1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
//! Create and read a [packed Hilbert R-Tree](https://en.wikipedia.org/wiki/Hilbert_R-tree#Packed_Hilbert_R-trees)
//! to enable fast bounding box spatial filtering.

use crate::Result;

use byteorder::{LittleEndian, ReadBytesExt, WriteBytesExt};
#[cfg(feature = "http")]
use http_range_client::{
    AsyncBufferedHttpRangeClient, AsyncHttpRangeClient, BufferedHttpRangeClient,
};
use std::cmp::{max, min};
use std::collections::VecDeque;
use std::io::{Cursor, Read, Seek, SeekFrom, Write};
use std::mem::size_of;
use std::ops::Range;

#[derive(Clone, PartialEq, Debug)]
#[repr(C)]
/// R-Tree node
pub struct NodeItem {
    pub min_x: f64,
    pub min_y: f64,
    pub max_x: f64,
    pub max_y: f64,
    /// Byte offset in feature data section
    pub offset: u64,
}

impl NodeItem {
    #[deprecated(
        note = "Use NodeItem::bounds instead if you're only using the node item for bounds checking"
    )]
    pub fn new(min_x: f64, min_y: f64, max_x: f64, max_y: f64) -> NodeItem {
        Self::bounds(min_x, min_y, max_x, max_y)
    }

    pub fn bounds(min_x: f64, min_y: f64, max_x: f64, max_y: f64) -> NodeItem {
        NodeItem {
            min_x,
            min_y,
            max_x,
            max_y,
            offset: 0,
        }
    }

    pub fn create(offset: u64) -> NodeItem {
        NodeItem {
            min_x: f64::INFINITY,
            min_y: f64::INFINITY,
            max_x: f64::NEG_INFINITY,
            max_y: f64::NEG_INFINITY,
            offset,
        }
    }

    pub fn from_reader(mut rdr: impl Read) -> Result<Self> {
        Ok(NodeItem {
            min_x: rdr.read_f64::<LittleEndian>()?,
            min_y: rdr.read_f64::<LittleEndian>()?,
            max_x: rdr.read_f64::<LittleEndian>()?,
            max_y: rdr.read_f64::<LittleEndian>()?,
            offset: rdr.read_u64::<LittleEndian>()?,
        })
    }

    fn from_bytes(raw: &[u8]) -> Result<Self> {
        Self::from_reader(&mut Cursor::new(raw))
    }

    pub fn write<W: Write>(&self, wtr: &mut W) -> std::io::Result<()> {
        wtr.write_f64::<LittleEndian>(self.min_x)?;
        wtr.write_f64::<LittleEndian>(self.min_y)?;
        wtr.write_f64::<LittleEndian>(self.max_x)?;
        wtr.write_f64::<LittleEndian>(self.max_y)?;
        wtr.write_u64::<LittleEndian>(self.offset)?;
        Ok(())
    }

    pub fn width(&self) -> f64 {
        self.max_x - self.min_x
    }

    pub fn height(&self) -> f64 {
        self.max_y - self.min_y
    }

    pub fn sum(mut a: NodeItem, b: &NodeItem) -> NodeItem {
        a.expand(b);
        a
    }

    pub fn expand(&mut self, r: &NodeItem) {
        if r.min_x < self.min_x {
            self.min_x = r.min_x;
        }
        if r.min_y < self.min_y {
            self.min_y = r.min_y;
        }
        if r.max_x > self.max_x {
            self.max_x = r.max_x;
        }
        if r.max_y > self.max_y {
            self.max_y = r.max_y;
        }
    }

    pub fn expand_xy(&mut self, x: f64, y: f64) {
        if x < self.min_x {
            self.min_x = x;
        }
        if y < self.min_y {
            self.min_y = y;
        }
        if x > self.max_x {
            self.max_x = x;
        }
        if y > self.max_y {
            self.max_y = y;
        }
    }

    pub fn intersects(&self, r: &NodeItem) -> bool {
        if self.max_x < r.min_x {
            return false;
        }
        if self.max_y < r.min_y {
            return false;
        }
        if self.min_x > r.max_x {
            return false;
        }
        if self.min_y > r.max_y {
            return false;
        }
        true
    }
}

/// Read full capacity of vec from data stream
fn read_node_vec(node_items: &mut Vec<NodeItem>, mut data: impl Read) -> Result<()> {
    node_items.clear();
    for _ in 0..node_items.capacity() {
        node_items.push(NodeItem::from_reader(&mut data)?);
    }
    Ok(())
}

