cases:
                                //
                                //  - another thread already has a reference to now_garbage.
                                //    they must have read it before the call to swap.
                                //    because of this, that thread must be pinned to an epoch <=
                                //    the epoch of our guard. since the garbage is placed in our
                                //    epoch, it won't be freed until the _next_ epoch, at which
                                //    point, that thread must have dropped its guard, and with it,
                                //    any reference to the value.
                                //  - another thread is about to get a reference to this value.
                                //    they execute _after_ the swap, and therefore do _not_ get a
                                //    reference to now_garbage (they get value instead). there are
                                //    no other ways to get to a value except through its Node's
                                //    `value` field (which is what we swapped), so freeing
                                //    now_garbage is fine.
                                unsafe { guard.defer_destroy(now_garbage) };

                                // safety: since the value is present now, and we've held a guard from
                                // the beginning of the search, the value cannot be dropped until the
                                // next epoch, which won't arrive until after we drop our guard.
                                break Some(unsafe { value.deref() });
                            } else {
                                removed_node = true;
                                // remove the BinEntry containing the removed key value pair from the bucket
                                if !pred.is_null() {
                                    // either by changing the pointer of the previous BinEntry, if present
                                    // safety: see remove
                                    unsafe { pred.deref() }
                                        .as_node()
                                        .unwrap()
                                        .next
                                        .store(next, Ordering::SeqCst);
                                } else {
                                    // or by setting the next node as the first BinEntry if there is no previous entry
                                    t.store_bin(bini, next);
                                }

                                // in either case, mark the BinEntry as garbage, since it was just removed
                                // safety: need to guarantee that the old value is no longer
                                // reachable. more specifically, no thread that executes _after_
                                // this line can ever get a reference to val.
                                //
                                // here are the possible cases:
                                //
                                //  - another thread already has a reference to the old value.
                                //    they must have read it before the call to store_bin.
                                //    because of this, that thread must be pinned to an epoch <=
                                //    the epoch of our guard. since the garbage is placed in our
                                //    epoch, it won't be freed until the _next_ epoch, at which
                                //    point, that thread must have dropped its guard, and with it,
                                //    any reference to the value.
                                //  - another thread is about to get a reference to this value.
                                //    they execute _after_ the store_bin, and therefore do _not_ get a
                                //    reference to the old value. there are no other ways to get to a
                                //    value except through its Node's `value` field (which is now gone
                                //    together with the node), so freeing the old value is fine.
                                unsafe { guard.defer_destroy(p) };
                                unsafe { guard.defer_destroy(current_value) };
                                break None;
                            }
                        }

                        pred = p;
                        if next.is_null() {
                            // we're at the end of the bin
                            break None;
                        }
                        p = next;

                        bin_count += 1;
                    };
                    drop(head_lock);
                }
                BinEntry::Tree(ref tree_bin) => {
                    // bin is non-empty, need to link into it, so we must take the lock
                    let bin_lock = tree_bin.lock.lock();

                    // need to check that this is _still_ the head
                    let current_head = t.bin(bini, guard);
                    if current_head != bin {
                        // nope -- try again from the start
                        continue;
                    }

                    // yes, it is still the head, so we can now "own" the bin
                    // note that there can still be readers in the bin!
                    bin_count = 2;
                    let root = tree_bin.root.load(Ordering::SeqCst, guard);
                    if root.is_null() {
                        // TODO: Is this even reachable?
                        // The Java code has `NULL` checks for this, but in theory it should not be possible to
                        // encounter a tree that has no root when we have its lock. It should always have at
                        // least `UNTREEIFY_THRESHOLD` nodes. If it is indeed impossible we should replace
                        // this with an assertion instead.
                        break;
                    }
                    new_val = {
                        let p = TreeNode::find_tree_node(root, hash, key, guard);
                        if p.is_null() {
                            // the given key is not present in the map
                            None
                        } else {
                            // a node for the given key exists, so we try to update it
                            // safety: the TreeBin was read under our guard,
                            // at which point the tree structure was valid.
                            // Since our guard pins the current epoch, the
                            // TreeNodes and `p` in particular remain valid
                            // for at least as long as we hold onto the
                            // guard.
                            // Structurally, TreeNodes always point to TreeNodes, so this is sound.
                            let n = &unsafe { TreeNode::get_tree_node(p) }.node;
                            let current_value = n.value.load(Ordering::SeqCst, guard);

                            // safety: since the value is present now, and we've held a guard from
                            // the beginning of the search, the value cannot be dropped until the
                            // next epoch, which won't arrive until after we drop our guard.
                            let new_value =
                                remapping_function(&n.key, unsafe { current_value.deref() });

                            if let Some(value) = new_value {
                                let value = Owned::new(value).into_shared(guard);
                                let now_garbage = n.value.swap(value, Ordering::SeqCst, guard);
                                // NOTE: now_garbage == current_value

