1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
// Copyright 2020 The Exonum Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Protobuf generated structs and traits for conversion.
//!
//! The central part of this module is [`ProtobufConvert`](./trait.ProtobufConvert.html).
//! The main purpose of this trait is to allow
//! users to create a map between their types and the types generated from .proto descriptions, while
//! providing a mechanism for additional validation of protobuf data.
//!
//! Most of the time you do not have to implement this trait because most of the use cases are covered
//! by `#[derive(ProtobufConvert)]` from `exonum_derive` crate.
//!
//! A typical example of such mapping with validation is manual implementation of this trait for `crypto::Hash`.
//! `crypto::Hash` is a fixed sized array of bytes but protobuf does not allow us to express this constraint since
//! only dynamically sized arrays are supported.
//! If you would like to use `Hash` as a part of your
//! protobuf struct, you would have to write a conversion function from protobuf `proto::Hash`(which
//! is dynamically sized array of bytes) to`crypto::Hash` and call it every time when you want to
//! use `crypto::Hash` in your application.
//!
//! The provided `ProtobufConvert` implementation for Hash allows you to embed this field into your
//! struct and generate `ProtobufConvert` for it using `#[derive(ProtobufConvert)]`, which will validate
//! your struct based on the validation function for `Hash`.

#![warn(
    missing_debug_implementations,
    missing_docs,
    unsafe_code,
    bare_trait_objects
)]
#![warn(clippy::pedantic)]
#![allow(
    // Next `cast_*` lints don't give alternatives.
    clippy::cast_possible_wrap, clippy::cast_possible_truncation, clippy::cast_sign_loss,
    // Next lints produce too much noise/false positives.
    clippy::module_name_repetitions, clippy::similar_names, clippy::must_use_candidate,
    clippy::pub_enum_variant_names,
    // '... may panic' lints.
    clippy::indexing_slicing,
    // Too much work to fix.
    clippy::missing_errors_doc
)]

#[macro_use]
extern crate serde_derive; // Required for Protobuf.

pub use protobuf_convert::*;

pub mod proto;

use anyhow::{ensure, format_err, Error};
use chrono::{DateTime, TimeZone, Utc};
use protobuf::well_known_types;
use serde::{de::Visitor, Deserializer, Serializer};

use std::{collections::HashMap, convert::TryFrom, fmt};

use crate::proto::bit_vec::BitVec;

#[cfg(test)]
mod tests;

/// Used for establishing correspondence between a Rust struct and a type generated from Protobuf.
pub trait ProtobufConvert: Sized {
    /// Type generated from the Protobuf definition.
    type ProtoStruct;

    /// Performs conversion to the type generated from Protobuf.
    fn to_pb(&self) -> Self::ProtoStruct;
    /// Performs conversion from the type generated from Protobuf.
    fn from_pb(pb: Self::ProtoStruct) -> Result<Self, Error>;
}

impl ProtobufConvert for DateTime<Utc> {
    type ProtoStruct = well_known_types::Timestamp;

    fn to_pb(&self) -> Self::ProtoStruct {
        let mut ts = Self::ProtoStruct::new();
        ts.set_seconds(self.timestamp());
        ts.set_nanos(self.timestamp_subsec_nanos() as i32);
        ts
    }

    fn from_pb(pb: Self::ProtoStruct) -> Result<Self, Error> {
        Utc.timestamp_opt(pb.get_seconds(), pb.get_nanos() as u32)
            .single()
            .ok_or_else(|| format_err!("Failed to convert timestamp from bytes"))
    }
}

impl ProtobufConvert for String {
    type ProtoStruct = Self;

    fn to_pb(&self) -> Self::ProtoStruct {
        self.clone()
    }

    fn from_pb(pb: Self::ProtoStruct) -> Result<Self, Error> {
        Ok(pb)
    }
}

impl ProtobufConvert for u16 {
    type ProtoStruct = u32;

    fn to_pb(&self) -> Self::ProtoStruct {
        u32::from(*self)
    }

    fn from_pb(pb: Self::ProtoStruct) -> Result<Self, Error> {
        u16::try_from(pb).map_err(|_| format_err!("Value is out of range"))
    }
}

impl ProtobufConvert for i16 {
    type ProtoStruct = i32;