/// Read partial item vec from data stream
fn read_node_items<R: Read + Seek>(
    data: &mut R,
    base: u64,
    node_index: usize,
    length: usize,
) -> Result<Vec<NodeItem>> {
    let mut node_items = Vec::with_capacity(length);
    data.seek(SeekFrom::Start(
        base + (node_index * size_of::<NodeItem>()) as u64,
    ))?;
    read_node_vec(&mut node_items, data)?;
    Ok(node_items)
}

/// Read partial item vec from http
#[cfg(feature = "http")]
async fn read_http_node_items<T: AsyncHttpRangeClient>(
    client: &mut AsyncBufferedHttpRangeClient<T>,
    base: usize,
    node_ids: &Range<usize>,
) -> Result<Vec<NodeItem>> {
    let begin = base + node_ids.start * size_of::<NodeItem>();
    let length = node_ids.len() * size_of::<NodeItem>();
    let bytes = client
        // we've  already determined precisely which nodes to fetch - no need for extra.
        .min_req_size(0)
        .get_range(begin, length)
        .await?;

    let mut node_items = Vec::with_capacity(node_ids.len());
    debug_assert_eq!(bytes.len(), length);
    for node_item_bytes in bytes.chunks(size_of::<NodeItem>()) {
        node_items.push(NodeItem::from_bytes(node_item_bytes)?);
    }
    Ok(node_items)
}

#[derive(Debug)]
/// Bbox filter search result
pub struct SearchResultItem {
    /// Byte offset in feature data section
    pub offset: usize,
    /// Feature number
    pub index: usize,
}

const HILBERT_MAX: u32 = (1 << 16) - 1;

// Based on public domain code at https://github.com/rawrunprotected/hilbert_curves
fn hilbert(x: u32, y: u32) -> u32 {
    let mut a = x ^ y;
    let mut b = 0xFFFF ^ a;
    let mut c = 0xFFFF ^ (x | y);
    let mut d = x & (y ^ 0xFFFF);

    let mut aa = a | (b >> 1);
    let mut bb = (a >> 1) ^ a;
    let mut cc = ((c >> 1) ^ (b & (d >> 1))) ^ c;
    let mut dd = ((a & (c >> 1)) ^ (d >> 1)) ^ d;

    a = aa;
    b = bb;
    c = cc;
    d = dd;
    aa = (a & (a >> 2)) ^ (b & (b >> 2));
    bb = (a & (b >> 2)) ^ (b & ((a ^ b) >> 2));
    cc ^= (a & (c >> 2)) ^ (b & (d >> 2));
    dd ^= (b & (c >> 2)) ^ ((a ^ b) & (d >> 2));

    a = aa;
    b = bb;
    c = cc;
    d = dd;
    aa = (a & (a >> 4)) ^ (b & (b >> 4));
    bb = (a & (b >> 4)) ^ (b & ((a ^ b) >> 4));
    cc ^= (a & (c >> 4)) ^ (b & (d >> 4));
    dd ^= (b & (c >> 4)) ^ ((a ^ b) & (d >> 4));

    a = aa;
    b = bb;
    c = cc;
    d = dd;
    cc ^= (a & (c >> 8)) ^ (b & (d >> 8));
    dd ^= (b & (c >> 8)) ^ ((a ^ b) & (d >> 8));

    a = cc ^ (cc >> 1);
    b = dd ^ (dd >> 1);

    let mut i0 = x ^ y;
    let mut i1 = b | (0xFFFF ^ (i0 | a));

    i0 = (i0 | (i0 << 8)) & 0x00FF00FF;
    i0 = (i0 | (i0 << 4)) & 0x0F0F0F0F;
    i0 = (i0 | (i0 << 2)) & 0x33333333;
    i0 = (i0 | (i0 << 1)) & 0x55555555;

    i1 = (i1 | (i1 << 8)) & 0x00FF00FF;
    i1 = (i1 | (i1 << 4)) & 0x0F0F0F0F;
    i1 = (i1 | (i1 << 2)) & 0x33333333;
    i1 = (i1 | (i1 << 1)) & 0x55555555;