                                // safety: need to guarantee that now_garbage is no longer
                                // reachable. more specifically, no thread that executes _after_
                                // this line can ever get a reference to now_garbage.
                                //
                                // here are the possible cases:
                                //
                                //  - another thread already has a reference to now_garbage.
                                //    they must have read it before the call to swap.
                                //    because of this, that thread must be pinned to an epoch <=
                                //    the epoch of our guard. since the garbage is placed in our
                                //    epoch, it won't be freed until the _next_ epoch, at which
                                //    point, that thread must have dropped its guard, and with it,
                                //    any reference to the value.
                                //  - another thread is about to get a reference to this value.
                                //    they execute _after_ the swap, and therefore do _not_ get a
                                //    reference to now_garbage (they get value instead). there are
                                //    no other ways to get to a value except through its Node's
                                //    `value` field (which is what we swapped), so freeing
                                //    now_garbage is fine.
                                unsafe { guard.defer_destroy(now_garbage) };
                                // safety: since the value is present now, and we've held a guard from
                                // the beginning of the search, the value cannot be dropped until the
                                // next epoch, which won't arrive until after we drop our guard.
                                Some(unsafe { value.deref() })
                            } else {
                                removed_node = true;
                                // remove the BinEntry::TreeNode containing the removed key value pair from the bucket
                                // also drop the old value stored in the tree node, as it was removed from the map
                                // safety: `p` and its value are either marked for garbage collection in `remove_tree_node`
                                // directly, or we will `need_to_untreeify`. In the latter case, we `defer_destroy`
                                // both `p` and its value below, after storing the linear bin. Thus, everything is
                                // always marked for garbage collection _after_ it becomes unaccessible by other threads.
                                let need_to_untreeify =
                                    unsafe { tree_bin.remove_tree_node(p, true, guard) };
                                if need_to_untreeify {
                                    let linear_bin = Self::untreeify(
                                        tree_bin.first.load(Ordering::SeqCst, guard),
                                        guard,
                                    );
                                    t.store_bin(bini, linear_bin);
                                    // the old bin is now garbage, but its values are not,
                                    // since they are re-used in the linear bin.
                                    // safety: in the same way as for `now_garbage` above, any existing
                                    // references to `bin` must have been obtained before storing the
                                    // linear bin. These references were obtained while pinning an epoch
                                    // <= our epoch and have to be dropped before the epoch can advance
                                    // past the destruction of the old bin. After the store, threads will
                                    // always see the linear bin, so the cannot obtain new references either.
                                    //
                                    // The same holds for `p` and its value, which does not get dropped together
                                    // with `bin` here since `remove_tree_node` indicated that the bin needs to
                                    // be untreeified.
                                    unsafe {
                                        TreeBin::defer_drop_without_values(bin, guard);
                                        guard.defer_destroy(p);
                                        guard.defer_destroy(current_value);
                                    }
                                }
                                None
                            }
                        }
                    };
                    drop(bin_lock);
                }
                BinEntry::TreeNode(_) => unreachable!(
                    "The head of a bin cannot be a TreeNode directly without BinEntry::Tree"
                ),
            }
            // NOTE: the Java code checks `bin_count` here because they also
            // reach this point if the bin changed while obtaining the lock.
            // However, our code doesn't (it uses continue) and making this
            // break conditional confuses the compiler about how many times we
            // use the `remapping_function`.
            debug_assert_ne!(bin_count, 0);
            break;
        }
        if removed_node {
            // decrement count
            self.add_count(-1, Some(bin_count), guard);
        }
        guard.flush();
        new_val
    }

    /// Removes a key-value pair from the map, and returns the removed value (if any).
    ///
    /// The key may be any borrowed form of the map's key type, but
    /// [`Hash`] and [`Ord`] on the borrowed form *must* match those for
    /// the key type.
    ///
    /// [`Ord`]: std::cmp::Ord
    /// [`Hash`]: std::hash::Hash
    ///
    /// # Examples
    ///
    /// ```
    /// use flurry::HashMap;
    ///
    /// let map = HashMap::new();
    /// map.pin().insert(1, "a");
    /// assert_eq!(map.pin().remove(&1), Some(&"a"));
    /// assert_eq!(map.pin().remove(&1), None);
    /// ```
    pub fn remove<'g, Q>(&'g self, key: &Q, guard: &'g Guard) -> Option<&'g V>
    where
        K: Borrow<Q>,
        Q: ?Sized + Hash + Ord,
    {
        // NOTE: _technically_, this method shouldn't require the thread-safety bounds, but a) that
        // would require special-casing replace_node for when new_value.is_none(), and b) it's sort
        // of useless to call remove on a collection that you know you can never insert into.
        self.check_guard(guard);
        self.replace_node(key, None, None, guard).map(|(_, v)| v)
    }

    /// Removes a key from the map, returning the stored key and value if the
    /// key was previously in the map.
    ///
    /// The key may be any borrowed form of the map's key type, but
    /// [`Hash`] and [`Ord`] on the borrowed form *must* match those for
    /// the key type.
    ///
    /// [`Ord`]: std::cmp::Ord
    /// [`Hash`]: std::hash::Hash
    ///
    /// # Examples
    ///
    /// ```
    /// use flurry::HashMap;
    ///
    /// let map = HashMap::new();
    /// let guard = map.guard();
    /// map.insert(1, "a", &guard);
    /// assert_eq!(map.remove_entry(&1, &guard), Some((&1, &"a")));
    /// assert_eq!(map.remove(&1, &guard), None);
    /// ```
    pub fn remove_entry<'g, Q>(&'g self, key: &Q, guard: &'g Guard) -> Option<(&'g K, &'g V)>
    where
        K: Borrow<Q>,
        Q: ?Sized + Hash + Ord,
    {
        self.check_guard(guard);
        self.replace_node(key, None, None, guard)
    }

    /// Replaces node value with `new_value`.
    ///
    /// If an `observed_value` is provided, the replacement only happens if `observed_value` equals
    /// the value that is currently associated with the given key.
    ///
    /// If `new_value` is `None`, it removes the key (and its corresponding value) from this map.
    ///
    /// This method does nothing if the key is not in the map.
    ///
    /// Returns the previous key and value associated with the given key.
    ///
    /// The key may be any borrowed form of the map's key type, but
    /// [`Hash`] and [`Ord`] on the borrowed form *must* match those for
    /// the key type.
    ///
    /// [`Ord`]: std::cmp::Ord
    /// [`Hash`]: std::hash::Hash
    fn replace_node<'g, Q>(
        &'g self,
        key: &Q,
        new_value: Option<V>,
        observed_value: Option<Shared<'g, V>>,
        guard: &'g Guard,
    ) -> Option<(&'g K, &'g V)>
    where
        K: Borrow<Q>,
        Q: ?Sized + Hash + Ord,
    {
        let hash = self.hash(key);

        let is_remove = new_value.is_none();
        let mut old_val = None;
        let mut table = self.table.load(Ordering::SeqCst, guard);
        loop {
            if table.is_null() {
                break;
            }

            // safety: table is a valid pointer.
            //
            // we are in one of two cases:
            //
            //  1. if table is the one we read before the loop, then we read it while holding the
            //     guard, so it won't be dropped until after we drop that guard b/c the drop logic
            //     only queues a drop for the next epoch after removing the table.
            //
            //  2. if table is set by a Moved node (below) through help_transfer, it will use the
            //     `next_table` raw pointer from inside the Moved. to see that if a Moved(t) is
            //     _read_, then t must still be valid, see the safety comment on Table.next_table.
            let t = unsafe { table.deref() };
            let n = t.len() as u64;
            if n == 0 {
                break;
            }
            let bini = t.bini(hash);
            let bin = t.bin(bini, guard);
            if bin.is_null() {
                break;
            }

