1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
//! # `findshlibs`
//!
//! Find the set of shared libraries currently loaded in this process with a
//! cross platform API.
//!
//! The API entry point is the `TargetSharedLibrary` type and its
//! `SharedLibrary::each` trait method implementation.
//!
//! ## Example
//!
//! Here is an example program that prints out each shared library that is
//! loaded in the process and the addresses where each of its segments are
//! mapped into memory.
//!
//! ```
//! extern crate findshlibs;
//! use findshlibs::{Segment, SharedLibrary, TargetSharedLibrary};
//!
//! fn main() {
//!     TargetSharedLibrary::each(|shlib| {
//!         println!("{}", shlib.name().to_string_lossy());
//!
//!         for seg in shlib.segments() {
//!             println!("    {}: segment {}",
//!                      seg.actual_virtual_memory_address(shlib),
//!                      seg.name());
//!         }
//!     });
//! }
//! ```
//!
//! ## Supported OSes
//!
//! These are the OSes that `findshlibs` currently supports:
//!
//! * Linux
//! * macOS
//! * Windows
//! * Android
//! * iOS
//!
//! If a platform is not supported then a fallback implementation is used that
//! does nothing.  To see if your platform does something at runtime the
//! `TARGET_SUPPORTED` constant can be used.
//!
//! Is your OS missing here? Send us a pull request!
//!
//! ## Addresses
//!
//! Shared libraries' addresses can be confusing. They are loaded somewhere in
//! physical memory, but we generally don't care about physical memory
//! addresses, because only the OS can see that address and in userspace we can
//! only access memory through its virtual memory address. But even "virtual
//! memory address" is ambiguous because it isn't clear whether this is the
//! address before or after the loader maps the shared library into memory and
//! performs relocation.
//!
//! To clarify between these different kinds of addresses, we borrow some
//! terminology from [LUL][]:
//!
//! > * **SVMA** ("Stated Virtual Memory Address"): this is an address of a
//! >   symbol (etc) as it is stated in the symbol table, or other
//! >   metadata, of an object.  Such values are typically small and
//! >   start from zero or thereabouts, unless the object has been
//! >   prelinked.
//! >
//! > * **AVMA** ("Actual Virtual Memory Address"): this is the address of a
//! >   symbol (etc) in a running process, that is, once the associated
//! >   object has been mapped into a process.  Such values are typically
//! >   much larger than SVMAs, since objects can get mapped arbitrarily
//! >   far along the address space.
//! >
//! > * **"Bias"**: the difference between AVMA and SVMA for a given symbol
//! >   (specifically, AVMA - SVMA).  The bias is always an integral
//! >   number of pages.  Once we know the bias for a given object's
//! >   text section (for example), we can compute the AVMAs of all of
//! >   its text symbols by adding the bias to their SVMAs.
//!
//! [LUL]: https://searchfox.org/mozilla-central/rev/13148faaa91a1c823a7d68563d9995480e714979/tools/profiler/lul/LulMain.h#17-51
//!
//! ## Names and IDs
//!
//! `findshlibs` also gives access to module names and IDs.  Since this is also
//! not consistent across operating systems the following general rules apply:
//!
//! > * `id` refers to the ID of the object file itself.  This is generally
//! >   available on all platforms however it might still not be compiled into
//! >   the binary in all case.  For instance on Linux the `gnu.build-id` note
//! >   needs to be compiled in (which Rust does automatically).
//! > * `debug_id` refers to the ID of the debug file.  This only plays a role
//! >   on Windows where the executable and the debug file (PDB) have a different
//! >   ID.
//! > * `name` is the name of the executable.  On most operating systems (and
//! >   all systems implemented currently) this is not just the name but in fact
//! >   the entire path to the executable.
//! > * `debug_name` is the name of the debug file if known.  This is again
//! >   the case on windows where this will be the path to the PDB file.
#![deny(missing_docs)]

#[cfg(any(target_os = "macos", target_os = "ios"))]
pub mod macos;

#[cfg(any(
    target_os = "linux",
    all(target_os = "android", feature = "dl_iterate_phdr")
))]
pub mod linux;

#[cfg(target_os = "windows")]
pub mod windows;

use std::ffi::OsStr;
use std::fmt::{self, Debug};
use std::usize;

pub mod unsupported;

#[cfg(any(
    target_os = "linux",
    all(target_os = "android", feature = "dl_iterate_phdr")
))]
use crate::linux as native_mod;

#[cfg(any(target_os = "macos", target_os = "ios"))]
use crate::macos as native_mod;

#[cfg(target_os = "windows")]
use crate::windows as native_mod;

#[cfg(not(any(
    target_os = "macos",
    target_os = "ios",
    target_os = "linux",
    all(target_os = "android", feature = "dl_iterate_phdr"),
    target_os = "windows"
)))]
use unsupported as native_mod;

/// The [`SharedLibrary` trait](./trait.SharedLibrary.html)
/// implementation for the target operating system.
pub type TargetSharedLibrary<'a> = native_mod::SharedLibrary<'a>;