    (i1 << 1) | i0
}

fn hilbert_bbox(r: &NodeItem, hilbert_max: u32, extent: &NodeItem) -> u32 {
    // calculate bbox center and scale to hilbert_max
    let x = (hilbert_max as f64 * ((r.min_x + r.max_x) / 2.0 - extent.min_x) / extent.width())
        .floor() as u32;
    let y = (hilbert_max as f64 * ((r.min_y + r.max_y) / 2.0 - extent.min_y) / extent.height())
        .floor() as u32;
    hilbert(x, y)
}

pub fn hilbert_sort(items: &mut [NodeItem], extent: &NodeItem) {
    items.sort_by(|a, b| {
        let ha = hilbert_bbox(a, HILBERT_MAX, extent);
        let hb = hilbert_bbox(b, HILBERT_MAX, extent);
        hb.partial_cmp(&ha).unwrap() // ha > hb
    });
}

pub fn calc_extent(nodes: &[NodeItem]) -> NodeItem {
    nodes.iter().fold(NodeItem::create(0), |mut a, b| {
        a.expand(b);
        a
    })
}

/// Packed Hilbert R-Tree
pub struct PackedRTree {
    extent: NodeItem,
    node_items: Vec<NodeItem>,
    num_leaf_nodes: usize,
    branching_factor: u16,
    level_bounds: Vec<Range<usize>>,
}

impl PackedRTree {
    pub const DEFAULT_NODE_SIZE: u16 = 16;

    fn init(&mut self, node_size: u16) -> Result<()> {
        assert!(node_size >= 2, "Node size must be at least 2");
        assert!(self.num_leaf_nodes > 0, "Cannot create empty tree");
        self.branching_factor = min(max(node_size, 2u16), 65535u16);
        self.level_bounds =
            PackedRTree::generate_level_bounds(self.num_leaf_nodes, self.branching_factor);
        let num_nodes = self
            .level_bounds
            .first()
            .expect("RTree has at least one level when node_size >= 2 and num_items > 0")
            .end;
        self.node_items = vec![NodeItem::create(0); num_nodes]; // Quite slow!
        Ok(())
    }

    fn generate_level_bounds(num_items: usize, node_size: u16) -> Vec<Range<usize>> {
        assert!(node_size >= 2, "Node size must be at least 2");
        assert!(num_items > 0, "Cannot create empty tree");
        assert!(
            num_items <= usize::MAX - ((num_items / node_size as usize) * 2),
            "Number of items too large"
        );

        // number of nodes per level in bottom-up order
        let mut level_num_nodes: Vec<usize> = Vec::new();
        let mut n = num_items;
        let mut num_nodes = n;
        level_num_nodes.push(n);
        loop {
            n = (n + node_size as usize - 1) / node_size as usize;
            num_nodes += n;
            level_num_nodes.push(n);
            if n == 1 {
                break;
            }
        }
        // bounds per level in reversed storage order (top-down)
        let mut level_offsets: Vec<usize> = Vec::with_capacity(level_num_nodes.len());
        n = num_nodes;
        for size in &level_num_nodes {
            level_offsets.push(n - size);
            n -= size;
        }
        let mut level_bounds = Vec::with_capacity(level_num_nodes.len());
        for i in 0..level_num_nodes.len() {
            level_bounds.push(level_offsets[i]..level_offsets[i] + level_num_nodes[i]);
        }
        level_bounds
    }

    fn generate_nodes(&mut self) {
        for level in 0..self.level_bounds.len() - 1 {
            let children_level = &self.level_bounds[level];
            let parent_level = &self.level_bounds[level + 1];

            let mut parent_idx = parent_level.start;
            let mut child_idx = children_level.start;
            while child_idx < children_level.end {
                let mut parent_node = NodeItem::create(child_idx as u64);
                for _j in 0..self.branching_factor {
                    if child_idx >= children_level.end {
                        break;
                    }
                    parent_node.expand(&self.node_items[child_idx]);
                    child_idx += 1;
                }
                self.node_items[parent_idx] = parent_node;
                parent_idx += 1;
            }
        }
    }

    fn read_data(&mut self, data: impl Read) -> Result<()> {
        read_node_vec(&mut self.node_items, data)?;
        for node in &self.node_items {
            self.extent.expand(node)
        }
        Ok(())
    }