            // safety: bin is a valid pointer.
            //
            // there are three cases when a bin pointer is invalidated:
            //
            //  1. if the table was resized, bin is a move entry, and the resize has completed. in
            //     that case, the table (and all its heads) will be dropped in the next epoch
            //     following that.
            //  2. if the table is being resized, bin may be swapped with a move entry. the old bin
            //     will then be dropped in the following epoch after that happens.
            //  3. when elements are inserted into or removed from the map, bin may be changed into
            //     or from a TreeBin from or into a regular, linear bin. the old bin will also be
            //     dropped in the following epoch if that happens.
            //
            // in all cases, we held the guard when we got the reference to the bin. if any such
            // swap happened, it must have happened _after_ we read. since we did the read while
            // pinning the epoch, the drop must happen in the _next_ epoch (i.e., the one that we
            // are holding up by holding on to our guard).
            match *unsafe { bin.deref() } {
                BinEntry::Moved => {
                    table = self.help_transfer(table, guard);
                    continue;
                }
                BinEntry::Node(ref head) => {
                    let head_lock = head.lock.lock();

                    // need to check that this is _still_ the head
                    if t.bin(bini, guard) != bin {
                        continue;
                    }

                    let mut e = bin;
                    let mut pred: Shared<'_, BinEntry<K, V>> = Shared::null();
                    loop {
                        // safety: either e is bin, in which case it is valid due to the above,
                        // or e was obtained from a next pointer. Any next pointer obtained from
                        // bin is valid at the time we look up bin in the table, at which point
                        // the epoch is pinned by our guard. Since we found the next pointer
                        // in a valid map and it is not null (as checked above and below), the
                        // node it points to was present (i.e. not removed) from the map in the
                        // current epoch. Thus, because the epoch cannot advance until we release
                        // our guard, e is also valid if it was obtained from a next pointer.
                        let n = unsafe { e.deref() }.as_node().unwrap();
                        let next = n.next.load(Ordering::SeqCst, guard);
                        if n.hash == hash && n.key.borrow() == key {
                            let ev = n.value.load(Ordering::SeqCst, guard);

                            // only replace the node if the value is the one we expected at method call
                            if observed_value.map(|ov| ov == ev).unwrap_or(true) {
                                // we remember the old value so that we can return it and mark it for deletion below
                                old_val = Some((&n.key, ev));

                                // found the node but we have a new value to replace the old one
                                if let Some(nv) = new_value {
                                    n.value.store(Owned::new(nv), Ordering::SeqCst);
                                    // we are just replacing entry value and we do not want to remove the node
                                    // so we stop iterating here
                                    break;
                                }
                                // remove the BinEntry containing the removed key value pair from the bucket
                                if !pred.is_null() {
                                    // either by changing the pointer of the previous BinEntry, if present
                                    // safety: as above
                                    unsafe { pred.deref() }
                                        .as_node()
                                        .unwrap()
                                        .next
                                        .store(next, Ordering::SeqCst);
                                } else {
                                    // or by setting the next node as the first BinEntry if there is no previous entry
                                    t.store_bin(bini, next);
                                }

                                // in either case, mark the BinEntry as garbage, since it was just removed
                                // safety: as for val below / in put
                                unsafe { guard.defer_destroy(e) };
                            }
                            // since the key was found and only one node exists per key, we can break here
                            break;
                        }
                        pred = e;
                        if next.is_null() {
                            break;
                        } else {
                            e = next;
                        }
                    }
                    drop(head_lock);
                }
                BinEntry::Tree(ref tree_bin) => {
                    let bin_lock = tree_bin.lock.lock();

                    // need to check that this is _still_ the head
                    if t.bin(bini, guard) != bin {
                        continue;
                    }

                    let root = tree_bin.root.load(Ordering::SeqCst, guard);
                    if root.is_null() {
                        // we are in the correct bin for the given key's hash and the bin is not
                        // `Moved`, but it is empty. This means there is no node for the given
                        // key that could be replaced
                        // TODO: Is this even reachable?
                        // The Java code has `NULL` checks for this, but in theory it should not be possible to
                        // encounter a tree that has no root when we have its lock. It should always have at
                        // least `UNTREEIFY_THRESHOLD` nodes. If it is indeed impossible we should replace
                        // this with an assertion instead.
                        break;
                    }
                    let p = TreeNode::find_tree_node(root, hash, key, guard);
                    if p.is_null() {
                        // similarly to the above, there now are entries in this bin, but none of
                        // them matches the given key
                        break;
                    }
                    // safety: the TreeBin was read under our guard,
                    // at which point the tree structure was valid.
                    // Since our guard pins the current epoch, the
                    // TreeNodes and `p` in particular remain valid
                    // for at least as long as we hold onto the
                    // guard.
                    // Structurally, TreeNodes always point to TreeNodes, so this is sound.
                    let n = &unsafe { TreeNode::get_tree_node(p) }.node;
                    let pv = n.value.load(Ordering::SeqCst, guard);

                    // only replace the node if the value is the one we expected at method call
                    if observed_value.map(|ov| ov == pv).unwrap_or(true) {
                        // we remember the old value so that we can return it and mark it for deletion below
                        old_val = Some((&n.key, pv));

                        if let Some(nv) = new_value {
                            // found the node but we have a new value to replace the old one
                            n.value.store(Owned::new(nv), Ordering::SeqCst);
                        } else {
                            // drop `p` without its value, since the old value is dropped
                            // in the check on `old_val` below
                            // safety: `p` is either marked for garbage collection in `remove_tree_node` directly,
                            // or we will `need_to_untreeify`. In the latter case, we `defer_destroy` `p` below,
                            // after storing the linear bin. The value stored in `p` is `defer_destroy`ed from within
                            // `old_val` at the end of the method. Thus, everything is always marked for garbage
                            // collection _after_ it becomes unaccessible by other threads.
                            let need_to_untreeify =
                                unsafe { tree_bin.remove_tree_node(p, false, guard) };
                            if need_to_untreeify {
                                let linear_bin = Self::untreeify(
                                    tree_bin.first.load(Ordering::SeqCst, guard),
                                    guard,
                                );
                                t.store_bin(bini, linear_bin);
                                // the old bin is now garbage, but its values are not,
                                // since they get re-used in the linear bin
                                // safety: same as in put
                                unsafe {
                                    TreeBin::defer_drop_without_values(bin, guard);
                                    guard.defer_destroy(p);
                                }
                            }
                        }
                    }

                    drop(bin_lock);
                }
                BinEntry::TreeNode(_) => unreachable!(
                    "The head of a bin cannot be a TreeNode directly without BinEntry::Tree"
                ),
            }
            if let Some((key, val)) = old_val {
                if is_remove {
                    self.add_count(-1, None, guard);
                }

