1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
//! fix-rat is a rational number with the denominator chosen at compile time.
//!
//! It has a fixed valid range.
//!
//!     # use fix_rat::Rational;
//!     type R = Rational<{ i64::MAX / 64}>;
//!
//!     let a: R = 60.into();
//!     let b: R = 5.0.into();
//!     let c = a.wrapping_add(b);
//!
//!     let c = c.to_i64();
//!     assert_eq!(c, -63);
//!
//! # Intended Use-Cases
//!
//! It is meant to replace regular floating point numbers
//!     (f64/f32)
//! in the following cases:
//!
//! 1. Requiring reliable precision,
//!     for example for handling money.
//! If you have a requirement like
//!     "x decimal/binary places after the dot"
//! then this crate might be for you.
//!
//! 2. Requiring "deterministic"
//!     (actually commutative and associative)
//! behaviour for multithreading.
//! If you want to apply updates to a value and
//! the result should be the same no matter in what order the updates were applied then
//! this crate might be for you.
//!
//! 3. Better precision if plausible value range is known.
//! Floating point numbers are multi-scalar,
//!     they can represent extremely small and extremely big numbers.
//! If your calculations stay within a known interval,
//!     for example [-1, 1],
//! fixed-rat might be able to provide better precision and performance.
//!
//! 4. todo: low precision and high performance requirements:
//! Floating point numbers only come in two variants,
//! f32 and f64, using 32 and 64 bits respectively.
//! If you do not require that much precision,
//!     if 16 or even 8 bits are enough for your usecase
//! you can store more numbers in the same space.
//!     Due to lower memory bandwidth and availability of SIMD-instructions
//! this can lead to close to a 2x or 4x respectively speed up of affected pieces of code.
//!
//! # Gotchas (tips&tricks)
//! For reliable precision:
//!     remember that you are still loosing precision on every operation,
//!     there is no way around this except bigints.
//!
//! Unlike floats Rationals have a valid range and it is easy to over/underflow it.
//! It might be advisable to choose the representable range slightly larger.
//!
//! Using rationals does not automatically make multithreaded code deterministic.
//! The determinism loss with floating point numbers happens when
//!     a calculation changes the scale (exponent) of the number.
//! Rationals are always on the same scale but you now have to deal with range overflows.
//!
//! The easiest behaviour is to use wrapping\_op.
//! It always succeeds and can be executed in any order with any values without loosing determinism.
//! This might not be sensible behaviour for your use-case though.
//!
//! The second-easiest is to use is checked\_op with unwrap.
//! This is probably fine if you have a base value that is only changed in small increments.
//! Choose a slightly bigger representable range and do the overflow handling in synchronous code,
//!     for example by clamping to the valid range
//!         (which is smaller than the representable range).
//!
//! You can not,
//!     at least not naively,
//! actually check the checked\_op,
//!     as that would generally lead to behaviour differences on different execution orders.
//! Correctly doing this is the hardest option,
//!     but might be required for correctness.
//!
//! Using saturating\_op can be perfectly valid,
//!     but you need to be careful that the value can only be pushed into one direction
//!         (either towards max or towards min).
//! Otherwise different execution orders lead to different results.
//! Reminder that adding negative values is also subtraction!
//!
//! Assuming [-10,10]:
//!     `9 + 2 = 10, 10 - 1 =  9`
//! but
//!     `9 - 1 =  8,  8 + 2 = 10`
//! 9 != 10.
//!
//! Moving through different scales,
//!     mainly by multiplying/dividing
//! costs more precision than you might be used from floating point numbers.
//! For example diving by 2 costs no precision in floating point numbers,
//!     it simply decreases the exponent by one.
//! In rationals it costs one bit of precsion.
//! Remember that rationals start out with 63 bits though,
//! while f64 only has 53.
//!
//! # Implementation
//! This is a super simple wrapper around an integer,
//! basically all operations are passed straight through.
//! So an addition of two rationals is really just a simple integer addition.
//!
//! Converting an integer/float to a rational simply multiplies it by the chosen DENOM,
//! rational to integer/float divides.
//!
//! The code is very simple.
//! The main value of this crate is the tips&tricks and ease of use.
//!
//! # todos/notes
//! Currently being generic over intergers is a bit.. annoying. Being generic over intergers while
//! also taking a value of that type as a const generic is.. currently not typechecking. so
//! supporting usecase 4 would need some macroing (i&u 8,16,32,64). For now its just always i64.
//!
//! I should probably provide some atomic operations for comfort, at least add&sub.
//! Even though they are simply identical to just adding/subbing on the converted atomic.
//!
//! Currently there is no rat-rat interaction with different denominatiors.
//! That could be improved,
//! but might need to wait for better const generics.
//!
//! # nightly
//! This crate very much inherently relies on const generics (min\_const\_generics).

