1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
use std::{
    collections::hash_map::RandomState,
    hash::{BuildHasher, Hash},
    mem,
    num::NonZeroUsize,
    ops::Deref,
    sync::atomic::{AtomicUsize, Ordering},
};

use hashbrown::hash_map::RawEntryMut;

use crate::{
    core::Core,
    loom::cell::UnsafeCell,
    loom::sync::Arc,
    util::{Alias, BorrowHelper},
    view::sealed::ReadAccess,
    Map, View,
};

static NEXT_WRITER_UID: AtomicUsize = AtomicUsize::new(1);
const LEAKED_VALUE_MISMATCH: &str = "Leaked value is not from this map";

#[repr(transparent)]
#[derive(PartialEq, Eq, Clone, Copy)]
struct WriterUid(NonZeroUsize);

impl WriterUid {
    fn next() -> Self {
        Self(
            NonZeroUsize::new(NEXT_WRITER_UID.fetch_add(1, Ordering::Relaxed))
                .expect("Maximum number of maps exceeded for this architecture"),
        )
    }
}

/// A write handle to the underlying map.
///
/// This type allows for the creation of [`WriteGuard`s](crate::WriteGuard) which allow for
/// mutation of the underlying map.
pub struct WriteHandle<K, V, S = RandomState>
where
    K: Hash + Eq,
    S: BuildHasher,
{
    core: Arc<Core<K, V, S>>,
    operations: UnsafeCell<Vec<Operation<K, V>>>,
    uid: WriterUid,
}

unsafe impl<K, V, S> Send for WriteHandle<K, V, S>
where
    K: Send + Sync + Hash + Eq,
    V: Send + Sync,
    S: Send + Sync + BuildHasher,
{
}

impl<K, V, S> WriteHandle<K, V, S>
where
    K: Hash + Eq,
    S: BuildHasher,
{
    pub(crate) unsafe fn new(core: Arc<Core<K, V, S>>) -> Self {
        Self {
            core,
            operations: UnsafeCell::new(Vec::new()),
            uid: WriterUid::next(),
        }
    }

    /// Blocks the calling thread until all readers see the same version of the map.
    ///
    /// If all readers already see the same version of the map (or if there are no active readers)
    /// then this function is a no-op.
    ///
    /// This function is meant for advanced use only. See
    /// `Leaked::`[`into_inner`](crate::Leaked::into_inner) for an example use-case.
    #[inline]
    pub fn synchronize(&self) {
        self.core.synchronize();
    }

    /// Creates a new [`WriteGuard`](crate::WriteGuard) wrapped in a [`View`](crate::View),
    /// allowing for safe read and write access to the map.
    ///
    /// # Examples
    ///
    /// ```
    /// # use flashmap;
    /// let (mut write, read) = flashmap::new::<String, String>();
    ///
    /// let mut guard = write.guard();
    ///
    /// // Insert a few values
    /// guard.insert("apple".to_owned(), "red".to_owned());
    /// guard.insert("banana".to_owned(), "yellow".to_owned());
    ///
    /// // Remove a value
    /// assert_eq!(&*guard.remove("apple".to_owned()).unwrap(), "red");
    ///
    /// // Publishing makes all previous changes visible to new readers. Dropping the
    /// // guard has the same effect.
    /// guard.publish();
    /// ```
    ///
    /// Unlike a read guard, when reading through a write guard, all changes will be immediately
    /// visible.
    /// ```
    /// # use flashmap;
    /// let (mut write, read) = flashmap::new::<String, String>();
    ///
    /// let mut guard = write.guard();
    ///
    /// // Our insert is immediately visible to us
    /// guard.insert("apple".to_owned(), "red".to_owned());
    /// assert_eq!(guard.get("apple").unwrap(), "red");
    /// assert!(!guard.contains_key("banana"));
    ///
    /// guard.insert("banana".to_owned(), "yellow".to_owned());
    /// assert_eq!(guard.get("banana").unwrap(), "yellow");
    ///
    /// // Likewise, removes (and all other operations) are immediately visible
    /// assert_eq!(&*guard.remove("apple".to_owned()).unwrap(), "red");
    /// assert!(!guard.contains_key("apple"));
    /// ```
    pub fn guard(&mut self) -> View<WriteGuard<'_, K, V, S>> {
        self.synchronize();
        let map = self.core.writer_map();
        map.with_mut(|map_ptr| {
            self.operations.with_mut(|ops_ptr| {
                let operations = unsafe { &mut *ops_ptr };
                unsafe { Self::flush_operations(operations, &mut *map_ptr) };
                operations.shrink_to(64);
            });
        });

