1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
//! A fallback type.
//!
//! [`Fallback`] type provides functionality to fallback
//! if a value or a part of value doesn't exist.

#![warn(missing_docs)]
#![deny(unsafe_code)]

/// Stores two [`Option`], and provides functionality to fallback.
///
/// Basically, you provides a function returns [`Option`],
/// and [`Fallback`] handles the fallback.
/// ```
/// # use fallback::Fallback;
/// let data = Some("hello");
/// let base_data = Some("123");
/// let fallback = Fallback::new(data, base_data);
/// let num = fallback.and_then(|s| s.parse::<i32>().ok());
/// assert_eq!(num, Some(123));
/// ```
/// And you can map the [`Fallback`]:
/// ```
/// # use fallback::Fallback;
/// let data = Some(123);
/// let base_data = Some(123456);
/// let fallback = Fallback::new(data, base_data);
/// let fallback = fallback.map(|i| i.to_string());
/// let s = fallback.and_then(|s| if s.len() > 3 { Some(s) } else { None });
/// assert_eq!(s, Some("123456".to_string()));
/// ```
pub struct Fallback<T> {
    data: Option<T>,
    base_data: Option<T>,
}

impl<T> Fallback<T> {
    /// Creates a new [`Fallback`].
    pub const fn new(data: Option<T>, base_data: Option<T>) -> Self {
        Self { data, base_data }
    }

    /// Returns `false` if both `data` and `base_data` are [`None`].
    pub const fn is_some(&self) -> bool {
        self.data.is_some() || self.base_data.is_some()
    }

    /// Converts from `&Fallback<T>` to `Fallback<&T>`.
    pub const fn as_ref(&self) -> Fallback<&T> {
        Fallback::new(self.data.as_ref(), self.base_data.as_ref())
    }

    /// Fallbacks the data or part of data.
    pub fn and_then<V>(self, mut f: impl FnMut(T) -> Option<V>) -> Option<V> {
        self.data
            .and_then(&mut f)
            .or_else(|| self.base_data.and_then(&mut f))
    }

    /// Fallbacks the total data.
    pub fn fallback(self) -> Option<T> {
        self.data.or(self.base_data)
    }

    /// Maps to a new [`Fallback`].
    pub fn map<V>(self, mut f: impl FnMut(T) -> V) -> Fallback<V> {
        Fallback::new(self.data.map(&mut f), self.base_data.map(&mut f))
    }

    /// Exacts the `data` and `base_data`.
    pub fn unzip(self) -> (Option<T>, Option<T>) {
        (self.data, self.base_data)
    }
}

impl<T> Fallback<Option<T>> {
    /// Converts from `Fallback<Option<T>>` to `Fallback<T>`.
    pub fn flatten(self) -> Fallback<T> {
        Fallback::new(self.data.flatten(), self.base_data.flatten())
    }
}

impl<T> Fallback<T>
where
    for<'a> &'a T: IntoIterator,
    for<'a> <&'a T as IntoIterator>::IntoIter: ExactSizeIterator,
{
    /// Treats the empty container as [`None`] and fallbacks.
    pub fn and_any(self) -> Option<T> {
        self.and_then(|s| {
            if s.into_iter().len() == 0 {
                None
            } else {
                Some(s)
            }
        })
    }
}

impl<T: AsRef<str>> Fallback<T> {
    /// Treats the empty string as [`None`] and fallbacks.
    pub fn and_any_str(self) -> Option<T> {
        self.and_then(|s| if s.as_ref().is_empty() { None } else { Some(s) })
    }
}

impl<T> From<Fallback<T>> for Option<T> {
    fn from(f: Fallback<T>) -> Self {
        if f.data.is_some() {
            f.data
        } else {
            f.base_data
        }
    }
}

#[doc(hidden)]
pub struct FallbackIter<A> {
    data: Option<A>,
    base_data: Option<A>,
}

impl<A: Iterator> Iterator for FallbackIter<A> {
    type Item = Fallback<A::Item>;

    fn next(&mut self) -> Option<Self::Item> {
        let d = self.data.as_mut().and_then(|data| data.next());
        let based = self.base_data.as_mut().and_then(|data| data.next());
        if d.is_some() || based.is_some() {
            Some(Fallback::new(d, based))
        } else {
            None
        }
    }
}

impl<T: IntoIterator> IntoIterator for Fallback<T> {
    type Item = Fallback<T::Item>;

    type IntoIter = FallbackIter<std::iter::Fuse<T::IntoIter>>;

    fn into_iter(self) -> Self::IntoIter {
        FallbackIter {
            data: self.data.map(|data| data.into_iter().fuse()),
            base_data: self.base_data.map(|data| data.into_iter().fuse()),
        }
    }
}

/// This trait helps to create a new fallback type.
///
/// The code
/// ```
/// # use fallback::FallbackSpec;
/// #[derive(FallbackSpec)]
/// struct Foo {
///     data1: i32,
///     data2: String,
/// }
/// ```
/// is the same as
/// ```
/// # use fallback::*;
/// struct Foo {
///     data1: i32,
///     data2: String,
/// }
///
/// struct FallbackFoo {
///     data1: Fallback<i32>,
///     data2: Fallback<String>,
/// }
///
/// impl FallbackSpec for Foo {
///     type SpecType = FallbackFoo;
/// }
///
/// impl From<Fallback<Foo>> for FallbackFoo {
///     fn from(data: Fallback<Foo>) -> Self {
///         let (data, base_data) = data.unzip();
///         let (data1, data2) = match data {
///             Some(data) => (Some(data.data1), Some(data.data2)),
///             None => (None, None),
///         };
///         let (base_data1, base_data2) = match base_data {
///             Some(data) => (Some(data.data1), Some(data.data2)),
///             None => (None, None),
///         };
///         Self {
///             data1: Fallback::new(data1, base_data1),
///             data2: Fallback::new(data2, base_data2),
///         }
///     }
/// }
/// ```
pub trait FallbackSpec: Sized {
    /// The specialized fallback type.
    type SpecType: From<Fallback<Self>>;
}

impl<T: FallbackSpec> Fallback<T> {
    /// Get the specialized fallback object.
    pub fn spec(self) -> T::SpecType {
        T::SpecType::from(self)
    }
}

pub use fallback_derive::FallbackSpec;

#[cfg(test)]
mod test {
    use crate::*;

    #[test]
    fn some() {
        assert!(!Fallback::<()>::new(None, None).is_some());
    }

    #[test]
    fn option() {
        let f = Fallback::new(None, Some(100));
        assert_eq!(Option::from(f), Some(100));
    }

    #[test]
    fn empty() {
        let f = Fallback::new(Some(vec![]), Some(vec![1, 1, 4, 5, 1, 4]));
        assert_eq!(f.and_any(), Some(vec![1, 1, 4, 5, 1, 4]));

        let f = Fallback::new(Some(String::new()), Some("Hello world!".to_string()));
        assert_eq!(f.and_any_str(), Some("Hello world!".to_string()));
    }

    #[test]
    fn iter() {
        let f = Fallback::new(Some(vec![3, 2, 1]), Some(vec![1, 1, 4, 5, 1, 4]));
        assert_eq!(
            f.into_iter()
                .map(|data| data.fallback().unwrap())
                .collect::<Vec<_>>(),
            [3, 2, 1, 5, 1, 4]
        );
    }
}