1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
// Copyright (c) 2016 DWANGO Co., Ltd. All Rights Reserved.
// See the LICENSE file at the top-level directory of this distribution.

//! Oneshot communication channels between two peers.
//!
//! # Note
//!
//! Unlike `fibers::net` module, the structures in this module
//! can be used on both inside and outside of a fiber.
//!
//! # Implementation Details
//!
//! The channels provided in this module are specializations of
//! the asynchronous channel in the `fibers::sync::mpsc` module.
//!
//! The former essentially have the same semantics as the latter.
//! But those are useful to clarify the intention of programmers.
use futures::{Async, Future, Poll};
use nbchan;
use std::error;
use std::fmt;
use std::sync::mpsc::{RecvError, SendError};

use super::Notifier;

/// Creates a new asynchronous oneshot channel, returning the sender/receiver halves.
///
/// # Examples
///
/// ```
/// # extern crate fibers;
/// # extern crate futures;
/// use fibers::{Executor, InPlaceExecutor, Spawn};
/// use fibers::sync::oneshot;
/// use futures::Future;
///
/// # fn main () {
/// let mut executor = InPlaceExecutor::new().unwrap();
/// let (tx0, rx0) = oneshot::channel();
/// let (tx1, rx1) = oneshot::channel();
///
/// // Spanws receiver
/// let mut monitor = executor.spawn_monitor(rx0.and_then(move |v| {
///     assert_eq!(v, "first value");
///     rx1
/// })
/// .and_then(|v| {
///     assert_eq!(v, "second value");
///     Ok(())
/// }));
///
/// // Spawns sender for `tx1`
/// executor.spawn_fn(move || {
///     tx1.send("second value").unwrap();
///     Ok(())
/// });
///
/// // It is allowed to send messages from the outside of a fiber.
/// // (The same is true of receiving)
/// tx0.send("first value").unwrap();
///
/// // Runs `executor` until the receiver exits (i.e., channel is disconnected)
/// while monitor.poll().unwrap().is_not_ready() {
///     executor.run_once().unwrap();
/// }
/// # }
/// ```
pub fn channel<T>() -> (Sender<T>, Receiver<T>) {
    let notifier = Notifier::new();
    let (tx, rx) = nbchan::oneshot::channel();
    (
        Sender {
            inner: Some(tx),
            notifier: notifier.clone(),
        },
        Receiver {
            inner: rx,
            notifier,
        },
    )
}

/// The sending-half of an asynchronous oneshot channel.
///
/// This structure can be used on both inside and outside of a fiber.
pub struct Sender<T> {
    inner: Option<nbchan::oneshot::Sender<T>>,
    notifier: Notifier,
}
impl<T> Sender<T> {
    /// Sends a value on this asynchronous channel.
    ///
    /// This method will never block the current thread.
    pub fn send(mut self, t: T) -> Result<(), SendError<T>> {
        self.inner.take().expect("Never fails").send(t)?;
        Ok(())
    }
}
impl<T> Drop for Sender<T> {
    fn drop(&mut self) {
        self.notifier.notify();
    }
}
impl<T> fmt::Debug for Sender<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "Sender {{ .. }}")
    }
}

/// The receiving-half of a oneshot channel.
///
/// This structure can be used on both inside and outside of a fiber.
pub struct Receiver<T> {
    inner: nbchan::oneshot::Receiver<T>,
    notifier: Notifier,
}
impl<T> Future for Receiver<T> {
    type Item = T;
    type Error = RecvError;
    fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
        let mut result = self.inner.try_recv();
        if let Err(nbchan::oneshot::TryRecvError::Empty) = result {
            self.notifier.await();
            result = self.inner.try_recv();
        }
        match result {
            Err(nbchan::oneshot::TryRecvError::Empty) => Ok(Async::NotReady),
            Err(nbchan::oneshot::TryRecvError::Disconnected) => Err(RecvError),
            Ok(t) => Ok(Async::Ready(t)),
        }
    }
}
impl<T> Drop for Receiver<T> {
    fn drop(&mut self) {
        self.notifier.notify();
    }
}
impl<T> fmt::Debug for Receiver<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "Receiver {{ .. }}")
    }
}