#![no_std]
#![feature(min_const_generics)]
#![cfg(feature = "nightly")]
#![allow(incomplete_features)]
#![cfg(feature = "nightly")]

#[cfg(feature = "nightly")]
pub use nightly::Rational;

#[cfg(feature = "nightly")]
/// Can store -10 to 10 with a bit of wiggle room.
pub type TenRat = Rational<{ i64::MAX / 16 }>;

#[cfg(feature = "nightly")]
/// Can store -100 to 100 with a bit of wiggle room.
pub type HundRat = Rational<{ i64::MAX / 128 }>;

mod nightly {
    #[cfg(feature = "serde1")]
    use serde as sd;
    /// A ratonal number with a fixed denominator,
    /// therefore `size_of<Rational>() == size_of<i64>()`.
    ///
    /// Plus operations have more intuitive valid ranges
    ///
    /// If you want to represent numbers in range `-x` to `x`
    /// choose DENOM as `i64::MAX / x`.
    ///
    /// [Rational] then subdivides the whole range into i64::MAX equally-sized parts.
    /// Smaller operations are lost,
    /// going outside the range overflows.
    ///
    /// DENOM needs to be positive or you will enter the bizarro universe.
    ///
    /// I would strongly recommend to choose DENOM as `1 << x` for x in 0..63.
    ///
    /// The regular operations (+,-, *, /) behave just like on a regular integer,
    ///     panic on overflow in debug mode,
    ///     wrapping in release mode.
    /// Use the wrapping_op, checked_op or saturating_op methods
    ///     to explicitly chose a behaviour.
    #[derive(Default, Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord)]
    #[repr(transparent)]
    #[cfg_attr(feature = "serde1", derive(sd::Serialize, sd::Deserialize))]
    pub struct Rational<const DENOM: i64> {
        numer: i64,
    }
    impl<const DENOM: i64> Rational<DENOM> {
        /// Returns the underlying integer type,
        /// for example for storing in an atomic number.
        ///
        /// This should compile to a no-op.
        pub fn to_storage(self) -> i64 {
            self.numer
        }
        /// Builds from the underlying integer type,
        /// for example after retrieving from an atomic number.
        ///
        /// This should compile to a no-op.
        ///
        /// Use [from_int](Self::from_int) if you have an integer that you want to convert to a rational.
        pub fn from_storage(storage: i64) -> Self {
            Self { numer: storage }
        }

        /// Converts an integer to a Rational.
        pub fn from_int(i: i64) -> Self {
            Self { numer: i * DENOM }
        }
        /// Since rational numbers can not represent inf, nan and other fuckery,
        /// this returns None if the input is wrong.
        ///
        /// This will loose precision,
        /// try to only convert at the start and end of your calculation.
        pub fn aprox_float_fast(f: f64) -> Option<Self> {
            use core::num::FpCategory as Cat;
            if let Cat::Subnormal | Cat::Normal | Cat::Zero = f.classify() {
            } else {
                return None;
            }

            // this is really not very accurate
            // as the expansion step kills a lot of accuracy the float might have had
            // (denom is really big, int_max/representable_range)
            let expanded = f * (DENOM as f64);
            Some(Self {
                numer: expanded as i64,
            })
        }

