1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
// Copyright © 2018–2022 Trevor Spiteri

// This library is free software: you can redistribute it and/or
// modify it under the terms of either
//
//   * the Apache License, Version 2.0 or
//   * the MIT License
//
// at your option.
//
// You should have recieved copies of the Apache License and the MIT
// License along with the library. If not, see
// <https://www.apache.org/licenses/LICENSE-2.0> and
// <https://opensource.org/licenses/MIT>.

use core::{
    cmp::Ordering,
    hash::{Hash, Hasher},
    num::FpCategory,
    ops::Neg,
};

const SIGN_MASK: u128 = 1u128 << 127;
const EXP_MASK: u128 = 0x7FFF_u128 << 112;
const MANT_MASK: u128 = (1u128 << 112) - 1;
const PREC: u32 = 113;
const EXP_BITS: u32 = 15;
const EXP_BIAS: u32 = (1 << (EXP_BITS - 1)) - 1;

/// The bit representation of a *binary128* floating-point number (`f128`).
///
/// This type can be used to
///
///   * convert between fixed-point numbers and the bit representation of
///     128-bit floating-point numbers.
///   * compare fixed-point numbers and the bit representation of 128-bit
///     floating-point numbers.
///
/// # Examples
///
/// ```rust
/// #![feature(generic_const_exprs)]
/// # #![allow(incomplete_features)]
///
/// use fixed::{types::I16F16, F128};
/// assert_eq!(I16F16::ONE.to_num::<F128>(), F128::ONE);
/// assert_eq!(I16F16::from_num(F128::ONE), I16F16::ONE);
///
/// // fixed-point numbers can be compared directly to F128 values
/// assert!(I16F16::from_num(1.5) > F128::ONE);
/// assert!(I16F16::from_num(0.5) < F128::ONE);
/// ```
#[derive(Clone, Copy, Default, Debug)]
pub struct F128 {
    bits: u128,
}

impl F128 {
    /// Zero.
    pub const ZERO: F128 = F128::from_bits(0);
    /// Negative zero (&minus;0).
    pub const NEG_ZERO: F128 = F128::from_bits(SIGN_MASK);
    /// One.
    pub const ONE: F128 = F128::from_bits((EXP_BIAS as u128) << (PREC - 1));
    /// Negative one (&minus;1).
    pub const NEG_ONE: F128 = F128::from_bits(SIGN_MASK | F128::ONE.to_bits());
    /// Smallest positive subnormal number.
    pub const MIN_POSITIVE_SUB: F128 = F128::from_bits(1);
    /// Smallest positive normal number.
    pub const MIN_POSITIVE: F128 = F128::from_bits(MANT_MASK + 1);
    /// Largest finite number.
    pub const MAX: F128 = F128::from_bits(EXP_MASK - 1);
    /// Smallest finite number; equal to &minus;[`MAX`][Self::MAX].
    pub const MIN: F128 = F128::from_bits(SIGN_MASK | F128::MAX.to_bits());
    /// Infinity (∞).
    pub const INFINITY: F128 = F128::from_bits(EXP_MASK);
    /// Negative infinity (&minus;∞).
    pub const NEG_INFINITY: F128 = F128::from_bits(SIGN_MASK | EXP_MASK);
    /// NaN.
    pub const NAN: F128 = F128::from_bits(EXP_MASK | (1u128 << (PREC - 2)));

    /// The radix or base of the internal representation.
    pub const RADIX: u32 = 2;
    /// Number of significant digits in base 2.
    pub const MANTISSA_DIGITS: u32 = PREC;

    /// The difference between 1 and the next larger representable number.
    pub const EPSILON: F128 = F128::from_bits(((EXP_BIAS - (PREC - 1)) as u128) << (PREC - 1));
    /// If <i>x</i>&nbsp;=&nbsp;`MIN_EXP`, then normal numbers
    /// ≥&nbsp;0.5&nbsp;×&nbsp;2<sup><i>x</i></sup>.
    pub const MIN_EXP: i32 = 3 - F128::MAX_EXP;
    /// If <i>x</i>&nbsp;=&nbsp;`MAX_EXP`, then normal numbers
    /// <&nbsp;1&nbsp;×&nbsp;2<sup><i>x</i></sup>.
    pub const MAX_EXP: i32 = EXP_BIAS as i32 + 1;