                // safety: need to guarantee that the old value is no longer
                // reachable. more specifically, no thread that executes _after_
                // this line can ever get a reference to val.
                //
                // here are the possible cases:
                //
                //  - another thread already has a reference to the old value.
                //    they must have read it before the call to store_bin.
                //    because of this, that thread must be pinned to an epoch <=
                //    the epoch of our guard. since the garbage is placed in our
                //    epoch, it won't be freed until the _next_ epoch, at which
                //    point, that thread must have dropped its guard, and with it,
                //    any reference to the value.
                //  - another thread is about to get a reference to this value.
                //    they execute _after_ the store_bin, and therefore do _not_ get a
                //    reference to the old value. there are no other ways to get to a
                //    value except through its Node's `value` field (which is now gone
                //    together with the node), so freeing the old value is fine.
                unsafe { guard.defer_destroy(val) };

                // safety: the lifetime of the reference is bound to the guard
                // supplied which means that the memory will not be freed
                // until at least after the guard goes out of scope
                return unsafe { val.as_ref() }.map(move |v| (key, v));
            }
            break;
        }
        None
    }

    /// Retains only the elements specified by the predicate.
    ///
    /// In other words, remove all pairs `(k, v)` such that `f(&k,&v)` returns `false`.
    ///
    /// # Examples
    ///
    /// ```
    /// use flurry::HashMap;
    ///
    /// let map = HashMap::new();
    ///
    /// for i in 0..8 {
    ///     map.pin().insert(i, i*10);
    /// }
    /// map.pin().retain(|&k, _| k % 2 == 0);
    /// assert_eq!(map.pin().len(), 4);
    /// ```
    ///
    /// # Notes
    ///
    /// If `f` returns `false` for a given key/value pair, but the value for that pair is concurrently
    /// modified before the removal takes place, the entry will not be removed.
    /// If you want the removal to happen even in the case of concurrent modification, use [`HashMap::retain_force`].
    pub fn retain<F>(&self, mut f: F, guard: &Guard)
    where
        F: FnMut(&K, &V) -> bool,
    {
        self.check_guard(guard);
        // removed selected keys
        for (k, v) in self.iter(guard) {
            if !f(k, v) {
                let old_value: Shared<'_, V> = Shared::from(v as *const V);
                self.replace_node(k, None, Some(old_value), guard);
            }
        }
    }

    /// Retains only the elements specified by the predicate.
    ///
    /// In other words, remove all pairs `(k, v)` such that `f(&k,&v)` returns `false`.
    ///
    /// This method always deletes any key/value pair that `f` returns `false` for, even if if the
    /// value is updated concurrently. If you do not want that behavior, use [`HashMap::retain`].
    ///
    /// # Examples
    ///
    /// ```
    /// use flurry::HashMap;
    ///
    /// let map = HashMap::new();
    ///
    /// for i in 0..8 {
    ///     map.pin().insert(i, i*10);
    /// }
    /// map.pin().retain_force(|&k, _| k % 2 == 0);
    /// assert_eq!(map.pin().len(), 4);
    /// ```
    pub fn retain_force<F>(&self, mut f: F, guard: &Guard)
    where
        F: FnMut(&K, &V) -> bool,
    {
        self.check_guard(guard);
        // removed selected keys
        for (k, v) in self.iter(guard) {
            if !f(k, v) {
                self.replace_node(k, None, None, guard);
            }
        }
    }
}