    #[cfg(feature = "http")]
    async fn read_http(
        &mut self,
        client: &mut BufferedHttpRangeClient,
        index_begin: usize,
    ) -> Result<()> {
        let min_req_size = self.size(); // read full index at once
        let mut pos = index_begin;
        for i in 0..self.num_nodes() {
            let bytes = client
                .min_req_size(min_req_size)
                .get_range(pos, size_of::<NodeItem>())
                .await?;
            let n = NodeItem::from_bytes(bytes)?;
            self.extent.expand(&n);
            self.node_items[i] = n;
            pos += size_of::<NodeItem>();
        }
        Ok(())
    }

    fn num_nodes(&self) -> usize {
        self.node_items.len()
    }

    pub fn build(nodes: &Vec<NodeItem>, extent: &NodeItem, node_size: u16) -> Result<PackedRTree> {
        let mut tree = PackedRTree {
            extent: extent.clone(),
            node_items: Vec::new(),
            num_leaf_nodes: nodes.len(),
            branching_factor: 0,
            level_bounds: Vec::new(),
        };
        tree.init(node_size)?;
        let num_nodes = tree.num_nodes();
        for (i, node) in nodes.iter().take(tree.num_leaf_nodes).cloned().enumerate() {
            tree.node_items[num_nodes - tree.num_leaf_nodes + i] = node;
        }
        tree.generate_nodes();
        Ok(tree)
    }

    pub fn from_buf(data: impl Read, num_items: usize, node_size: u16) -> Result<PackedRTree> {
        let node_size = min(max(node_size, 2u16), 65535u16);
        let level_bounds = PackedRTree::generate_level_bounds(num_items, node_size);
        let num_nodes = level_bounds
            .first()
            .expect("RTree has at least one level when node_size >= 2 and num_items > 0")
            .end;
        let mut tree = PackedRTree {
            extent: NodeItem::create(0),
            node_items: Vec::with_capacity(num_nodes),
            num_leaf_nodes: num_items,
            branching_factor: node_size,
            level_bounds,
        };
        tree.read_data(data)?;
        Ok(tree)
    }

    #[cfg(feature = "http")]
    pub async fn from_http(
        client: &mut BufferedHttpRangeClient,
        index_begin: usize,
        num_items: usize,
        node_size: u16,
    ) -> Result<PackedRTree> {
        let mut tree = PackedRTree {
            extent: NodeItem::create(0),
            node_items: Vec::new(),
            num_leaf_nodes: num_items,
            branching_factor: 0,
            level_bounds: Vec::new(),
        };
        tree.init(node_size)?;
        tree.read_http(client, index_begin).await?;
        Ok(tree)
    }

    pub fn search(
        &self,
        min_x: f64,
        min_y: f64,
        max_x: f64,
        max_y: f64,
    ) -> Result<Vec<SearchResultItem>> {
        let leaf_nodes_offset = self
            .level_bounds
            .first()
            .expect("RTree has at least one level when node_size >= 2 and num_items > 0")
            .start;
        let bounds = NodeItem::bounds(min_x, min_y, max_x, max_y);
        let mut results = Vec::new();
        let mut queue = VecDeque::new();
        queue.push_back((0, self.level_bounds.len() - 1));
        while let Some(next) = queue.pop_front() {
            let node_index = next.0;
            let level = next.1;
            let is_leaf_node = node_index >= self.num_nodes() - self.num_leaf_nodes;
            // find the end index of the node
            let end = min(
                node_index + self.branching_factor as usize,
                self.level_bounds[level].end,
            );
            // search through child nodes
            for pos in node_index..end {
                let node_item = &self.node_items[pos];
                if !bounds.intersects(node_item) {
                    continue;
                }
                if is_leaf_node {
                    results.push(SearchResultItem {
                        offset: node_item.offset as usize,
                        index: pos - leaf_nodes_offset,
                    });
                } else {
                    queue.push_back((node_item.offset as usize, level - 1));
                }
            }
        }
        Ok(results)
    }

    pub fn stream_search<R: Read + Seek>(
        data: &mut R,
        num_items: usize,
        node_size: u16,
        min_x: f64,
        min_y: f64,
        max_x: f64,
        max_y: f64,
    ) -> Result<Vec<SearchResultItem>> {
        let bounds = NodeItem::bounds(min_x, min_y, max_x, max_y);
        let level_bounds = PackedRTree::generate_level_bounds(num_items, node_size);
        let Range {
            start: leaf_nodes_offset,
            end: num_nodes,
        } = level_bounds
            .first()
            .expect("RTree has at least one level when node_size >= 2 and num_items > 0");

        // current position must be start of index
        let index_base = data.stream_position()?;