        View::new(WriteGuard {
            map,
            handle: self,
            handle_uid: self.uid,
        })
    }

    /// Reclaims a leaked value, providing ownership of the underlying value.
    ///
    /// # Panics
    ///
    /// Panics if the leaked value provided came from a different map then the one this handle is
    /// associated with.
    ///
    /// # Examples
    ///
    /// ```
    /// use flashmap::{self, Evicted};
    ///
    /// let (mut write, read) = flashmap::new::<String, String>();
    ///
    /// write.guard().insert("ferris".to_owned(), "crab".to_owned());
    ///
    /// // ~~ stuff happens ~~
    ///
    /// let leaked = write.guard().remove("ferris".to_owned())
    ///     .map(Evicted::leak)
    ///     .unwrap();
    ///
    /// let value = write.reclaim_one(leaked);
    /// assert_eq!(value, "crab");
    /// ```
    #[inline]
    pub fn reclaim_one(&self, leaked: Leaked<V>) -> V {
        (self.reclaimer())(leaked)
    }

    /// Returns a function which can safely reclaim leaked values. This is useful for reclaiming
    /// multiple leaked values while only performign the necessary synchronization once.
    ///
    /// # Panics
    ///
    /// The **returned function** will panic if given a leaked value not from the map this handle
    /// is associated with. This function itself will not panic.
    ///
    /// # Examples
    ///
    /// ```
    /// use flashmap::{self, Evicted};
    ///
    /// let (mut write, read) = flashmap::new::<u32, String>();
    ///
    /// let mut guard = write.guard();
    /// guard.insert(0xFF0000, "red".to_owned());
    /// guard.insert(0x00FF00, "green".to_owned());
    /// guard.insert(0x0000FF, "blue".to_owned());
    /// guard.publish();
    ///
    /// // ~~ stuff happens ~~
    ///
    /// let mut guard = write.guard();
    /// let colors = [0xFF0000, 0x00FF00, 0x0000FF].map(|hex| {
    ///     guard.remove(hex).map(Evicted::leak).unwrap()
    /// });
    /// guard.publish();
    ///
    /// let [red, green, blue] = colors.map(write.reclaimer());
    ///
    /// assert_eq!(red, "red");
    /// assert_eq!(green, "green");
    /// assert_eq!(blue, "blue");
    /// ```
    #[inline]
    pub fn reclaimer(&self) -> impl Fn(Leaked<V>) -> V + '_ {
        self.synchronize();
        let uid = self.uid;
        move |leaked| {
            assert!(uid == leaked.handle_uid, "{LEAKED_VALUE_MISMATCH}");
            unsafe { Alias::into_owned(leaked.value) }
        }
    }

    #[inline]
    unsafe fn flush_operations(operations: &mut Vec<Operation<K, V>>, map: &mut Map<K, V, S>) {
        // We do unchecked ops in here since this function benches pretty hot when doing a lot
        // of writing

        for Operation {
            raw: mut operation,
            leaky,
        } in operations.drain(..)
        {
            match operation {
                RawOperation::InsertUnique(key, value) => {
                    map.insert_unique_unchecked(key, value);
                }
                RawOperation::Replace(ref key, value) => {
                    let slot =
                        unsafe { map.get_mut(BorrowHelper::new_ref(key)).unwrap_unchecked() };
                    if !leaky {
                        unsafe { Alias::drop(slot) };
                    }
                    *slot = value;
                }
                RawOperation::Remove(ref key) => {
                    let (mut k, mut v) = unsafe {
                        map.remove_entry(BorrowHelper::new_ref(key))
                            .unwrap_unchecked()
                    };
                    unsafe { Alias::drop(&mut k) };
                    if !leaky {
                        unsafe { Alias::drop(&mut v) };
                    }
                }
                RawOperation::Drop(ref mut value) => unsafe { Alias::drop(value) },
            }
        }
    }
}

impl<K, V, S> Drop for WriteHandle<K, V, S>
where
    K: Hash + Eq,
    S: BuildHasher,
{
    fn drop(&mut self) {
        self.synchronize();
        let map = self.core.writer_map();
        map.with_mut(|map_ptr| {
            self.operations.with_mut(|ops_ptr| unsafe {
                Self::flush_operations(&mut *ops_ptr, &mut *map_ptr)
            });
        });
    }
}