impl<K, V, S> HashMap<K, V, S>
where
    K: Clone + Ord,
{
    /// Replaces all linked nodes in the bin at the given index unless the table
    /// is too small, in which case a resize is initiated instead.
    fn treeify_bin<'g>(&'g self, tab: &Table<K, V>, index: usize, guard: &'g Guard) {
        let n = tab.len();
        if n < MIN_TREEIFY_CAPACITY {
            self.try_presize(n << 1, guard);
        } else {
            let bin = tab.bin(index, guard);
            if bin.is_null() {
                return;
            }
            // safety: we loaded `bin` while the epoch was pinned by our
            // guard. if the bin was replaced since then, the old bin still
            // won't be dropped until after we release our guard.
            match unsafe { bin.deref() } {
                BinEntry::Node(ref node) => {
                    let lock = node.lock.lock();
                    // check if `bin` is still the head
                    if tab.bin(index, guard) != bin {
                        return;
                    }
                    let mut e = bin;
                    let mut head = Shared::null();
                    let mut tail = Shared::null();
                    while !e.is_null() {
                        // safety: either `e` is `bin`, in which case it is valid due to the above,
                        // or `e` was obtained from a next pointer. Any next pointer obtained from
                        // bin is valid at the time we look up bin in the table, at which point the
                        // epoch is pinned by our guard. Since we found the next pointer in a valid
                        // map and it is not null (as checked above), the node it points to was
                        // present (i.e. not removed) from the map in the current epoch. Thus,
                        // because the epoch cannot advance until we release our guard, `e` is also
                        // valid if it was obtained from a next pointer.
                        let e_deref = unsafe { e.deref() }.as_node().unwrap();
                        // NOTE: cloning the value uses a load with Ordering::Relaxed, but
                        // write access is synchronized through the bin lock
                        let new_tree_node = TreeNode::new(
                            e_deref.hash,
                            e_deref.key.clone(),
                            e_deref.value.clone(),
                            Atomic::null(),
                            Atomic::null(),
                        );
                        new_tree_node.prev.store(tail, Ordering::Relaxed);
                        let new_tree_node =
                            Owned::new(BinEntry::TreeNode(new_tree_node)).into_shared(guard);
                        if tail.is_null() {
                            // this was the first TreeNode, so it becomes the head
                            head = new_tree_node;
                        } else {
                            // safety: if `tail` is not `null`, we have just created
                            // it in the last iteration, thus the pointer is valid
                            unsafe { tail.deref() }
                                .as_tree_node()
                                .unwrap()
                                .node
                                .next
                                .store(new_tree_node, Ordering::Relaxed);
                        }
                        tail = new_tree_node;
                        e = e_deref.next.load(Ordering::SeqCst, guard);
                    }
                    tab.store_bin(
                        index,
                        Owned::new(BinEntry::Tree(TreeBin::new(
                            // safety: we have just created `head` and its `next`
                            // nodes and have never shared them
                            unsafe { head.into_owned() },
                            guard,
                        ))),
                    );
                    drop(lock);
                    // make sure the old bin entries get dropped
                    e = bin;
                    while !e.is_null() {
                        // safety: we just replaced the bin containing this BinEntry, making it
                        // unreachable for other threads since subsequent loads will see the new
                        // bin. Threads with existing references to `e` must have obtained them in
                        // this or an earlier epoch, and this epoch is pinned by our guard. Thus,
                        // `e` will only be dropped after these threads release their guard, at
                        // which point they can no longer hold their reference to `e`.
                        // The BinEntry pointers are valid to deref for the same reason as above.
                        //
                        // NOTE: we do not drop the value, since it gets moved to the new TreeNode
                        unsafe {
                            guard.defer_destroy(e);
                            e = e
                                .deref()
                                .as_node()
                                .unwrap()
                                .next
                                .load(Ordering::SeqCst, guard);
                        }
                    }
                }
                BinEntry::Moved | BinEntry::Tree(_) => {
                    // The bin we wanted to treeify has changed under us. This is possible because
                    // the call to `treeify_bin` does not happen inside the critical section of its
                    // callers (while they are holding the lock). To see why, consider the
                    // implications for the cases we match here:
                    //
                    //   BinEntry::Moved:
                    //     One thread inserts a new entry and passes the `TREEIFY_THRESHOLD`, but a
                    //     different thread executes a move of that bin. If we _always_ forced
                    //     treeification to happen after the insert while still holding the lock, the
                    //     move would have to wait for the bin lock and would then move the treeified
                    //     bin. It is very likely that the move will split the bin in question into two
                    //     smaller bins, both below the threshold, and has to untreeify the bin again
                    //     (since the bin we inserted to _just_ passed the threshold right before the
                    //     move).
                    //       If we instead try to treeify after the releasing the lock, and due to
                    //     scheduling the move happens first, it is fine for us as the first thread to
                    //     see the `Moved` when we re-check here and just not treeify the bin. If either
                    //     of the two bins in the new table (after the bin is moved) is still large
                    //     enough to be above the `TREEIFY_THRESHOLD`, it will still get treeified in
                    //     the _new_ table with the next insert.
                    //   BinEntry::Tree(_):
                    //     In the same scenario of trying to treeify _outside_ of the critical section,
                    //     if there is one insert passing the threshold there may then be another insert
                    //     before the first insert actually gets to do the treeification (due to
                    //     scheduling). This second insert might also get to treeifying the bin (it will
                    //     try because it sees a regular bin and the number of elements in the bin is
                    //     still above the threshold). When the first thread resumes and re-checks here,
                    //     the bin is already treeified and so it is again fine to not treeify it here.
                    //       Of course there is a tradeoff here where the second insert would already have
                    //     happend into a tree bin if we forced the first thread to treeify while still
                    //     holding the lock. However, the second thread would then also have to wait for
                    //     the lock before executing its insert.
                    //
                    // With the above reasoning, we choose to minimize the time any thread holds the
                    // lock and allow other threads to possibly mutate the bin we want to treeify
                    // before we get to do just that. If we encounter such a situation, we don't
                    // need to perform any action on the bin anymore, since either it has already
                    // been treeified or it was moved to a new table.
                }
                BinEntry::TreeNode(_) => unreachable!("TreeNode cannot be the head of a bin"),
            }
        }
    }

    /// Returns a list of non-TreeNodes replacing those in the given list. Does
    /// _not_ clean up old TreeNodes, as they may still be reachable.
    fn untreeify<'g>(
        bin: Shared<'g, BinEntry<K, V>>,
        guard: &'g Guard,
    ) -> Shared<'g, BinEntry<K, V>> {
        let mut head = Shared::null();
        let mut tail: Shared<'_, BinEntry<K, V>> = Shared::null();
        let mut q = bin;
        while !q.is_null() {
            // safety: we only untreeify sequences of TreeNodes which either
            //  - were just created (e.g. in transfer) and are thus valid, or
            //  - are read from a TreeBin loaded from the map. In this case,
            //    the bin gets loaded under our guard and at that point all
            //    of its nodes (its `first` and all `next` nodes) are valid.
            //    As `q` is not `null` (checked above), this means that `q`
            //    remains a valid pointer at least until our guard is dropped.
            let q_deref = unsafe { q.deref() }.as_tree_node().unwrap();
            // NOTE: cloning the value uses a load with Ordering::Relaxed, but
            // write access is synchronized through the bin lock
            let new_node = Owned::new(BinEntry::Node(Node::new(
                q_deref.node.hash,
                q_deref.node.key.clone(),
                q_deref.node.value.clone(),
            )))
            .into_shared(guard);
            if tail.is_null() {
                head = new_node;
            } else {
                // safety: if `tail` is not `null`, we have just created it
                // in the last iteration, thus the pointer is valid
                unsafe { tail.deref() }
                    .as_node()
                    .unwrap()
                    .next
                    .store(new_node, Ordering::Relaxed);
            }
            tail = new_node;
            q = q_deref.node.next.load(Ordering::Relaxed, guard);
        }

        head
    }
}
impl<K, V, S> PartialEq for HashMap<K, V, S>
where
    K: Ord + Hash,
    V: PartialEq,
    S: BuildHasher,
{
    fn eq(&self, other: &Self) -> bool {
        if self.len() != other.len() {
            return false;
        }
        self.guarded_eq(other, &self.guard(), &other.guard())
    }
}

impl<K, V, S> Eq for HashMap<K, V, S>
where
    K: Ord + Hash,
    V: Eq,
    S: BuildHasher,
{
}

impl<K, V, S> fmt::Debug for HashMap<K, V, S>
where
    K: Debug,
    V: Debug,
{
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
        let guard = self.collector.register().pin();
        f.debug_map().entries(self.iter(&guard)).finish()
    }
}

impl<K, V, S> Drop for HashMap<K, V, S> {
    fn drop(&mut self) {
        // safety: we have &mut self _and_ all references we have returned are bound to the
        // lifetime of their borrow of self, so there cannot be any outstanding references to
        // anything in the map.
        //
        // NOTE: we _could_ relax the bounds in all the methods that return `&'g ...` to not also
        // bound `&self` by `'g`, but if we did that, we would need to use a regular `epoch::Guard`
        // here rather than an unprotected one.
        let guard = unsafe { crossbeam_epoch::unprotected() };

        assert!(self.next_table.load(Ordering::SeqCst, guard).is_null());
        let table = self.table.swap(Shared::null(), Ordering::SeqCst, guard);
        if table.is_null() {
            // table was never allocated!
            return;
        }