/// An indicator if this platform is supported.
pub const TARGET_SUPPORTED: bool = cfg!(any(
    target_os = "macos",
    target_os = "ios",
    target_os = "linux",
    all(target_os = "android", feature = "dl_iterate_phdr"),
    target_os = "windows"
));

macro_rules! simple_newtypes {
    (
        $(
            $(#[$attr:meta])*
            type $name:ident = $oldty:ty
            where
                default = $default:expr ,
                display = $format:expr ;
        )*
    ) => {
        $(
            $(#[$attr])*
            #[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
            pub struct $name(pub $oldty);

            impl Default for $name {
                #[inline]
                fn default() -> Self {
                    $name( $default )
                }
            }

            impl From<$oldty> for $name {
                fn from(x: $oldty) -> $name {
                    $name(x)
                }
            }

            impl From<$name> for $oldty {
                fn from($name(x): $name) -> $oldty {
                    x
                }
            }

            impl fmt::Display for $name {
                fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
                    write!(f, $format, self.0)
                }
            }
        )*
    }
}

simple_newtypes! {
    /// Stated virtual memory address.
    ///
    /// See the module documentation for details.
    type Svma = usize
    where
        default = 0,
        display = "{:#x}";

    /// Actual virtual memory address.
    ///
    /// See the module documentation for details.
    type Avma = usize
    where
        default = 0,
        display = "{:#x}";

    /// Virtual memory bias.
    ///
    /// See the module documentation for details.
    type Bias = usize
    where
        default = 0,
        display = "{:#x}";
}

/// A mapped segment in a shared library.
#[allow(clippy::len_without_is_empty)]
pub trait Segment: Sized + Debug {
    /// The associated shared library type for this segment.
    type SharedLibrary: SharedLibrary<Segment = Self>;

    /// Get this segment's name.
    fn name(&self) -> &str;

    /// Returns `true` if this is a code segment.
    #[inline]
    fn is_code(&self) -> bool {
        false
    }

    /// Returns `true` if this is a segment loaded into memory.
    #[inline]
    fn is_load(&self) -> bool {
        self.is_code()
    }

    /// Get this segment's stated virtual address of this segment.
    ///
    /// This is the virtual memory address without the bias applied. See the
    /// module documentation for details.
    fn stated_virtual_memory_address(&self) -> Svma;

    /// Get the length of this segment in memory (in bytes).
    fn len(&self) -> usize;

    // Provided methods.

    /// Get this segment's actual virtual memory address.
    ///
    /// This is the virtual memory address with the bias applied. See the module
    /// documentation for details.
    #[inline]
    fn actual_virtual_memory_address(&self, shlib: &Self::SharedLibrary) -> Avma {
        let svma = self.stated_virtual_memory_address();
        let bias = shlib.virtual_memory_bias();
        Avma(svma.0 + bias.0)
    }

    /// Does this segment contain the given address?
    #[inline]
    fn contains_svma(&self, address: Svma) -> bool {
        let start = self.stated_virtual_memory_address().0;
        let end = start + self.len();
        let address = address.0;
        start <= address && address < end
    }

    /// Does this segment contain the given address?
    #[inline]
    fn contains_avma(&self, shlib: &Self::SharedLibrary, address: Avma) -> bool {
        let start = self.actual_virtual_memory_address(shlib).0;
        let end = start + self.len();
        let address = address.0;
        start <= address && address < end
    }
}

/// Represents an ID for a shared library.
#[derive(PartialEq, Eq, Hash)]
pub enum SharedLibraryId {
    /// A UUID (used on mac)
    Uuid([u8; 16]),
    /// A GNU build ID
    GnuBuildId(Vec<u8>),
    /// The PE timestamp and size
    PeSignature(u32, u32),
    /// A PDB GUID and age,
    PdbSignature([u8; 16], u32),
}

impl SharedLibraryId {
    /// Returns the raw bytes of the shared library ID.
    pub fn as_bytes(&self) -> &[u8] {
        match *self {
            SharedLibraryId::Uuid(ref bytes) => &*bytes,
            SharedLibraryId::GnuBuildId(ref bytes) => bytes,
            SharedLibraryId::PeSignature(_, _) => &[][..],
            SharedLibraryId::PdbSignature(ref bytes, _) => &*bytes,
        }
    }
}

impl fmt::Display for SharedLibraryId {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match *self {
            SharedLibraryId::Uuid(ref bytes) => {
                for (idx, byte) in bytes.iter().enumerate() {
                    if idx == 4 || idx == 6 || idx == 8 || idx == 10 {
                        write!(f, "-")?;
                    }
                    write!(f, "{:02x}", byte)?;
                }
            }
            SharedLibraryId::GnuBuildId(ref bytes) => {
                for byte in bytes {
                    write!(f, "{:02x}", byte)?;
                }
            }
            SharedLibraryId::PeSignature(timestamp, size_of_image) => {
                write!(f, "{:08X}{:x}", timestamp, size_of_image)?;
            }
            SharedLibraryId::PdbSignature(ref bytes, age) => {
                for (idx, byte) in bytes.iter().enumerate() {
                    if idx == 4 || idx == 6 || idx == 8 || idx == 10 {
                        write!(f, "-")?;
                    }
                    write!(f, "{:02X}", byte)?;
                }
                write!(f, "{:x}", age)?;
            }
        }
        Ok(())
    }
}