        /// Assumes denom to be a power of two.
        /// kind of experimental.
        #[doc(hidden)]
        pub fn aprox_float(f: f64) -> Option<Self> {
            use core::num::FpCategory as Cat;
            match f.classify() {
                //fixme: im reasonably sure that subnormal needs to be handled different
                //(implicit 1 or something along those lines)
                Cat::Subnormal | Cat::Normal => {}
                Cat::Zero => return Self::from(0).into(),
                _ => return None,
            }
            use num_traits::float::FloatCore;
            let (mant, f_exp, sign) = f.integer_decode();
            //exp is << or >> on the mant depending on sign
            let d_exp = 64 - (DENOM as u64).leading_zeros();
            //let rest = DENOM - (1 << d_exp);

            let exp = f_exp + (d_exp as i16);
            let neg = exp.is_negative();
            let exp = exp.abs() as u32;
            let numer = if !neg {
                // make sure we have enough headroom
                // cheked_shl/r does not! do this check
                if mant.leading_zeros() < exp {
                    return None;
                }
                mant << exp
            } else {
                // not checking for "bottom"-room here as we are
                // "just" loosing precision, not orders of magnitude
                mant >> exp
            };
            let numer = numer as i64;
            let numer = if sign.is_negative() { -numer } else { numer };
            // fixme: do something about the rest??
            // hm, or just allow 1<<x as denom, sounds senible too
            Self { numer }.into()
        }

        /// This will loose precision,
        /// try to only convert at the start and end of your calculation.
        pub fn to_f64(self) -> f64 {
            //todo: can i do a *thing* with this to get some more precision?
            //(i.e. bitbang the float?)
            self.numer as f64 / DENOM as f64
        }

        /// this will integer-round, potentially loosing a lot of precision.
        pub fn to_i64(self) -> i64 {
            self.numer / DENOM
        }

        pub fn clamp(self, low: Self, high: Self) -> Self {
            self.max(low).min(high)
        }
        /// The maximum representable number.
        ///
        /// Note that unlike floats rationals do not have pos/neg inf.
        pub const fn max() -> Self {
            Self { numer: i64::MAX }
        }
        /// The minimum representable number.
        ///
        /// Note that unlike floats rationals do not have pos/neg inf.
        pub const fn min() -> Self {
            Self { numer: i64::MIN }
        }

        pub fn checked_add(self, other: Self) -> Option<Self> {
            Self {
                numer: self.numer.checked_add(other.numer)?,
            }
            .into()
        }
        pub fn checked_mul(self, other: Self) -> Option<Self> {
            Self {
                numer: self.numer.checked_mul(other.numer)?,
            }
            .into()
        }
        pub fn checked_sub(self, other: Self) -> Option<Self> {
            Self {
                numer: self.numer.checked_sub(other.numer)?,
            }
            .into()
        }
        pub fn checked_div(self, other: Self) -> Option<Self> {
            Self {
                numer: self.numer.checked_div(other.numer)?,
            }
            .into()
        }

        pub fn wrapping_add(self, other: Self) -> Self {
            Self {
                numer: self.numer.wrapping_add(other.numer),
            }
        }
        pub fn wrapping_mul(self, other: Self) -> Self {
            Self {
                numer: self.numer.wrapping_mul(other.numer),
            }
        }
        pub fn wrapping_sub(self, other: Self) -> Self {
            Self {
                numer: self.numer.wrapping_sub(other.numer),
            }
        }
        pub fn wrapping_div(self, other: Self) -> Self {
            Self {
                numer: self.numer.wrapping_div(other.numer),
            }
        }