        // safety: same as above + we own the table
        let mut table = unsafe { table.into_owned() }.into_box();
        table.drop_bins();
    }
}

impl<K, V, S> Extend<(K, V)> for &HashMap<K, V, S>
where
    K: 'static + Sync + Send + Clone + Hash + Ord,
    V: 'static + Sync + Send,
    S: BuildHasher,
{
    fn extend<T: IntoIterator<Item = (K, V)>>(&mut self, iter: T) {
        // from `hashbrown::HashMap::extend`:
        // Keys may be already present or show multiple times in the iterator.
        // Reserve the entire hint lower bound if the map is empty.
        // Otherwise reserve half the hint (rounded up), so the map
        // will only resize twice in the worst case.
        let iter = iter.into_iter();
        let reserve = if self.is_empty() {
            iter.size_hint().0
        } else {
            (iter.size_hint().0 + 1) / 2
        };

        let guard = self.collector.register().pin();
        self.reserve(reserve, &guard);
        (*self).put_all(iter, &guard);
    }
}

impl<'a, K, V, S> Extend<(&'a K, &'a V)> for &HashMap<K, V, S>
where
    K: 'static + Sync + Send + Copy + Hash + Ord,
    V: 'static + Sync + Send + Copy,
    S: BuildHasher,
{
    fn extend<T: IntoIterator<Item = (&'a K, &'a V)>>(&mut self, iter: T) {
        self.extend(iter.into_iter().map(|(&key, &value)| (key, value)));
    }
}

impl<K, V, S> FromIterator<(K, V)> for HashMap<K, V, S>
where
    K: 'static + Sync + Send + Clone + Hash + Ord,
    V: 'static + Sync + Send,
    S: BuildHasher + Default,
{
    fn from_iter<T: IntoIterator<Item = (K, V)>>(iter: T) -> Self {
        let mut iter = iter.into_iter();

        if let Some((key, value)) = iter.next() {
            // safety: we own `map`, so it's not concurrently accessed by
            // anyone else at this point.
            let guard = unsafe { crossbeam_epoch::unprotected() };

            let (lower, _) = iter.size_hint();
            let map = HashMap::with_capacity_and_hasher(lower.saturating_add(1), S::default());

            map.put(key, value, false, &guard);
            map.put_all(iter, &guard);
            map
        } else {
            Self::default()
        }
    }
}

impl<'a, K, V, S> FromIterator<(&'a K, &'a V)> for HashMap<K, V, S>
where
    K: 'static + Sync + Send + Copy + Hash + Ord,
    V: 'static + Sync + Send + Copy,
    S: BuildHasher + Default,
{
    fn from_iter<T: IntoIterator<Item = (&'a K, &'a V)>>(iter: T) -> Self {
        Self::from_iter(iter.into_iter().map(|(&k, &v)| (k, v)))
    }
}

impl<'a, K, V, S> FromIterator<&'a (K, V)> for HashMap<K, V, S>
where
    K: 'static + Sync + Send + Copy + Hash + Ord,
    V: 'static + Sync + Send + Copy,
    S: BuildHasher + Default,
{
    fn from_iter<T: IntoIterator<Item = &'a (K, V)>>(iter: T) -> Self {
        Self::from_iter(iter.into_iter().map(|&(k, v)| (k, v)))
    }
}

impl<K, V, S> Clone for HashMap<K, V, S>
where
    K: 'static + Sync + Send + Clone + Hash + Ord,
    V: 'static + Sync + Send + Clone,
    S: BuildHasher + Clone,
{
    fn clone(&self) -> HashMap<K, V, S> {
        let cloned_map = Self::with_capacity_and_hasher(self.len(), self.build_hasher.clone());
        {
            let guard = self.collector.register().pin();
            for (k, v) in self.iter(&guard) {
                cloned_map.insert(k.clone(), v.clone(), &guard);
            }
        }
        cloned_map
    }
}

#[cfg(not(miri))]
#[inline]
/// Returns the number of physical CPUs in the machine (_O(1)_).
fn num_cpus() -> usize {
    NCPU_INITIALIZER.call_once(|| NCPU.store(num_cpus::get_physical(), Ordering::Relaxed));
    NCPU.load(Ordering::Relaxed)
}

#[cfg(miri)]
#[inline]
const fn num_cpus() -> usize {
    1
}

#[test]
fn capacity() {
    let map = HashMap::<usize, usize>::new();
    let guard = epoch::pin();

    assert_eq!(map.capacity(&guard), 0);
    // The table has not yet been allocated

    map.insert(42, 0, &guard);

    assert_eq!(map.capacity(&guard), 16);
    // The table has been allocated and has default capacity

    for i in 0..16 {
        map.insert(i, 42, &guard);
    }

    assert_eq!(map.capacity(&guard), 32);
    // The table has been resized once (and it's capacity doubled),
    // since we inserted more elements than it can hold
}

#[cfg(test)]
mod tests {
    use super::*;
    #[test]
    fn reserve() {
        let map = HashMap::<usize, usize>::new();
        let guard = epoch::pin();

        map.insert(42, 0, &guard);

        map.reserve(32, &guard);

        let capacity = map.capacity(&guard);
        assert!(capacity >= 16 + 32);
    }

    #[test]
    fn reserve_uninit() {
        let map = HashMap::<usize, usize>::new();
        let guard = epoch::pin();

        map.reserve(32, &guard);

        let capacity = map.capacity(&guard);
        assert!(capacity >= 32);
    }

    #[test]
    fn resize_stamp_negative() {
        let resize_stamp = HashMap::<usize, usize>::resize_stamp(1);
        assert!(resize_stamp << RESIZE_STAMP_SHIFT < 0);

        let resize_stamp = HashMap::<usize, usize>::resize_stamp(MAXIMUM_CAPACITY);
        assert!(resize_stamp << RESIZE_STAMP_SHIFT < 0);
    }
}