        // use ordered search queue to make index traversal in sequential order
        let mut queue = VecDeque::new();
        queue.push_back((0, level_bounds.len() - 1));
        let mut results = Vec::new();

        while let Some(next) = queue.pop_front() {
            let node_index = next.0;
            let level = next.1;
            trace!("popped next node_index: {node_index}, level: {level}");
            let is_leaf_node = node_index >= num_nodes - num_items;
            // find the end index of the node
            let end = min(node_index + node_size as usize, level_bounds[level].end);
            let length = end - node_index;
            let node_items = read_node_items(data, index_base, node_index, length)?;
            // search through child nodes
            for pos in node_index..end {
                let node_pos = pos - node_index;
                let node_item = &node_items[node_pos];
                if !bounds.intersects(node_item) {
                    continue;
                }
                if is_leaf_node {
                    let index = pos - leaf_nodes_offset;
                    let offset = node_item.offset as usize;
                    trace!("pushing leaf node. index: {index}, offset: {offset}");
                    results.push(SearchResultItem { offset, index });
                } else {
                    let offset = node_item.offset as usize;
                    let prev_level = level - 1;
                    trace!("pushing branch node. prev_level: {prev_level}, offset: {offset}");
                    queue.push_back((offset, prev_level));
                }
            }
        }
        // Skip rest of index
        data.seek(SeekFrom::Start(
            index_base + (num_nodes * size_of::<NodeItem>()) as u64,
        ))?;
        Ok(results)
    }

    #[cfg(feature = "http")]
    #[allow(clippy::too_many_arguments)]
    pub async fn http_stream_search<T: AsyncHttpRangeClient>(
        client: &mut AsyncBufferedHttpRangeClient<T>,
        index_begin: usize,
        num_items: usize,
        branching_factor: u16,
        min_x: f64,
        min_y: f64,
        max_x: f64,
        max_y: f64,
        combine_request_threshold: usize,
    ) -> Result<Vec<HttpSearchResultItem>> {
        let bounds = NodeItem::bounds(min_x, min_y, max_x, max_y);
        if num_items == 0 {
            return Ok(vec![]);
        }
        let level_bounds = PackedRTree::generate_level_bounds(num_items, branching_factor);
        let feature_begin = index_begin + PackedRTree::index_size(num_items, branching_factor);
        debug!("http_stream_search - index_begin: {index_begin}, feature_begin: {feature_begin} num_items: {num_items}, branching_factor: {branching_factor}, level_bounds: {level_bounds:?}, GPS bounds:[({min_x}, {min_y}), ({max_x},{max_y})]");

        #[derive(Debug, PartialEq, Eq)]
        struct NodeRange {
            level: usize,
            nodes: Range<usize>,
        }

        let mut queue = VecDeque::new();
        queue.push_back(NodeRange {
            nodes: 0..1,
            level: level_bounds.len() - 1,
        });
        let mut results = Vec::new();

        while let Some(node_range) = queue.pop_front() {
            debug!("next: {node_range:?}. {} items left in queue", queue.len());
            let node_items = read_http_node_items(client, index_begin, &node_range.nodes).await?;
            for (node_pos, node_item) in node_items.iter().enumerate() {
                if !bounds.intersects(node_item) {
                    continue;
                }

                if node_range.level == 0 {
                    // leaf node
                    let start = feature_begin + node_item.offset as usize;
                    if let Some(next_node_item) = &node_items.get(node_pos + 1) {
                        let end = feature_begin + next_node_item.offset as usize;
                        results.push(HttpSearchResultItem {
                            range: HttpRange::Range(start..end),
                        });
                    } else {
                        debug_assert_eq!(node_pos, num_items - 1);
                        results.push(HttpSearchResultItem {
                            range: HttpRange::RangeFrom(start..),
                        });
                    }
                } else {
                    let children_level = node_range.level - 1;
                    let mut children_nodes = node_item.offset as usize
                        ..(node_item.offset + branching_factor as u64) as usize;
                    if children_level == 0 {
                        // These children are leaf nodes.
                        //
                        // We can right-size our feature requests if we know the size of each feature.
                        //
                        // To infer the length of *this* feature, we need the start of the *next*
                        // feature, so we get an extra node here.
                        children_nodes.end += 1;
                    }
                    // always stay within level's bounds
                    children_nodes.end = min(children_nodes.end, level_bounds[children_level].end);

                    let children_range = NodeRange {
                        nodes: children_nodes,
                        level: children_level,
                    };

                    let Some(tail) = queue.back_mut() else {
                        debug!("Adding new request onto empty queue: {children_range:?}");
                        queue.push_back(children_range);
                        continue;
                    };