        /// Don't use this in parallel code if other parallel code is also subtracting,
        /// otherwise you loose determinism.
        ///
        /// ```
        /// use fix_rat::Rational;
        /// let max = Rational::<{1024}>::max();
        /// let one = Rational::<{1024}>::from_int(1);
        /// assert_ne!(max.saturating_add(one)-max, (max-max).saturating_add(one));
        /// ```
        pub fn saturating_add(self, other: Self) -> Self {
            Self {
                numer: self.numer.saturating_add(other.numer),
            }
        }
        pub fn saturating_mul(self, other: Self) -> Self {
            Self {
                numer: self.numer.saturating_mul(other.numer),
            }
        }
        pub fn saturating_sub(self, other: Self) -> Self {
            Self {
                numer: self.numer.saturating_sub(other.numer),
            }
        }
    }

    impl<const DENOM: i64> From<f64> for Rational<DENOM> {
        fn from(o: f64) -> Self {
            // apparently _fast is not less precise than "regular" so using that for now
            // might change at a moments notice though
            Self::aprox_float_fast(o).unwrap()
        }
    }
    impl<const DENOM: i64> From<i64> for Rational<DENOM> {
        fn from(o: i64) -> Self {
            Self::from_int(o)
        }
    }
    impl<const DENOM: i64> core::ops::Add for Rational<DENOM> {
        type Output = Self;
        fn add(self, other: Self) -> Self {
            Self {
                numer: self.numer + other.numer,
            }
        }
    }
    impl<const DENOM: i64> core::ops::Sub for Rational<DENOM> {
        type Output = Self;
        fn sub(self, other: Self) -> Self {
            Self {
                numer: self.numer - other.numer,
            }
        }
    }
    impl<const DENOM: i64> core::ops::Mul<i64> for Rational<DENOM> {
        type Output = Self;
        fn mul(self, other: i64) -> Self {
            Self {
                numer: self.numer * other,
            }
        }
    }
    impl<const DENOM: i64> core::ops::Div<i64> for Rational<DENOM> {
        type Output = Self;
        fn div(self, other: i64) -> Self {
            Self {
                numer: self.numer / other,
            }
        }
    }

    impl<const DENOM: i64> core::iter::Sum for Rational<DENOM> {
        fn sum<I>(i: I) -> Self
        where
            I: Iterator<Item = Self>,
        {
            i.fold(Self::from(0), |sum, new| sum + new)
        }
    }

    // well guess no mul/div then
    /*
    impl<const DENOMS: i64, const DENOMO: i64> core::ops::Mul<Rational<DENOMO>> for Rational<DENOMS> {
        type Output = Rational<{ DENOMS * DENOMO }>;
        fn mul(self, other: Self) -> Self {
            Self::Output {
                numer: self.numer * other.numer,
            }
        }
    }
    */
}
#[test]
fn converts() {
    let _tenrat: TenRat = 0.0.into();
    let _tenrat: TenRat = 1.0.into();
    let _tenrat: TenRat = (-1.0).into();
    let _tenrat: TenRat = 10.0.into();
    let _tenrat: TenRat = (-10.0).into();
}

#[test]
fn precision() {
    type R = Rational<{ i64::MAX / (1 << 10) }>;
    extern crate std;
    use std::dbg;
    let f = 640.132143234189097_f64;
    let r: R = nightly::Rational::aprox_float(f).unwrap();
    let r2: R = nightly::Rational::aprox_float_fast(f).unwrap();
    let rf = r.to_f64();
    // ok so turns out that the fast conversion is actually not worse.
    // i guess multiplying/diving by 2potn is kinda what floats are good at
    let rl = r2.to_f64();

    let absdiff = (f - rf).abs();
    dbg!(f, r, r2, rf, rl, absdiff);
    assert!(absdiff < 1e20);
}

#[test]
fn displaytest() {
    let tenrat: TenRat = (-10.0).into();
    extern crate std;
    use std::println;
    println!("{:#?}", tenrat);
}

#[cfg(feature = "serde1")]
#[test]
fn serde_test() {
    let r: TenRat = 3.0.into();
    use bincode;
    let s = bincode::serialize(&r).unwrap();
    let d = bincode::deserialize(&s).unwrap();
    assert_eq!(r, d);
}