/// It's kind of stupid, but apparently there is no way to write a regular `#[test]` that is _not_
/// supposed to compile without pulling in `compiletest` as a dependency. See rust-lang/rust#12335.
/// But it _is_ possible to write `compile_test` tests as doctests, sooooo:
///
/// # No references outlive the map.
///
/// Note that these have to be _separate_ tests, otherwise you could have, say, `get` break the
/// contract, but `insert` continue to uphold it, and then the test would still fail to compile
/// (and so pass).
///
/// ```compile_fail
/// let guard = crossbeam_epoch::pin();
/// let map = super::HashMap::default();
/// let r = map.insert((), (), &guard);
/// drop(map);
/// drop(r);
/// ```
/// ```compile_fail
/// let guard = crossbeam_epoch::pin();
/// let map = super::HashMap::default();
/// let r = map.get(&(), &guard);
/// drop(map);
/// drop(r);
/// ```
/// ```compile_fail
/// let guard = crossbeam_epoch::pin();
/// let map = super::HashMap::default();
/// let r = map.remove(&(), &guard);
/// drop(map);
/// drop(r);
/// ```
/// ```compile_fail
/// let guard = crossbeam_epoch::pin();
/// let map = super::HashMap::default();
/// let r = map.iter(&guard).next();
/// drop(map);
/// drop(r);
/// ```
/// ```compile_fail
/// let guard = crossbeam_epoch::pin();
/// let map = super::HashMap::default();
/// let r = map.keys(&guard).next();
/// drop(map);
/// drop(r);
/// ```
/// ```compile_fail
/// let guard = crossbeam_epoch::pin();
/// let map = super::HashMap::default();
/// let r = map.values(&guard).next();
/// drop(map);
/// drop(r);
/// ```
///
/// # No references outlive the guard.
///
/// ```compile_fail
/// let guard = crossbeam_epoch::pin();
/// let map = super::HashMap::default();
/// let r = map.insert((), (), &guard);
/// drop(guard);
/// drop(r);
/// ```
/// ```compile_fail
/// let guard = crossbeam_epoch::pin();
/// let map = super::HashMap::default();
/// let r = map.get(&(), &guard);
/// drop(guard);
/// drop(r);
/// ```
/// ```compile_fail
/// let guard = crossbeam_epoch::pin();
/// let map = super::HashMap::default();
/// let r = map.remove(&(), &guard);
/// drop(guard);
/// drop(r);
/// ```
/// ```compile_fail
/// let guard = crossbeam_epoch::pin();
/// let map = super::HashMap::default();
/// let r = map.iter(&guard).next();
/// drop(guard);
/// drop(r);
/// ```
/// ```compile_fail
/// let guard = crossbeam_epoch::pin();
/// let map = super::HashMap::default();
/// let r = map.keys(&guard).next();
/// drop(guard);
/// drop(r);
/// ```
/// ```compile_fail
/// let guard = crossbeam_epoch::pin();
/// let map = super::HashMap::default();
/// let r = map.values(&guard).next();
/// drop(guard);
/// drop(r);
/// ```
///
/// # Keys and values must be static
///
/// ```compile_fail
/// let x = String::from("foo");
/// let map: flurry::HashMap<_, _> = std::iter::once((&x, &x)).collect();
/// ```
/// ```compile_fail
/// let x = String::from("foo");
/// let map: flurry::HashMap<_, _> = flurry::HashMap::new();
/// map.insert(&x, &x, &map.guard());
/// ```
///
/// # get() key can be non-static
///
/// ```no_run
/// let x = String::from("foo");
/// let map: flurry::HashMap<_, _> = flurry::HashMap::new();
/// map.insert(x.clone(), x.clone(), &map.guard());
/// map.get(&x, &map.guard());
/// ```
#[allow(dead_code)]
struct CompileFailTests;

#[test]
fn replace_empty() {
    let map = HashMap::<usize, usize>::new();

    {
        let guard = epoch::pin();
        assert_eq!(map.len(), 0);
        let old = map.replace_node(&42, None, None, &guard);
        assert_eq!(map.len(), 0);
        assert!(old.is_none());
    }
}

#[test]
fn replace_existing() {
    let map = HashMap::<usize, usize>::new();
    {
        let guard = epoch::pin();
        map.insert(42, 42, &guard);
        assert_eq!(map.len(), 1);
        let old = map.replace_node(&42, Some(10), None, &guard);
        assert_eq!(old, Some((&42, &42)));
        assert_eq!(*map.get(&42, &guard).unwrap(), 10);
        assert_eq!(map.len(), 1);
    }
}

#[test]
fn no_replacement_return_val() {
    // NOTE: this test also serves as a leak test for the injected value
    let map = HashMap::<usize, String>::new();
    {
        let guard = epoch::pin();
        map.insert(42, String::from("hello"), &guard);
        assert_eq!(
            map.put(42, String::from("world"), true, &guard),
            PutResult::Exists {
                current: &String::from("hello"),
                not_inserted: Box::new(String::from("world")),
            }
        );
    }
}

#[test]
fn replace_existing_observed_value_matching() {
    let map = HashMap::<usize, usize>::new();
    {
        let guard = epoch::pin();
        map.insert(42, 42, &guard);
        assert_eq!(map.len(), 1);
        let observed_value = Shared::from(map.get(&42, &guard).unwrap() as *const _);
        let old = map.replace_node(&42, Some(10), Some(observed_value), &guard);
        assert_eq!(map.len(), 1);
        assert_eq!(old, Some((&42, &42)));
        assert_eq!(*map.get(&42, &guard).unwrap(), 10);
    }
}

#[test]
fn replace_existing_observed_value_non_matching() {
    let map = HashMap::<usize, usize>::new();
    {
        let guard = epoch::pin();
        map.insert(42, 42, &guard);
        assert_eq!(map.len(), 1);
        let old = map.replace_node(&42, Some(10), Some(Shared::null()), &guard);
        assert_eq!(map.len(), 1);
        assert!(old.is_none());
        assert_eq!(*map.get(&42, &guard).unwrap(), 42);
    }
}

#[test]
fn replace_twice() {
    let map = HashMap::<usize, usize>::new();
    {
        let guard = epoch::pin();
        map.insert(42, 42, &guard);
        assert_eq!(map.len(), 1);
        let old = map.replace_node(&42, Some(43), None, &guard);
        assert_eq!(map.len(), 1);
        assert_eq!(old, Some((&42, &42)));
        assert_eq!(*map.get(&42, &guard).unwrap(), 43);
        let old = map.replace_node(&42, Some(44), None, &guard);
        assert_eq!(map.len(), 1);
        assert_eq!(old, Some((&42, &43)));
        assert_eq!(*map.get(&42, &guard).unwrap(), 44);
    }
}

#[cfg(test)]
mod tree_bins {
    use super::*;

    // Tests for the tree bin optimization.
    // Includes testing that bins are actually treeified and untreeified, and that, when tree bins
    // are untreeified, the associated values remain in the map.