    fn to_pb(&self) -> Self::ProtoStruct {
        i32::from(*self)
    }

    fn from_pb(pb: Self::ProtoStruct) -> Result<Self, Error> {
        i16::try_from(pb).map_err(|_| format_err!("Value is out of range"))
    }
}

impl<T> ProtobufConvert for Vec<T>
where
    T: ProtobufConvert,
{
    type ProtoStruct = Vec<T::ProtoStruct>;

    fn to_pb(&self) -> Self::ProtoStruct {
        self.iter().map(ProtobufConvert::to_pb).collect()
    }
    fn from_pb(pb: Self::ProtoStruct) -> Result<Self, Error> {
        pb.into_iter()
            .map(ProtobufConvert::from_pb)
            .collect::<Result<Vec<_>, _>>()
    }
}

impl ProtobufConvert for () {
    type ProtoStruct = protobuf::well_known_types::Empty;

    fn to_pb(&self) -> Self::ProtoStruct {
        Self::ProtoStruct::default()
    }

    fn from_pb(_pb: Self::ProtoStruct) -> Result<Self, Error> {
        Ok(())
    }
}

/// Special case for protobuf bytes.
impl ProtobufConvert for Vec<u8> {
    type ProtoStruct = Vec<u8>;

    fn to_pb(&self) -> Self::ProtoStruct {
        self.clone()
    }
    fn from_pb(pb: Self::ProtoStruct) -> Result<Self, Error> {
        Ok(pb)
    }
}

// According to protobuf specification only simple scalar types (not floats) and strings can be used
// as a map keys.
impl<K, T, S> ProtobufConvert for HashMap<K, T, S>
where
    K: Eq + std::hash::Hash + std::fmt::Debug + Clone,
    T: ProtobufConvert,
    S: Default + std::hash::BuildHasher,
{
    type ProtoStruct = HashMap<K, T::ProtoStruct, S>;
    fn to_pb(&self) -> Self::ProtoStruct {
        self.iter().map(|(k, v)| (k.clone(), v.to_pb())).collect()
    }
    fn from_pb(mut pb: Self::ProtoStruct) -> Result<Self, Error> {
        pb.drain()
            .map(|(k, v)| ProtobufConvert::from_pb(v).map(|v| (k, v)))
            .collect::<Result<HashMap<_, _, _>, _>>()
    }
}

impl ProtobufConvert for bit_vec::BitVec {
    type ProtoStruct = BitVec;

    fn to_pb(&self) -> Self::ProtoStruct {
        let mut bit_vec = BitVec::new();
        bit_vec.set_data(self.to_bytes());
        bit_vec.set_len(self.len() as u64);
        bit_vec
    }

    fn from_pb(pb: Self::ProtoStruct) -> Result<Self, Error> {
        let data = pb.get_data();
        let mut bit_vec = bit_vec::BitVec::from_bytes(data);
        bit_vec.truncate(pb.get_len() as usize);
        Ok(bit_vec)
    }
}

macro_rules! impl_protobuf_convert_scalar {
    ( $( $name:tt ),* )=> {
        $(
            impl ProtobufConvert for $name {
                type ProtoStruct = $name;
                fn to_pb(&self) -> Self::ProtoStruct {
                    *self
                }
                fn from_pb(pb: Self::ProtoStruct) -> Result<Self, Error> {
                    Ok(pb)
                }
            }
        )*
    };
}

impl_protobuf_convert_scalar! { bool, u32, u64, i32, i64, f32, f64 }

macro_rules! impl_protobuf_convert_fixed_byte_array {
    ( $( $arr_len:expr ),* ) => {
        $(
            /// Special case for fixed sized arrays.
            impl ProtobufConvert for [u8; $arr_len] {
                type ProtoStruct = Vec<u8>;

                fn to_pb(&self) -> Self::ProtoStruct {
                    self.to_vec()
                }

                fn from_pb(pb: Self::ProtoStruct) -> Result<Self, Error> {
                    ensure!(
                        pb.len() == $arr_len,
                        "wrong array size: actual {}, expected {}",
                        pb.len(),
                        $arr_len
                    );

                    Ok({
                        let mut array = [0; $arr_len];
                        array.copy_from_slice(&pb);
                        array
                    })
                }
            }
        )*
    };
}

