1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
//! `evtclib` is a crate aiming to provide utility functions to parse and work
//! with `.evtc` reports generated by arcdps.
//!
//! # About evtc Files
//!
//! evtc files are files generated by the (inofficial) arcdps addon to Guild Wars 2. They contain
//! metadata about a fight in the game, such as the boss's name (if it was a raid or fractal boss),
//! the participants, and a stripped-down log of the complete fight.
//!
//! There are other programs (such as
//! [GW2-Elite-Insights-Parser](https://github.com/baaron4/GW2-Elite-Insights-Parser/)) and
//! websites (such as [dps.report](https://dps.report)) which allow you to generate reports from
//! evtc files.
//!
//! A common way to store and distribute evtc files is to zip them to either a `.evtc.zip` (old
//! way) or a `.zevtc` (new way). evtclib uses [`zip`](https://crates.io/crates/zip) to read them,
//! prodiving the [`raw::parse_zip`][raw::parse_zip] convenience function.
//!
//! # Crate Structure
//!
//! The crate consists of two main parts: The [`raw`][raw] parser, which is used to read structured
//! data from binary input streams, and the higher-level abstrations provided in the root and
//! [`event`][event] submodules.
//!
//! Additionally, there are some defintions (such as IDs for various game items) in the
//! [`gamedata`][gamedata] module.
//!
//! The main structs that you should be dealing with are the [`Log`][Log] and its components, such
//! as [`Event`][Event] and [`Agent`][Agent].
//!
//! # Workflow
//!
//! `evtclib` provides two convenience functions to obtain a [`Log`][Log]:
//!
//! If you have a stream (that is, something that is [`Read`][std::io::Read] +
//! [`Seek`][std::io::Seek]), you can use [`process_stream`][process_stream] to obtain a
//! [`Log`][Log] by reading from the stream.
//!
//! If your evtc is saved in a file, you can use [`process_file`][process_file] to obtain a [`Log`]
//! from it. This will also ensure that the buffering is set up correctly, to avoid unnecessary
//! system calls.
//!
//! Both of those functions require the reader to be seekable, as that is what we need for zip
//! archive support. If you cannot provide that, or if you need finer grained control for other
//! reasons, you can use either [`raw::parse_file`][raw::parse_file] or
//! [`raw::parse_zip`][raw::parse_zip] to obtain the low-level [`Evtc`][raw::Evtc] structure, and
//! then turn it into a [`Log`][Log] by using [`process`][process]:
//!
//! ```no_run
//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
//! use evtclib::{Compression, Log};
//! use std::fs::File;
//! // Preferred:
//! let log: Log = evtclib::process_file("my_log.evtc", Compression::None)?;
//!
//! // If you have a stream:
//! let file = File::open("my_log.evtc")?;
//! let log: Log = evtclib::process_stream(file, Compression::None)?;
//!
//! // If you really need to do it manually:
//! // Open a file for processing
//! let file = File::open("my_log.evtc")?;
//! // Parse the raw content of the file
//! let raw_log = evtclib::raw::parse_file(file)?;
//! // Process the file to do the nitty-gritty low-level stuff done
//! let log: Log = evtclib::process(&raw_log)?;
//!
//! // In all cases, you can now do work with the log
//! for player in log.players() {
//!     println!("Player {} participated!", player.account_name());
//! }
//! # Ok(())
//! # }
//! ```
//!
//! Make sure to take a look at the note on "Buffering" in the [parser
//! module](raw/parser/index.html#buffering) in order to increase the speed of your application.
//!
//! # Writing evtc Files
//!
//! Currently, `evtclib` does not provide a way to output or modify evtc files. This is for two
//! reasons:
//!
//! * The only sensible source for logs is the arcdps addon itself, most applications only consume
//! them.
//! * The library was needed for reading support, and writing support has never been a priority.
//!
//! While there are legitimate use cases for writing/modification support, they are currently not
//! implemented (but might be in a future version).

use std::collections::HashMap;
use std::convert::TryFrom;
use std::marker::PhantomData;

use getset::{CopyGetters, Getters};
use num_traits::FromPrimitive;
use thiserror::Error;

pub mod raw;

pub mod event;
pub use event::{Event, EventKind};

mod processing;
pub use processing::{process, process_file, process_stream, Compression};

pub mod gamedata;
use gamedata::CmTrigger;
pub use gamedata::{Boss, EliteSpec, Profession};

/// Any error that can occur during the processing of evtc files.
#[derive(Error, Debug)]
pub enum EvtcError {
    /// Error for underlying parser errors.
    ///
    /// This should never be returned from [`process`][process], only from
    /// [`process_stream`][process_stream] and [`process_file`][process_file].
    #[error("the file could not be parsed: {0}")]
    ParseError(#[from] raw::ParseError),
    /// Generic error for invalid data in the evtc file.
    #[error("invalid data has been provided")]
    InvalidData,
    /// The profession id is not known.
    ///
    /// The field contains the unknown profession id.
    #[error("invalid profession id: {0}")]
    InvalidProfession(u32),
    /// The elite specialization id is not known.
    ///
    /// The field contains the unknown elite specialization id.
    #[error("invalid elite specialization id: {0}")]
    InvalidEliteSpec(u32),
    /// The file contains invalid utf-8.
    #[error("utf8 decoding error: {0}")]
    Utf8Error(#[from] std::str::Utf8Error),
}