    #[derive(Default)]
    struct ZeroHasher;
    struct ZeroHashBuilder;
    impl Hasher for ZeroHasher {
        fn finish(&self) -> u64 {
            0
        }
        fn write(&mut self, _: &[u8]) {}
    }
    impl BuildHasher for ZeroHashBuilder {
        type Hasher = ZeroHasher;
        fn build_hasher(&self) -> ZeroHasher {
            ZeroHasher
        }
    }

    #[test]
    fn concurrent_tree_bin() {
        let map = HashMap::<usize, usize, _>::with_hasher(ZeroHashBuilder);
        // first, ensure that we have a tree bin
        {
            let guard = &map.guard();
            // Force creation of a tree bin by inserting enough values that hash to 0
            for i in 0..10 {
                map.insert(i, i, guard);
            }
            // Ensure the bin was correctly treeified
            let t = map.table.load(Ordering::Relaxed, guard);
            let t = unsafe { t.deref() };
            let bini = t.bini(0);
            let bin = t.bin(bini, guard);
            match unsafe { bin.deref() } {
                BinEntry::Tree(_) => {} // pass
                BinEntry::Moved => panic!("bin was not correctly treeified -- is Moved"),
                BinEntry::Node(_) => panic!("bin was not correctly treeified -- is Node"),
                BinEntry::TreeNode(_) => panic!("bin was not correctly treeified -- is TreeNode"),
            }

            guard.flush();
            drop(guard);
        }
        // then, spin up lots of reading and writing threads on a range of keys
        const NUM_WRITERS: usize = 5;
        const NUM_READERS: usize = 20;
        const NUM_REPEATS: usize = 1000;
        const NUM_KEYS: usize = 1000;
        use rand::{
            distributions::{Distribution, Uniform},
            thread_rng,
        };
        let uniform = Uniform::new(0, NUM_KEYS);
        let m = std::sync::Arc::new(map);

        let mut handles = Vec::with_capacity(2 * NUM_WRITERS + NUM_READERS);
        for _ in 0..NUM_READERS {
            // ...and a reading thread
            let map = m.clone();
            handles.push(std::thread::spawn(move || {
                let guard = &map.guard();
                let mut trng = thread_rng();
                for _ in 0..NUM_REPEATS {
                    let key = uniform.sample(&mut trng);
                    if let Some(v) = map.get(&key, guard) {
                        criterion::black_box(v);
                    }
                }
            }));
        }
        for i in 0..NUM_WRITERS {
            // NUM_WRITERS times, create a writing thread...
            let map = m.clone();
            handles.push(std::thread::spawn(move || {
                let guard = &map.guard();
                let mut trng = thread_rng();
                for _ in 0..NUM_REPEATS {
                    let key = uniform.sample(&mut trng);
                    map.insert(key, i, guard);
                }
            }));
            // ...a removing thread.
            let map = m.clone();
            handles.push(std::thread::spawn(move || {
                let guard = &map.guard();
                let mut trng = thread_rng();
                for _ in 0..NUM_REPEATS {
                    let key = uniform.sample(&mut trng);
                    if let Some(v) = map.remove(&key, guard) {
                        criterion::black_box(v);
                    }
                }
            }));
        }

        // in the end, join all threads
        for handle in handles {
            handle.join().unwrap();
        }
    }

    #[test]
    fn untreeify_shared_values_remove() {
        test_tree_bin_remove(|i, map, guard| {
            assert_eq!(map.remove(&i, guard), Some(&i));
        });
    }

    #[test]
    fn untreeify_shared_values_compute_if_present() {
        test_tree_bin_remove(|i, map, guard| {
            assert_eq!(map.compute_if_present(&i, |_, _| None, guard), None);
        });
    }

    fn test_tree_bin_remove<F>(f: F)
    where
        F: Fn(usize, &HashMap<usize, usize, ZeroHashBuilder>, &Guard),
    {
        let map = HashMap::<usize, usize, _>::with_hasher(ZeroHashBuilder);
        {
            let guard = &map.guard();
            // Force creation of a tree bin by inserting enough values that hash to 0
            for i in 0..10 {
                map.insert(i, i, guard);
            }
            // Ensure the bin was correctly treeified
            let t = map.table.load(Ordering::Relaxed, guard);
            let t = unsafe { t.deref() };
            let bini = t.bini(0);
            let bin = t.bin(bini, guard);
            match unsafe { bin.deref() } {
                BinEntry::Tree(_) => {} // pass
                BinEntry::Moved => panic!("bin was not correctly treeified -- is Moved"),
                BinEntry::Node(_) => panic!("bin was not correctly treeified -- is Node"),
                BinEntry::TreeNode(_) => panic!("bin was not correctly treeified -- is TreeNode"),
            }

            // Delete keys to force untreeifying the bin
            for i in 0..9 {
                f(i, &map, guard);
            }
            guard.flush();
            drop(guard);
        }
        assert_eq!(map.len(), 1);

        {
            // Ensure the bin was correctly untreeified
            let guard = &map.guard();
            let t = map.table.load(Ordering::Relaxed, guard);
            let t = unsafe { t.deref() };
            let bini = t.bini(0);
            let bin = t.bin(bini, guard);
            match unsafe { bin.deref() } {
                BinEntry::Tree(_) => panic!("bin was not correctly untreeified -- is Tree"),
                BinEntry::Moved => panic!("bin was not correctly untreeified -- is Moved"),
                BinEntry::Node(_) => {} // pass
                BinEntry::TreeNode(_) => panic!("bin was not correctly untreeified -- is TreeNode"),
            }
        }

        // Create some guards to more reliably trigger garbage collection
        for _ in 0..10 {
            let _ = map.guard();
        }

        // Access a value that should still be in the map
        let guard = &map.guard();
        assert_eq!(map.get(&9, guard), Some(&9));
    }
    #[test]
    #[should_panic]
    fn disallow_evil() {
        let map: HashMap<_, _> = HashMap::default();
        map.insert(42, String::from("hello"), &crossbeam_epoch::pin());

        let evil = crossbeam_epoch::Collector::new();
        let evil = evil.register();
        let guard = evil.pin();
        let oops = map.get(&42, &guard);

        map.remove(&42, &crossbeam_epoch::pin());
        // at this point, the default collector is allowed to free `"hello"`
        // since no-one has the global epoch pinned as far as it is aware.
        // `oops` is tied to the lifetime of a Guard that is not a part of
        // the same epoch group, and so can now be dangling.
        // but we can still access it!
        assert_eq!(oops.unwrap(), "hello");
    }
}