impl fmt::Debug for SharedLibraryId {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let name = match *self {
            SharedLibraryId::Uuid(..) => "Uuid",
            SharedLibraryId::GnuBuildId(..) => "GnuBuildId",
            SharedLibraryId::PeSignature(..) => "PeSignature",
            SharedLibraryId::PdbSignature(..) => "PdbSignature",
        };
        write!(f, "{}(\"{}\")", name, self)
    }
}

/// A trait representing a shared library that is loaded in this process.
#[allow(clippy::len_without_is_empty)]
pub trait SharedLibrary: Sized + Debug {
    /// The associated segment type for this shared library.
    type Segment: Segment<SharedLibrary = Self>;

    /// An iterator over a shared library's segments.
    type SegmentIter: Debug + Iterator<Item = Self::Segment>;

    /// Get the name of this shared library.
    fn name(&self) -> &OsStr;

    /// Get the name of the debug file with this shared library if there is one.
    fn debug_name(&self) -> Option<&OsStr> {
        None
    }

    /// Get the code-id of this shared library if available.
    fn id(&self) -> Option<SharedLibraryId>;

    /// Get the debug-id of this shared library if available.
    fn debug_id(&self) -> Option<SharedLibraryId> {
        self.id()
    }

    /// Returns the address of where the library is loaded into virtual
    /// memory.
    ///
    /// This address maps to the `Avma` of the first segment loaded into
    /// memory. Depending on the platform, this segment may not contain code.
    fn actual_load_addr(&self) -> Avma {
        self.segments()
            .find(|x| x.is_load())
            .map(|x| x.actual_virtual_memory_address(self))
            .unwrap_or(Avma(usize::MAX))
    }

    #[inline]
    #[doc(hidden)]
    #[deprecated(note = "use stated_load_address() instead")]
    fn load_addr(&self) -> Svma {
        self.stated_load_addr()
    }

    /// Returns the address of where the library prefers to be loaded into
    /// virtual memory.
    ///
    /// This address maps to the `Svma` of the first segment loaded into
    /// memory. Depending on the platform, this segment may not contain code.
    fn stated_load_addr(&self) -> Svma {
        self.segments()
            .find(|x| x.is_load())
            .map(|x| x.stated_virtual_memory_address())
            .unwrap_or(Svma(usize::MAX))
    }

    /// Returns the size of the image.
    ///
    /// This typically is the size of the executable code segment.  This is
    /// normally used by server side symbolication systems to determine when
    /// an IP no longer falls into an image.
    fn len(&self) -> usize {
        let end_address = self
            .segments()
            .filter(|x| x.is_load())
            .map(|x| x.actual_virtual_memory_address(self).0 + x.len())
            .max()
            .unwrap_or(usize::MAX);

        end_address - self.actual_load_addr().0
    }

    /// Iterate over this shared library's segments.
    fn segments(&self) -> Self::SegmentIter;

    /// Get the bias of this shared library.
    ///
    /// See the module documentation for details.
    fn virtual_memory_bias(&self) -> Bias;

    /// Given an AVMA within this shared library, convert it back to an SVMA by
    /// removing this shared library's bias.
    #[inline]
    fn avma_to_svma(&self, address: Avma) -> Svma {
        let bias = self.virtual_memory_bias();
        Svma(address.0 - bias.0)
    }

    /// Find all shared libraries in this process and invoke `f` with each one.
    fn each<F, C>(f: F)
    where
        F: FnMut(&Self) -> C,
        C: Into<IterationControl>;
}

/// Control whether iteration over shared libraries should continue or stop.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum IterationControl {
    /// Stop iteration.
    Break,
    /// Continue iteration.
    Continue,
}

impl From<()> for IterationControl {
    #[inline]
    fn from(_: ()) -> Self {
        IterationControl::Continue
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn panic_in_each() {
        use std::panic;

        match panic::catch_unwind(|| {
            TargetSharedLibrary::each(|_| panic!("uh oh"));
        }) {
            Ok(()) => panic!("Expected a panic, but didn't get one"),
            Err(any) => {
                assert!(
                    any.is::<&'static str>(),
                    "panic value should be a &'static str"
                );
                assert_eq!(*any.downcast_ref::<&'static str>().unwrap(), "uh oh");
            }
        }
    }

    #[test]
    fn test_load_address_bias() {
        TargetSharedLibrary::each(|lib| {
            let svma = lib.stated_load_addr();
            let avma = lib.actual_load_addr();
            assert_eq!(lib.avma_to_svma(avma), svma);
        });
    }
}