/// Provides mutable access to the underlying map, and publishes all changes to new readers when
/// dropped.
///
/// See [`WriteHandle::guard`](crate::WriteHandle::guard) for examples. See [`View`](crate::View)
/// for additional examples and the public API to interact with the underlying map.
pub struct WriteGuard<'guard, K: Eq + Hash, V, S: BuildHasher = RandomState> {
    map: &'guard UnsafeCell<Map<K, V, S>>,
    handle: &'guard WriteHandle<K, V, S>,
    handle_uid: WriterUid,
}

impl<'guard, K, V, S> ReadAccess for WriteGuard<'guard, K, V, S>
where
    K: Eq + Hash,
    S: BuildHasher,
{
    type Map = Map<K, V, S>;

    #[inline]
    fn with_map<'read, F, R>(&'read self, op: F) -> R
    where
        F: FnOnce(&'read Self::Map) -> R,
    {
        self.map.with(|map_ptr| op(unsafe { &*map_ptr }))
    }
}

impl<'guard, K, V, S> WriteGuard<'guard, K, V, S>
where
    K: Eq + Hash,
    S: BuildHasher,
{
    #[inline]
    fn with_map_mut<'write, F, R>(&'write mut self, op: F) -> R
    where
        F: FnOnce(&'write mut Map<K, V, S>, &'write mut Vec<Operation<K, V>>) -> R,
    {
        self.map.with_mut(|map_ptr| {
            self.handle
                .operations
                .with_mut(|ops_ptr| unsafe { op(&mut *map_ptr, &mut *ops_ptr) })
        })
    }

    #[inline]
    pub(crate) fn insert<'ret>(&mut self, key: K, value: V) -> Option<Evicted<'ret, K, V>>
    where
        'guard: 'ret,
    {
        let value = Alias::new(value);

        let evicted = self.with_map_mut(|map, operations| {
            match map.raw_entry_mut().from_key(BorrowHelper::new_ref(&key)) {
                RawEntryMut::Vacant(entry) => {
                    let key = Alias::new(key);
                    entry.insert(unsafe { Alias::copy(&key) }, unsafe { Alias::copy(&value) });
                    operations.push(Operation::new(RawOperation::InsertUnique(key, value)));
                    None
                }
                RawEntryMut::Occupied(mut entry) => {
                    let old = mem::replace(entry.get_mut(), unsafe { Alias::copy(&value) });
                    operations.push(Operation::new(RawOperation::Replace(key, value)));
                    Some(old)
                }
            }
        });

        evicted.map(|alias| unsafe { Evicted::new(self, alias) })
    }

    #[inline]
    pub(crate) fn replace<'ret, F>(&mut self, key: K, op: F) -> Option<Evicted<'ret, K, V>>
    where
        F: FnOnce(&V) -> V,
        'guard: 'ret,
    {
        let evicted =
            self.with_map_mut(
                |map, operations| match map.get_mut(BorrowHelper::new_ref(&key)) {
                    Some(value) => {
                        let new_value = Alias::new(op(&**value));
                        operations.push(Operation::new(RawOperation::Replace(key, unsafe {
                            Alias::copy(&new_value)
                        })));
                        let old_value = mem::replace(value, new_value);
                        Some(old_value)
                    }
                    None => None,
                },
            );

        evicted.map(|value| unsafe { Evicted::new(self, value) })
    }

    #[inline]
    pub(crate) fn remove<'ret>(&mut self, key: K) -> Option<Evicted<'ret, K, V>>
    where
        'guard: 'ret,
    {
        let evicted = self.with_map_mut(|map, operations| {
            let removed = map.remove(BorrowHelper::new_ref(&key));