/// Creates a oneshot channel for unidirectional monitoring.
///
/// When `Monitored` object is (intentionally or unintentionally) dropped,
/// the corresponding `Monitor` object will detect it and
/// return the resulting value at the next time the `Future::poll` method is
/// called on it.
///
/// # Examples
///
/// An example of monitoring a successful completion:
///
/// ```
/// # extern crate fibers;
/// # extern crate futures;
/// use fibers::{Executor, InPlaceExecutor, Spawn};
/// use fibers::sync::oneshot;
/// use futures::{Async, Future};
///
/// # fn main () {
/// let mut executor = InPlaceExecutor::new().unwrap();
/// let (monitored, mut monitor) = oneshot::monitor();
///
/// // Spanws monitored fiber
/// // (In practice, spawning fiber via `spawn_monitor` function is
/// //  more convenient way to archieve the same result)
/// executor.spawn_fn(move || {
///     // Notifies the execution have completed successfully.
///     monitored.exit(Ok("succeeded") as Result<_, ()>);
///     Ok(())
/// });
///
/// // Runs `executor` until above fiber exists
/// loop {
///     let result = monitor.poll().expect("Unexpected failure");
///     if let Async::Ready(value) = result {
///         assert_eq!(value, "succeeded");
///         break;
///     } else {
///         executor.run_once().unwrap();
///     }
/// }
/// # }
/// ```
///
/// An example of detecting unintentional termination:
///
/// ```
/// # extern crate fibers;
/// # extern crate futures;
/// use fibers::{Executor, InPlaceExecutor, Spawn};
/// use fibers::sync::oneshot;
/// use futures::{Async, Future};
///
/// # fn main () {
/// let mut executor = InPlaceExecutor::new().unwrap();
/// let (monitored, mut monitor) = oneshot::monitor::<(),()>();
///
/// // Spanws monitored fiber
/// // (In practice, spawning fiber via `spawn_monitor` function is
/// //  more convenient way to archieve the same result)
/// executor.spawn_fn(move || {
///     let _ = monitored; // This fiber owns `monitored`
///     Ok(()) // Terminated before calling `Monitored::exit` method
/// });
///
/// // Runs `executor` until above fiber exists
/// loop {
///     match monitor.poll() {
///         Ok(Async::NotReady) => {
///             executor.run_once().unwrap();
///         }
///         Ok(Async::Ready(_)) => unreachable!(),
///         Err(e) => {
///             assert_eq!(e, oneshot::MonitorError::Aborted);
///             break;
///         }
///     }
/// }
/// # }
/// ```
///
/// # Implementation Details
///
/// Internally, this channel is almost the same as the one created by `channel` function.
pub fn monitor<T, E>() -> (Monitored<T, E>, Monitor<T, E>) {
    let (tx, rx) = channel();
    (Monitored(tx), Monitor(rx))
}

/// The monitored-half of a monitor channel.
///
/// This is created by calling `monitor` function.
#[derive(Debug)]
pub struct Monitored<T, E>(Sender<Result<T, E>>);
impl<T, E> Monitored<T, E> {
    /// Notifies the monitoring peer that the monitored target has exited intentionally.
    pub fn exit(self, result: Result<T, E>) {
        let _ = self.0.send(result);
    }
}

/// The monitoring-half of a monitor channel.
///
/// This is created by calling `monitor` function.
#[derive(Debug)]
pub struct Monitor<T, E>(Receiver<Result<T, E>>);
impl<T, E> Future for Monitor<T, E> {
    type Item = T;
    type Error = MonitorError<E>;
    fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
        if let Async::Ready(r) = self.0.poll().or(Err(MonitorError::Aborted))? {
            match r {
                Err(e) => Err(MonitorError::Failed(e)),
                Ok(v) => Ok(Async::Ready(v)),
            }
        } else {
            Ok(Async::NotReady)
        }
    }
}

/// The reason that a monitored peer has not completed successfully.
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum MonitorError<E> {
    /// The monitor channel is disconnected.
    Aborted,