    /// Raw transmutation from [`u128`].
    ///
    /// # Examples
    ///
    /// ```rust
    /// use fixed::F128;
    /// let infinity_bits = 0x7FFF_u128 << 112;
    /// assert!(F128::from_bits(infinity_bits - 1).is_finite());
    /// assert!(!F128::from_bits(infinity_bits).is_finite());
    /// ```
    #[inline]
    pub const fn from_bits(bits: u128) -> F128 {
        F128 { bits }
    }

    /// Raw transmutation to [`u128`].
    ///
    /// # Examples
    ///
    /// ```rust
    /// use fixed::F128;
    /// assert_eq!(F128::ONE.to_bits(), 0x3FFF_u128 << 112);
    /// assert_ne!(F128::ONE.to_bits(), 1u128);
    /// ```
    #[inline]
    pub const fn to_bits(self) -> u128 {
        self.bits
    }

    /// Creates a number from a byte array in big-endian byte order.
    #[inline]
    pub const fn from_be_bytes(bytes: [u8; 16]) -> F128 {
        F128::from_bits(u128::from_be_bytes(bytes))
    }

    /// Creates a number from a byte array in little-endian byte order.
    #[inline]
    pub const fn from_le_bytes(bytes: [u8; 16]) -> F128 {
        F128::from_bits(u128::from_le_bytes(bytes))
    }

    /// Creates a number from a byte array in native-endian byte order.
    #[inline]
    pub const fn from_ne_bytes(bytes: [u8; 16]) -> F128 {
        F128::from_bits(u128::from_ne_bytes(bytes))
    }

    /// Returns the memory representation of the number as a byte array in
    /// big-endian byte order.
    #[inline]
    pub const fn to_be_bytes(self) -> [u8; 16] {
        self.to_bits().to_be_bytes()
    }

    /// Returns the memory representation of the number as a byte array in
    /// little-endian byte order.
    #[inline]
    pub const fn to_le_bytes(self) -> [u8; 16] {
        self.to_bits().to_le_bytes()
    }

    /// Returns the memory representation of the number as a byte array in
    /// native-endian byte order.
    #[inline]
    pub const fn to_ne_bytes(self) -> [u8; 16] {
        self.to_bits().to_ne_bytes()
    }

    /// Returns [`true`] if the number is NaN.
    ///
    /// # Example
    ///
    /// ```rust
    /// use fixed::F128;
    ///
    /// assert!(F128::NAN.is_nan());
    ///
    /// assert!(!F128::ONE.is_nan());
    /// assert!(!F128::INFINITY.is_nan());
    /// assert!(!F128::NEG_INFINITY.is_nan());
    /// ```
    #[inline]
    pub const fn is_nan(self) -> bool {
        (self.to_bits() & !SIGN_MASK) > EXP_MASK
    }

    /// Returns [`true`] if the number is infinite.
    ///
    /// # Example
    ///
    /// ```rust
    /// use fixed::F128;
    ///
    /// assert!(F128::INFINITY.is_infinite());
    /// assert!(F128::NEG_INFINITY.is_infinite());
    ///
    /// assert!(!F128::ONE.is_infinite());
    /// assert!(!F128::NAN.is_infinite());
    /// ```
    #[inline]
    pub const fn is_infinite(self) -> bool {
        (self.to_bits() & !SIGN_MASK) == EXP_MASK
    }