                    if tail.level != children_level {
                        debug!("Adding new request for new level: {children_range:?} (existing queue tail: {tail:?})");
                        queue.push_back(children_range);
                        continue;
                    }

                    let wasted_bytes = {
                        if children_range.nodes.start >= tail.nodes.end {
                            (children_range.nodes.start - tail.nodes.end) * size_of::<NodeItem>()
                        } else {
                            // To compute feature size, we fetch an extra leaf node, but computing
                            // wasted_bytes for adjacent ranges will overflow in that case, so
                            // we skip that computation.
                            //
                            // But let's make sure we're in the state we think we are:
                            debug_assert_eq!(
                                children_range.nodes.start + 1,
                                tail.nodes.end,
                                "we only ever fetch one extra node"
                            );
                            debug_assert_eq!(
                                children_level, 0,
                                "extra node fetching only happens with leaf nodes"
                            );
                            0
                        }
                    };
                    if wasted_bytes > combine_request_threshold {
                        debug!("Adding new request for: {children_range:?} rather than merging with distant NodeRange: {tail:?} (would waste {wasted_bytes} bytes)");
                        queue.push_back(children_range);
                        continue;
                    }

                    // Merge the ranges to avoid an extra request
                    debug!("Extending existing request {tail:?} with nearby children: {:?} (wastes {wasted_bytes} bytes)", &children_range.nodes);
                    tail.nodes.end = children_range.nodes.end;
                }
            }
        }
        Ok(results)
    }

    pub fn size(&self) -> usize {
        self.num_nodes() * size_of::<NodeItem>()
    }

    pub fn index_size(num_items: usize, node_size: u16) -> usize {
        assert!(node_size >= 2, "Node size must be at least 2");
        assert!(num_items > 0, "Cannot create empty tree");
        let node_size_min = min(max(node_size, 2), 65535) as usize;
        // limit so that resulting size in bytes can be represented by uint64_t
        // assert!(
        //     num_items <= 1 << 56,
        //     "Number of items must be less than 2^56"
        // );
        let mut n = num_items;
        let mut num_nodes = n;
        loop {
            n = (n + node_size_min - 1) / node_size_min;
            num_nodes += n;
            if n == 1 {
                break;
            }
        }
        num_nodes * size_of::<NodeItem>()
    }

    /// Write all index nodes
    pub fn stream_write<W: Write>(&self, out: &mut W) -> std::io::Result<()> {
        for item in &self.node_items {
            item.write(out)?;
        }
        Ok(())
    }

    pub fn extent(&self) -> NodeItem {
        self.extent.clone()
    }
}

#[cfg(feature = "http")]
pub(crate) mod http {
    use std::ops::{Range, RangeFrom};

    /// Byte range within a file. Suitable for an HTTP Range request.
    #[derive(Debug, Clone)]
    pub enum HttpRange {
        Range(Range<usize>),
        RangeFrom(RangeFrom<usize>),
    }

    impl HttpRange {
        pub fn start(&self) -> usize {
            match self {
                Self::Range(range) => range.start,
                Self::RangeFrom(range) => range.start,
            }
        }

        pub fn end(&self) -> Option<usize> {
            match self {
                Self::Range(range) => Some(range.end),
                Self::RangeFrom(_) => None,
            }
        }

        pub fn with_end(self, end: Option<usize>) -> Self {
            match end {
                Some(end) => Self::Range(self.start()..end),
                None => Self::RangeFrom(self.start()..),
            }
        }

        pub fn length(&self) -> Option<usize> {
            match self {
                Self::Range(range) => Some(range.end - range.start),
                Self::RangeFrom(_) => None,
            }
        }
    }

    #[derive(Debug)]
    /// Bbox filter search result
    pub struct HttpSearchResultItem {
        /// Byte offset in feature data section
        pub range: HttpRange,
    }
}
#[cfg(feature = "http")]
pub(crate) use http::*;

mod inspect {
    use super::*;
    use geozero::{ColumnValue, FeatureProcessor};