    /// The monitored peer has exited with an error `E`.
    ///
    /// i.e., `Monitored::exit(self, Err(E))` was called
    Failed(E),
}
impl<E> MonitorError<E> {
    /// Maps an `MonitorError<E>` to `MonitorError<T>` by applying a function to a contained error.
    ///
    /// # Examples
    ///
    /// ```
    /// use fibers::sync::oneshot::MonitorError;
    ///
    /// let mut e = MonitorError::Failed(10);
    /// assert_eq!(e.map(|v| v.to_string()), MonitorError::Failed("10".to_string()));
    ///
    /// e = MonitorError::Aborted;
    /// assert_eq!(e.map(|v| v.to_string()), MonitorError::Aborted);
    /// ```
    pub fn map<F, T>(self, f: F) -> MonitorError<T>
    where
        F: FnOnce(E) -> T,
    {
        match self {
            MonitorError::Aborted => MonitorError::Aborted,
            MonitorError::Failed(e) => MonitorError::Failed(f(e)),
        }
    }

    /// Unwraps `MonitorError` and returns the internal error `E`.
    ///
    /// If `self` is `MonitorError::Aborted`, `or_error` will be returned.
    ///
    /// # Examples
    ///
    /// ```
    /// use fibers::sync::oneshot::MonitorError;
    ///
    /// let e = MonitorError::Aborted;
    /// assert_eq!(e.unwrap_or(10), 10);
    ///
    /// let e = MonitorError::Failed(20);
    /// assert_eq!(e.unwrap_or(10), 20);
    /// ```
    pub fn unwrap_or(self, or_error: E) -> E {
        self.unwrap_or_else(|| or_error)
    }

    /// Unwraps `MonitorError` and returns the internal error `E`.
    ///
    /// If `self` is `MonitorError::Aborted`, the result of `f()` will be returned.
    pub fn unwrap_or_else<F>(self, f: F) -> E
    where
        F: FnOnce() -> E,
    {
        match self {
            MonitorError::Aborted => f(),
            MonitorError::Failed(e) => e,
        }
    }
}
impl<E: error::Error> error::Error for MonitorError<E> {
    fn description(&self) -> &str {
        match *self {
            MonitorError::Aborted => "Monitor target aborted",
            MonitorError::Failed(_) => "Monitor target failed: {}",
        }
    }
    fn cause(&self) -> Option<&error::Error> {
        match *self {
            MonitorError::Aborted => None,
            MonitorError::Failed(ref e) => Some(e),
        }
    }
}
impl<E: fmt::Display> fmt::Display for MonitorError<E> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match *self {
            MonitorError::Aborted => write!(f, "Monitor target aborted"),
            MonitorError::Failed(ref e) => write!(f, "Monitor target failed: {}", e),
        }
    }
}

/// Creates a oneshot channel for bidirectional monitoring.
pub fn link<T0, E0, T1, E1>() -> LinkPair<T0, E0, T1, E1> {
    let (tx0, rx0) = monitor();
    let (tx1, rx1) = monitor();
    (Link { tx: tx0, rx: rx1 }, Link { tx: tx1, rx: rx0 })
}

/// Bidirectional link pair.
pub type LinkPair<T0, E0, T1, E1> = (Link<T0, E0, T1, E1>, Link<T1, E1, T0, E0>);

/// The half of a link channel.
///
/// This is created by calling `link` function.
#[derive(Debug)]
pub struct Link<T0, E0, T1 = T0, E1 = E0> {
    tx: Monitored<T0, E0>,
    rx: Monitor<T1, E1>,
}
impl<T0, E0, T1, E1> Link<T0, E0, T1, E1> {
    /// Notifies the linked peer that this peer has exited intentionally.
    pub fn exit(self, result: Result<T0, E0>) {
        self.tx.exit(result);
    }
}
impl<T0, E0, T1, E1> Future for Link<T0, E0, T1, E1> {
    type Item = T1;
    type Error = MonitorError<E1>;
    fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
        self.rx.poll()
    }
}