// We implement array conversion only for most common array sizes that uses
// for example in cryptography.
impl_protobuf_convert_fixed_byte_array! {
    8, 16, 24, 32, 40, 48, 56, 64,
    72, 80, 88, 96, 104, 112, 120, 128,
    160, 256, 512, 1024, 2048
}

/// Marker type for use with `#[serde(with)]`, which provides Protobuf-compatible base64 encoding
/// and decoding. For now, works only on `Vec<u8>` fields.
///
/// The encoder uses the standard base64 alphabet (i.e., `0..9A..Za..z+/`) with no padding.
/// The decoder accepts any of the 4 possible combinations: the standard or the URL-safe alphabet
/// with or without padding.
///
/// If the (de)serializer is not human-readable (e.g., CBOR or `bincode`), the bytes will be
/// (de)serialized without base64 transform, directly as a byte slice.
///
/// # Examples
///
/// ```
/// use exonum_proto::ProtobufBase64;
/// # use serde_derive::*;
/// # use serde_json::json;
///
/// #[derive(Serialize, Deserialize)]
/// struct Test {
///     /// Corresponds to a `bytes buffer = ...` field in Protobuf.
///     #[serde(with = "ProtobufBase64")]
///     buffer: Vec<u8>,
///     // other fields...
/// }
///
/// # fn main() -> anyhow::Result<()> {
/// let test = Test {
///     buffer: b"Hello!".to_vec(),
///     // ...
/// };
/// let obj = serde_json::to_value(&test)?;
/// assert_eq!(obj, json!({ "buffer": "SGVsbG8h", /* ... */ }));
/// # Ok(())
/// # }
/// ```
#[derive(Debug)]
pub struct ProtobufBase64(());

impl ProtobufBase64 {
    /// Serializes the provided `bytes` with the `serializer`.
    pub fn serialize<S, T>(bytes: &T, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: Serializer,
        T: AsRef<[u8]> + ?Sized,
    {
        if serializer.is_human_readable() {
            serializer.serialize_str(&base64::encode_config(bytes, base64::STANDARD_NO_PAD))
        } else {
            serializer.serialize_bytes(bytes.as_ref())
        }
    }

    /// Decodes bytes from any of four base64 variations supported as per Protobuf spec
    /// (standard or URL-safe alphabet, with or without padding).
    pub fn decode(value: &str) -> Result<Vec<u8>, base64::DecodeError> {
        // Remove padding if any.
        let value_without_padding = if value.ends_with("==") {
            &value[..value.len() - 2]
        } else if value.ends_with('=') {
            &value[..value.len() - 1]
        } else {
            value
        };

        let is_url_safe = value_without_padding.contains(|ch: char| ch == '-' || ch == '_');
        let config = if is_url_safe {
            base64::URL_SAFE_NO_PAD
        } else {
            base64::STANDARD_NO_PAD
        };
        base64::decode_config(value_without_padding, config)
    }

    /// Deserializes `Vec<u8>` using the provided serializer.
    pub fn deserialize<'de, D>(deserializer: D) -> Result<Vec<u8>, D::Error>
    where
        D: Deserializer<'de>,
    {
        use serde::de::Error as DeError;

        struct Base64Visitor;

        impl<'de> Visitor<'de> for Base64Visitor {
            type Value = Vec<u8>;

            fn expecting(&self, f: &mut fmt::Formatter) -> fmt::Result {
                f.write_str("base64-encoded byte array")
            }

            fn visit_str<E: DeError>(self, value: &str) -> Result<Self::Value, E> {
                ProtobufBase64::decode(value).map_err(E::custom)
            }

            // Needed to guard against non-obvious serialization of flattened fields in `serde`.
            fn visit_bytes<E: DeError>(self, value: &[u8]) -> Result<Self::Value, E> {
                Ok(value.to_vec())
            }
        }

        struct BytesVisitor;

        impl<'de> Visitor<'de> for BytesVisitor {
            type Value = Vec<u8>;

            fn expecting(&self, f: &mut fmt::Formatter) -> fmt::Result {
                f.write_str("byte array")
            }

            fn visit_bytes<E: DeError>(self, value: &[u8]) -> Result<Self::Value, E> {
                Ok(value.to_vec())
            }
        }

        if deserializer.is_human_readable() {
            deserializer.deserialize_str(Base64Visitor)
        } else {
            deserializer.deserialize_bytes(BytesVisitor)
        }
    }
}