    impl PackedRTree {
        pub fn process_index<P: FeatureProcessor>(
            &self,
            processor: &mut P,
        ) -> geozero::error::Result<()> {
            processor.dataset_begin(Some("PackedRTree"))?;
            let mut fid = 0;
            for (levelno, level) in self.level_bounds.iter().rev().enumerate() {
                for pos in level.clone() {
                    let node = &self.node_items[pos];
                    processor.feature_begin(fid)?;
                    processor.properties_begin()?;
                    let _ =
                        processor.property(0, "levelno", &ColumnValue::ULong(levelno as u64))?;
                    let _ = processor.property(1, "pos", &ColumnValue::ULong(pos as u64))?;
                    let _ = processor.property(2, "offset", &ColumnValue::ULong(node.offset))?;
                    processor.properties_end()?;
                    processor.geometry_begin()?;
                    processor.polygon_begin(true, 1, 0)?;
                    processor.linestring_begin(false, 5, 0)?;
                    processor.xy(node.min_x, node.min_y, 0)?;
                    processor.xy(node.min_x, node.max_y, 1)?;
                    processor.xy(node.max_x, node.max_y, 2)?;
                    processor.xy(node.max_x, node.min_y, 3)?;
                    processor.xy(node.min_x, node.min_y, 4)?;
                    processor.linestring_end(false, 0)?;
                    processor.polygon_end(true, 0)?;
                    processor.geometry_end()?;
                    processor.feature_end(fid)?;
                    fid += 1;
                }
            }
            processor.dataset_end()
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    type Result<T> = std::result::Result<T, Box<dyn std::error::Error>>;

    #[test]
    fn tree_2items() -> Result<()> {
        let mut nodes = Vec::new();
        nodes.push(NodeItem::bounds(0.0, 0.0, 1.0, 1.0));
        nodes.push(NodeItem::bounds(2.0, 2.0, 3.0, 3.0));
        let extent = calc_extent(&nodes);
        assert_eq!(extent, NodeItem::bounds(0.0, 0.0, 3.0, 3.0));
        assert!(nodes[0].intersects(&NodeItem::bounds(0.0, 0.0, 1.0, 1.0)));
        assert!(nodes[1].intersects(&NodeItem::bounds(2.0, 2.0, 3.0, 3.0)));
        hilbert_sort(&mut nodes, &extent);
        let mut offset = 0;
        for node in &mut nodes {
            node.offset = offset;
            offset += size_of::<NodeItem>() as u64;
        }
        assert!(nodes[1].intersects(&NodeItem::bounds(0.0, 0.0, 1.0, 1.0)));
        assert!(nodes[0].intersects(&NodeItem::bounds(2.0, 2.0, 3.0, 3.0)));
        let tree = PackedRTree::build(&nodes, &extent, PackedRTree::DEFAULT_NODE_SIZE)?;
        let list = tree.search(0.0, 0.0, 1.0, 1.0)?;
        assert_eq!(list.len(), 1);
        assert!(nodes[list[0].index].intersects(&NodeItem::bounds(0.0, 0.0, 1.0, 1.0)));
        Ok(())
    }

    #[test]
    fn tree_19items_roundtrip_stream_search() -> Result<()> {
        let mut nodes = vec![
            NodeItem::bounds(0.0, 0.0, 1.0, 1.0),
            NodeItem::bounds(2.0, 2.0, 3.0, 3.0),
            NodeItem::bounds(100.0, 100.0, 110.0, 110.0),
            NodeItem::bounds(101.0, 101.0, 111.0, 111.0),
            NodeItem::bounds(102.0, 102.0, 112.0, 112.0),
            NodeItem::bounds(103.0, 103.0, 113.0, 113.0),
            NodeItem::bounds(104.0, 104.0, 114.0, 114.0),
            NodeItem::bounds(10010.0, 10010.0, 10110.0, 10110.0),
            NodeItem::bounds(10010.0, 10010.0, 10110.0, 10110.0),
            NodeItem::bounds(10010.0, 10010.0, 10110.0, 10110.0),
            NodeItem::bounds(10010.0, 10010.0, 10110.0, 10110.0),
            NodeItem::bounds(10010.0, 10010.0, 10110.0, 10110.0),
            NodeItem::bounds(10010.0, 10010.0, 10110.0, 10110.0),
            NodeItem::bounds(10010.0, 10010.0, 10110.0, 10110.0),
            NodeItem::bounds(10010.0, 10010.0, 10110.0, 10110.0),
            NodeItem::bounds(10010.0, 10010.0, 10110.0, 10110.0),
            NodeItem::bounds(10010.0, 10010.0, 10110.0, 10110.0),
            NodeItem::bounds(10010.0, 10010.0, 10110.0, 10110.0),
            NodeItem::bounds(10010.0, 10010.0, 10110.0, 10110.0),
        ];