    /// Returns [`true`] if the number is neither infinite nor NaN.
    ///
    /// # Example
    ///
    /// ```rust
    /// use fixed::F128;
    ///
    /// assert!(F128::ONE.is_finite());
    /// assert!(F128::MAX.is_finite());
    ///
    /// assert!(!F128::INFINITY.is_finite());
    /// assert!(!F128::NEG_INFINITY.is_finite());
    /// assert!(!F128::NAN.is_finite());
    /// ```
    #[inline]
    pub const fn is_finite(self) -> bool {
        (self.to_bits() & EXP_MASK) != EXP_MASK
    }

    /// Returns [`true`] if the number is zero.
    ///
    /// # Example
    ///
    /// ```rust
    /// use fixed::F128;
    ///
    /// assert!(F128::ZERO.is_zero());
    /// assert!(F128::NEG_ZERO.is_zero());
    ///
    /// assert!(!F128::MIN_POSITIVE_SUB.is_zero());
    /// assert!(!F128::NAN.is_zero());
    /// ```
    #[inline]
    pub const fn is_zero(self) -> bool {
        (self.to_bits() & !SIGN_MASK) == 0
    }

    /// Returns [`true`] if the number is subnormal.
    ///
    /// # Example
    ///
    /// ```rust
    /// use fixed::F128;
    ///
    /// assert!(F128::MIN_POSITIVE_SUB.is_subnormal());
    ///
    /// assert!(!F128::ZERO.is_subnormal());
    /// assert!(!F128::MIN_POSITIVE.is_subnormal());
    /// ```
    #[inline]
    pub const fn is_subnormal(self) -> bool {
        let abs = self.to_bits() & !SIGN_MASK;
        0 < abs && abs < F128::MIN_POSITIVE.to_bits()
    }

    /// Returns [`true`] if the number is neither zero, infinite, subnormal, or NaN.
    ///
    /// # Example
    ///
    /// ```rust
    /// use fixed::F128;
    ///
    /// assert!(F128::MIN.is_normal());
    /// assert!(F128::MIN_POSITIVE.is_normal());
    /// assert!(F128::MAX.is_normal());
    ///
    /// assert!(!F128::ZERO.is_normal());
    /// assert!(!F128::MIN_POSITIVE_SUB.is_normal());
    /// assert!(!F128::INFINITY.is_normal());
    /// assert!(!F128::NAN.is_normal());
    /// ```
    #[inline]
    pub const fn is_normal(self) -> bool {
        let abs = self.to_bits() & !SIGN_MASK;
        F128::MIN_POSITIVE.to_bits() <= abs && abs <= F128::MAX.to_bits()
    }

    /// Returns the floating point category of the number.
    ///
    /// If only one property is going to be tested, it is generally faster to
    /// use the specific predicate instead.
    ///
    /// # Example
    ///
    /// ```rust
    /// use core::num::FpCategory;
    /// use fixed::F128;
    ///
    /// assert_eq!(F128::ZERO.classify(), FpCategory::Zero);
    /// assert_eq!(F128::MIN_POSITIVE_SUB.classify(), FpCategory::Subnormal);
    /// assert_eq!(F128::MIN_POSITIVE.classify(), FpCategory::Normal);
    /// assert_eq!(F128::INFINITY.classify(), FpCategory::Infinite);
    /// assert_eq!(F128::NAN.classify(), FpCategory::Nan);
    /// ```
    #[inline]
    pub const fn classify(self) -> FpCategory {
        let exp = self.to_bits() & EXP_MASK;
        let mant = self.to_bits() & MANT_MASK;
        if exp == 0 {
            if mant == 0 {
                FpCategory::Zero
            } else {
                FpCategory::Subnormal
            }
        } else if exp == EXP_MASK {
            if mant == 0 {
                FpCategory::Infinite
            } else {
                FpCategory::Nan
            }
        } else {
            FpCategory::Normal
        }
    }