            if removed.is_some() {
                operations.push(Operation::new(RawOperation::Remove(key)));
            }

            removed
        });

        evicted.map(|value| unsafe { Evicted::new(self, value) })
    }

    #[inline]
    pub(crate) fn drop_lazily(&self, leaked: Leaked<V>) {
        assert!(
            self.handle_uid == leaked.handle_uid,
            "{LEAKED_VALUE_MISMATCH}"
        );
        self.handle.operations.with_mut(|ops_ptr| {
            unsafe { &mut *ops_ptr }.push(Operation::new(RawOperation::Drop(Leaked::into_inner(
                leaked,
            ))));
        });
    }

    #[inline]
    pub(crate) fn publish(self) {
        // publishing logic happens on drop
        drop(self);
    }
}

impl<'guard, K, V, S> Drop for WriteGuard<'guard, K, V, S>
where
    K: Eq + Hash,
    S: BuildHasher,
{
    fn drop(&mut self) {
        unsafe { self.handle.core.publish() };
    }
}

struct Operation<K, V> {
    raw: RawOperation<K, V>,
    leaky: bool,
}

impl<K, V> Operation<K, V> {
    #[inline]
    fn new(raw: RawOperation<K, V>) -> Self {
        Self { raw, leaky: false }
    }

    #[inline]
    fn make_leaky(&mut self) {
        self.leaky = true;
    }
}

enum RawOperation<K, V> {
    InsertUnique(Alias<K>, Alias<V>),
    Replace(K, Alias<V>),
    Remove(K),
    Drop(Alias<V>),
}

/// A value which was evicted from a map.
///
/// Due to the nature of concurrent data structures, memory often cannot be reclaimed the instant a
/// writer decides it no longer needs to be used. This goes for `flashmap` as well. When a value is
/// removed from the map, an `Evicted<'a, V>` is returned. This type only guarantees that the value
/// is valid for reads for the duration of `'a`, which will never outlive the guard which is
/// protecting the value. To use the evicted value after the associated guard is dropped, it must
/// be [`leak`](crate::Evicted::leak)ed, at which point the programmer is responsible for dropping
/// or claiming ownership of the value. If an evicted value is not leaked, then it will be dropped
/// at some unspecified point after (or while) the guard is dropped when it is safe to do so.
///
/// # Inspecting an evicted value
///
/// `Evicted` implements [`Deref`](std::ops::Deref), so you can get immutable access to the
/// underlying value.
///
/// ```
/// use flashmap::{self, Evicted};
///
/// let (mut write, read) = flashmap::new::<u32, u32>();
/// let mut guard = write.guard();
///
/// // Insert a key-value pair
/// guard.insert(0, 0);
///
/// // Evict the entry and its value
/// let removed: Evicted<'_, u32, u32> = guard.remove(0).unwrap();
///
/// // Inspect the evicted value by dereferencing it
/// assert_eq!(*removed, 0);
/// ```
///
/// # Leaking
///
/// To use an evicted value beyond the lifetime of the guard which provides it, you must leak the
/// value. This also means that you're responsible for manually dropping it. See
/// [`leak`](crate::Evicted::leak) and [`Leaked`](crate::Leaked) for more information.
pub struct Evicted<'a, K, V> {
    leaked: Leaked<V>,
    operations: &'a UnsafeCell<Vec<Operation<K, V>>>,
    operation: usize,
}

impl<'a, K, V> Evicted<'a, K, V> {
    #[inline]
    unsafe fn new<S>(guard: &WriteGuard<'a, K, V, S>, value: Alias<V>) -> Self
    where
        K: Eq + Hash,
        S: BuildHasher,
    {
        let operations = &guard.handle.operations;
        let operation = operations.with(|ops_ptr| unsafe { &*ops_ptr }.len() - 1);

        Self {
            leaked: Leaked {
                value,
                handle_uid: guard.handle_uid,
            },
            operations,
            operation,
        }
    }