        let extent = calc_extent(&nodes);
        hilbert_sort(&mut nodes, &extent);
        let mut offset = 0;
        for node in &mut nodes {
            node.offset = offset;
            offset += size_of::<NodeItem>() as u64;
        }
        let tree = PackedRTree::build(&nodes, &extent, PackedRTree::DEFAULT_NODE_SIZE)?;
        let list = tree.search(102.0, 102.0, 103.0, 103.0)?;
        assert_eq!(list.len(), 4);

        let indexes: Vec<usize> = list.iter().map(|item| item.index).collect();
        let expected: Vec<usize> = vec![13, 14, 15, 16];
        assert_eq!(indexes, expected);

        let mut tree_data: Vec<u8> = Vec::new();
        let res = tree.stream_write(&mut tree_data);
        assert!(res.is_ok());
        assert_eq!(tree_data.len(), (nodes.len() + 3) * size_of::<NodeItem>());
        assert_eq!(size_of::<NodeItem>(), 40);

        let tree2 = PackedRTree::from_buf(
            &mut &tree_data[..],
            nodes.len(),
            PackedRTree::DEFAULT_NODE_SIZE,
        )?;
        let list = tree2.search(102.0, 102.0, 103.0, 103.0)?;
        assert_eq!(list.len(), 4);

        let indexes: Vec<usize> = list.iter().map(|item| item.index).collect();
        let expected: Vec<usize> = vec![13, 14, 15, 16];
        assert_eq!(indexes, expected);

        let mut reader = Cursor::new(&tree_data);
        let list = PackedRTree::stream_search(
            &mut reader,
            nodes.len(),
            PackedRTree::DEFAULT_NODE_SIZE,
            102.0,
            102.0,
            103.0,
            103.0,
        )?;
        assert_eq!(list.len(), 4);

        let indexes: Vec<usize> = list.iter().map(|item| item.index).collect();
        let expected: Vec<usize> = vec![13, 14, 15, 16];
        assert_eq!(indexes, expected);

        Ok(())
    }

    #[test]
    fn tree_100_000_items_in_denmark() -> Result<()> {
        use rand::distributions::{Distribution, Uniform};

        let unifx = Uniform::from(466379..708929);
        let unify = Uniform::from(6096801..6322352);
        let mut rng = rand::thread_rng();

        let mut nodes = Vec::new();
        for _ in 0..100000 {
            let x = unifx.sample(&mut rng) as f64;
            let y = unify.sample(&mut rng) as f64;
            nodes.push(NodeItem::bounds(x, y, x, y));
        }

        let extent = calc_extent(&nodes);
        hilbert_sort(&mut nodes, &extent);
        let tree = PackedRTree::build(&nodes, &extent, PackedRTree::DEFAULT_NODE_SIZE)?;
        let list = tree.search(690407.0, 6063692.0, 811682.0, 6176467.0)?;

        for i in 0..list.len() {
            assert!(nodes[list[i].index]
                .intersects(&NodeItem::bounds(690407.0, 6063692.0, 811682.0, 6176467.0)));
        }

        let mut tree_data: Vec<u8> = Vec::new();
        let res = tree.stream_write(&mut tree_data);
        assert!(res.is_ok());

        let mut reader = Cursor::new(&tree_data);
        let list2 = PackedRTree::stream_search(
            &mut reader,
            nodes.len(),
            PackedRTree::DEFAULT_NODE_SIZE,
            690407.0,
            6063692.0,
            811682.0,
            6176467.0,
        )?;
        assert_eq!(list2.len(), list.len());
        for i in 0..list2.len() {
            assert!(nodes[list2[i].index]
                .intersects(&NodeItem::bounds(690407.0, 6063692.0, 811682.0, 6176467.0)));
        }
        Ok(())
    }

    #[test]
    fn tree_processing() -> Result<()> {
        use geozero::geojson::GeoJsonWriter;
        use std::io::BufWriter;
        use tempfile::tempfile;

        let mut nodes = Vec::new();
        nodes.push(NodeItem::bounds(0.0, 0.0, 1.0, 1.0));
        nodes.push(NodeItem::bounds(2.0, 2.0, 3.0, 3.0));
        let extent = calc_extent(&nodes);
        let mut offset = 0;
        for node in &mut nodes {
            node.offset = offset;
            offset += size_of::<NodeItem>() as u64;
        }
        let tree = PackedRTree::build(&nodes, &extent, PackedRTree::DEFAULT_NODE_SIZE)?;
        let mut fout = BufWriter::new(tempfile()?);
        tree.process_index(&mut GeoJsonWriter::new(&mut fout))?;
        Ok(())
    }
}