    /// Returns the absolute value of the number.
    ///
    /// The only difference possible between the input value and the returned
    /// value is in the sign bit, which is always cleared in the return value.
    ///
    /// # Example
    ///
    /// ```rust
    /// use fixed::F128;
    ///
    /// // -0 == +0, but -0 bits != +0 bits
    /// assert_eq!(F128::NEG_ZERO, F128::ZERO);
    /// assert_ne!(F128::NEG_ZERO.to_bits(), F128::ZERO.to_bits());
    /// assert_eq!(F128::NEG_ZERO.abs().to_bits(), F128::ZERO.to_bits());
    ///
    /// assert_eq!(F128::NEG_INFINITY.abs(), F128::INFINITY);
    /// assert_eq!(F128::MIN.abs(), F128::MAX);
    ///
    /// assert!(F128::NAN.abs().is_nan());
    /// ```
    #[inline]
    pub const fn abs(self) -> F128 {
        F128::from_bits(self.to_bits() & !SIGN_MASK)
    }

    /// Returns a number that represents the sign of the input value.
    ///
    ///   * 1 if the number is positive, +0, or +∞
    ///   * &minus;1 if the number is negative, &minus;0, or &minus;∞
    ///   * NaN if the number is NaN
    ///
    /// # Example
    ///
    /// ```rust
    /// use fixed::F128;
    ///
    /// assert_eq!(F128::ONE.signum(), F128::ONE);
    /// assert_eq!(F128::INFINITY.signum(), F128::ONE);
    /// assert_eq!(F128::NEG_ZERO.signum(), F128::NEG_ONE);
    /// assert_eq!(F128::MIN.signum(), F128::NEG_ONE);
    ///
    /// assert!(F128::NAN.signum().is_nan());
    /// ```
    #[inline]
    pub const fn signum(self) -> F128 {
        if self.is_nan() {
            self
        } else if self.is_sign_positive() {
            F128::ONE
        } else {
            F128::NEG_ONE
        }
    }

    /// Returns a number composed of the magnitude of `self` and the sign of `sign`.
    ///
    /// # Example
    ///
    /// ```rust
    /// use fixed::F128;
    ///
    /// assert_eq!(F128::ONE.copysign(F128::NEG_ZERO), F128::NEG_ONE);
    /// assert_eq!(F128::ONE.copysign(F128::ZERO), F128::ONE);
    /// assert_eq!(F128::NEG_ONE.copysign(F128::NEG_INFINITY), F128::NEG_ONE);
    /// assert_eq!(F128::NEG_ONE.copysign(F128::INFINITY), F128::ONE);
    ///
    /// assert!(F128::NAN.copysign(F128::ONE).is_nan());
    /// assert!(F128::NAN.copysign(F128::ONE).is_sign_positive());
    /// assert!(F128::NAN.copysign(F128::NEG_ONE).is_sign_negative());
    /// ```
    #[inline]
    pub const fn copysign(self, sign: F128) -> F128 {
        F128::from_bits((self.to_bits() & !SIGN_MASK) | (sign.to_bits() & SIGN_MASK))
    }

    /// Returns [`true`] if the number has a positive sign, including +0, +∞,
    /// and NaN without a negative sign bit.
    ///
    /// # Example
    ///
    /// ```rust
    /// use fixed::F128;
    ///
    /// assert!(F128::ZERO.is_sign_positive());
    /// assert!(F128::MAX.is_sign_positive());
    /// assert!(F128::INFINITY.is_sign_positive());
    ///
    /// assert!(!F128::NEG_ZERO.is_sign_positive());
    /// assert!(!F128::MIN.is_sign_positive());
    /// assert!(!F128::NEG_INFINITY.is_sign_positive());
    /// ```
    #[inline]
    pub const fn is_sign_positive(self) -> bool {
        (self.to_bits() & SIGN_MASK) == 0
    }