    /// Leaks the contained value, extending its lifetime until it is manually converted into an
    /// owned value or dropped.
    ///
    /// The primary means for safely turning a leaked value into an owned value are through the
    /// [`reclaim_one`](crate::WriteHandle::reclaim_one) and
    /// [`reclaimer`](crate::WriteHandle::reclaimer) methods. For dropping a leaked value, you can
    /// use the [`drop_lazily`](crate::View::drop_lazily) method. For more advanced use, see the
    /// [`Leaked`](crate::Leaked) type and its associated [`into_inner`](crate::Leaked::into_inner)
    /// method.
    ///
    /// # Examples
    ///
    /// ```
    /// use flashmap::{self, Evicted, Leaked};
    ///
    /// let (mut write, read) = flashmap::new::<u32, String>();
    /// let mut guard = write.guard();
    ///
    /// // Insert a couple values
    /// guard.insert(1, "a".to_owned());
    /// guard.insert(2, "b".to_owned());
    ///
    /// // Evict those values
    /// let a = guard.remove(1).map(Evicted::leak).unwrap();
    /// let b = guard.remove(2).map(Evicted::leak).unwrap();
    ///
    /// guard.publish();
    ///
    /// // Reclaim one
    /// let a = write.reclaim_one(a);
    /// assert_eq!(a, "a");
    ///
    /// // Lazily drop another
    /// write.guard().drop_lazily(b);
    /// ```
    pub fn leak(evicted: Self) -> Leaked<V> {
        evicted
            .operations
            .with_mut(|ptr| unsafe { (*ptr).get_unchecked_mut(evicted.operation) }.make_leaky());

        evicted.leaked
    }
}

impl<K, V> Deref for Evicted<'_, K, V> {
    type Target = V;

    fn deref(&self) -> &Self::Target {
        &self.leaked
    }
}

/// A leaked value from the map.
///
/// Similar to [`Evicted`](crate::Evicted), this type implements [`Deref`](std::ops::Deref),
/// allowing for immutable access to the underlying value.
///
/// This type behaves similarly to [`ManuallyDrop`](std::mem::ManuallyDrop) in that the underlying
/// value is not dropped if the wrapper is dropped. See [`leak`](crate::Evicted::leak) for how to
/// safely drop or take ownership of a leaked value. See [`into_inner`](crate::Leaked::into_inner)
/// for details on how to unsafely take ownership of a leaked value.
#[must_use = "Not using a leaked value may cause a memory leak"]
pub struct Leaked<V> {
    value: Alias<V>,
    handle_uid: WriterUid,
}

unsafe impl<V> Send for Leaked<V> where V: Send {}
unsafe impl<V> Sync for Leaked<V> where V: Sync {}

impl<V> Leaked<V> {
    /// Consumes this leaked value, providing the inner aliased value. Note that the aliased value
    /// must be manually dropped via `Alias::`[`drop`](crate::Alias::drop), or converted into an
    /// owned value via `Alias::`[`into_owned`](crate::Alias::into_owned).
    ///
    /// # Examples
    ///
    /// ```
    /// use flashmap::{self, Alias, Evicted, Leaked};
    ///
    /// let (mut write, read) = flashmap::new::<u32, Box<u32>>();
    ///
    /// write.guard().insert(10, Box::new(20));
    ///
    /// // Remove and leak the previously inserted value
    /// let leaked: Leaked<Box<u32>> = write.guard()
    ///     .remove(10)
    ///     .map(Evicted::leak)
    ///     .unwrap();
    ///
    /// // Extract the inner aliased value
    /// let inner: Alias<Box<u32>> = Leaked::into_inner(leaked);
    ///
    /// // Wait until no more readers can access the aliased value
    /// write.synchronize();
    ///
    /// // Safety: we called `synchronize` on the write handle of the map the aliased
    /// // value came from, so we are guaranteed that we are the only ones accessing the
    /// // aliased value from this point forward.
    /// let value = unsafe { Alias::into_owned(inner) };
    ///
    /// assert_eq!(*value, 20);
    /// ```
    #[must_use = "Not using an aliased value may cause a memory leak"]
    pub fn into_inner(leaked: Self) -> Alias<V> {
        leaked.value
    }
}

impl<V> Deref for Leaked<V> {
    type Target = V;

    fn deref(&self) -> &Self::Target {
        &self.value
    }
}