    /// Returns [`true`] if the number has a negative sign, including &minus;0,
    /// &minus;∞, and NaN with a negative sign bit.
    ///
    /// # Example
    ///
    /// ```rust
    /// use fixed::F128;
    ///
    /// assert!(F128::NEG_ZERO.is_sign_negative());
    /// assert!(F128::MIN.is_sign_negative());
    /// assert!(F128::NEG_INFINITY.is_sign_negative());
    ///
    /// assert!(!F128::ZERO.is_sign_negative());
    /// assert!(!F128::MAX.is_sign_negative());
    /// assert!(!F128::INFINITY.is_sign_negative());
    /// ```
    #[inline]
    pub const fn is_sign_negative(self) -> bool {
        (self.to_bits() & SIGN_MASK) != 0
    }

    /// Returns the ordering between `self` and `other`.
    ///
    /// Unlike the [`PartialOrd`] implementation, this method always returns an
    /// order in the following sequence:
    ///
    ///   * NaN with the sign bit set
    ///   * &minus;∞
    ///   * negative normal numbers
    ///   * negative subnormal numbers
    ///   * &minus;0
    ///   * +0
    ///   * positive subnormal numbers
    ///   * positive normal numbers
    ///   * +∞
    ///   * NaN with the sign bit cleared
    ///
    /// # Example
    ///
    /// ```rust
    /// use core::cmp::Ordering;
    /// use fixed::F128;
    ///
    /// let neg_nan = F128::NAN.copysign(F128::NEG_ONE);
    /// let pos_nan = F128::NAN.copysign(F128::ONE);
    /// let neg_inf = F128::NEG_INFINITY;
    /// let pos_inf = F128::INFINITY;
    /// let neg_zero = F128::NEG_ZERO;
    /// let pos_zero = F128::ZERO;
    ///
    /// assert_eq!(neg_nan.total_cmp(&neg_inf), Ordering::Less);
    /// assert_eq!(pos_nan.total_cmp(&pos_inf), Ordering::Greater);
    /// assert_eq!(neg_zero.total_cmp(&pos_zero), Ordering::Less);
    /// ```
    #[inline]
    pub const fn total_cmp(&self, other: &F128) -> Ordering {
        let a = self.to_bits();
        let b = other.to_bits();
        match (self.is_sign_negative(), other.is_sign_negative()) {
            (false, false) => cmp_bits(a, b),
            (true, true) => cmp_bits(b, a),
            (false, true) => Ordering::Greater,
            (true, false) => Ordering::Less,
        }
    }
}

const fn cmp_bits(a: u128, b: u128) -> Ordering {
    if a < b {
        Ordering::Less
    } else if a > b {
        Ordering::Greater
    } else {
        Ordering::Equal
    }
}

impl PartialEq for F128 {
    #[inline]
    fn eq(&self, other: &F128) -> bool {
        if self.is_nan() || other.is_nan() {
            return false;
        }
        let a = self.to_bits();
        let b = other.to_bits();
        // handle zero
        if ((a | b) & !SIGN_MASK) == 0 {
            return true;
        }
        a == b
    }
}

impl PartialOrd for F128 {
    #[inline]
    fn partial_cmp(&self, other: &F128) -> Option<Ordering> {
        if self.is_nan() || other.is_nan() {
            return None;
        }
        let a = self.to_bits();
        let b = other.to_bits();
        // handle zero
        if ((a | b) & !SIGN_MASK) == 0 {
            return Some(Ordering::Equal);
        }
        match (self.is_sign_negative(), other.is_sign_negative()) {
            (false, false) => a.partial_cmp(&b),
            (true, true) => b.partial_cmp(&a),
            (false, true) => Some(Ordering::Greater),
            (true, false) => Some(Ordering::Less),
        }
    }
}

impl Hash for F128 {
    #[inline]
    fn hash<H>(&self, state: &mut H)
    where
        H: Hasher,
    {
        let mut bits = self.to_bits();
        if bits == F128::NEG_ZERO.to_bits() {
            bits = 0;
        }
        bits.hash(state);
    }
}

impl Neg for F128 {
    type Output = F128;
    #[inline]
    fn neg(self) -> F128 {
        F128::from_bits(self.to_bits() ^ SIGN_MASK)
    }
}