/// Player-specific agent data.
///
/// Player agents are characters controlled by a player and as such, they contain data about the
/// account and character used (name, profession), as well as the squad composition.
///
/// Note that a `Player` is only the player character itself. Any additional entities that are
/// spawned by the player (clones, illusions, banners, ...) are either a [`Character`][Character]
/// or a [`Gadget`][Gadget].
#[derive(Debug, Clone, Hash, PartialEq, Eq, CopyGetters)]
pub struct Player {
    /// The player's profession.
    #[get_copy = "pub"]
    profession: Profession,

    /// The player's elite specialization, if any is equipped.
    #[get_copy = "pub"]
    elite: Option<EliteSpec>,

    character_name: String,

    account_name: String,

    /// The subgroup the player was in.
    #[get_copy = "pub"]
    subgroup: u8,
}

impl Player {
    /// The player's character name.
    pub fn character_name(&self) -> &str {
        &self.character_name
    }

    /// The player's account name.
    ///
    /// This includes the leading colon and the 4-digit denominator.
    pub fn account_name(&self) -> &str {
        &self.account_name
    }
}

/// Gadget-specific agent data.
///
/// Gadgets are entities that are spawned by certain skills. They are mostly inanimate objects that
/// only exist to achieve a certain skill effect.
///
/// Examples of this include the [banners](https://wiki.guildwars2.com/wiki/Banner) spawned by
/// Warriors, but also skill effects like the roots created by
/// [Entangle](https://wiki.guildwars2.com/wiki/Entangle) or the other objects in the arena.
#[derive(Debug, Clone, Hash, PartialEq, Eq, CopyGetters)]
pub struct Gadget {
    /// The id of the gadget.
    ///
    /// Note that gadgets do not have true ids and the id is generated "through a combination of
    /// gadget parameters".
    #[get_copy = "pub"]
    id: u16,
    name: String,
}

impl Gadget {
    /// The name of the gadget.
    pub fn name(&self) -> &str {
        &self.name
    }
}

/// Character-specific agent data.
///
/// Characters are NPCs such as the bosses themselves, additional mobs that they spawn, but also
/// friendly characters like Mesmer's clones and illusions, Necromancer minions, and so on.
#[derive(Debug, Clone, Hash, PartialEq, Eq, CopyGetters)]
pub struct Character {
    /// The id of the character.
    #[get_copy = "pub"]
    id: u16,
    name: String,
}

impl Character {
    /// The name of the character.
    pub fn name(&self) -> &str {
        &self.name
    }
}

/// The type of an agent.
///
/// arcdps differentiates between three types of agents: [`Player`][Player],
/// [`Character`][Character] and [`Gadget`][Gadget]. This enum unifies handling between them by
/// allowing you to pattern match or use one of the accessor methods.
///
/// The main way to obtain a `AgentKind` is by using the [`.kind()`][Agent::kind] method on an
/// [`Agent`][Agent]. In cases where you already have a [`raw::Agent`][raw::Agent] available, you
/// can also use the [`TryFrom`][TryFrom]/[`TryInto`][std::convert::TryInto] traits to convert a
/// `raw::Agent` or `&raw::Agent` to a `AgentKind`:
///
/// ```no_run
/// # use evtclib::{AgentKind, raw};
/// use std::convert::TryInto;
/// // Get a raw::Agent from somewhere
/// let raw_agent: raw::Agent = panic!();
/// // Convert it
/// let agent: AgentKind = raw_agent.try_into().unwrap();
/// ```
#[derive(Debug, Clone, Hash, PartialEq, Eq)]
pub enum AgentKind {
    /// The agent is a player.
    ///
    /// The player-specific data is in the included [`Player`][Player] struct.
    Player(Player),
    /// The agent is a gadget.
    ///
    /// The gadget-specific data is in the included [`Gadget`][Gadget] struct.
    Gadget(Gadget),
    /// The agent is a character.
    ///
    /// The character-specific data is in the included [`Character`][Character] struct.
    Character(Character),
}

impl AgentKind {
    fn from_raw_character(raw_agent: &raw::Agent) -> Result<Character, EvtcError> {
        assert!(raw_agent.is_character());
        let name = raw::cstr_up_to_nul(&raw_agent.name).ok_or(EvtcError::InvalidData)?;
        Ok(Character {
            id: raw_agent.prof as u16,
            name: name.to_str()?.to_owned(),
        })
    }

    fn from_raw_gadget(raw_agent: &raw::Agent) -> Result<Gadget, EvtcError> {
        assert!(raw_agent.is_gadget());
        let name = raw::cstr_up_to_nul(&raw_agent.name).ok_or(EvtcError::InvalidData)?;
        Ok(Gadget {
            id: raw_agent.prof as u16,
            name: name.to_str()?.to_owned(),
        })
    }

    fn from_raw_player(raw_agent: &raw::Agent) -> Result<Player, EvtcError> {
        assert!(raw_agent.is_player());
        let character_name = raw::cstr_up_to_nul(&raw_agent.name)
            .ok_or(EvtcError::InvalidData)?
            .to_str()?;
        let account_name = raw::cstr_up_to_nul(&raw_agent.name[character_name.len() + 1..])
            .ok_or(EvtcError::InvalidData)?
            .to_str()?;
        let subgroup = raw_agent.name[character_name.len() + account_name.len() + 2] - b'0';
        let elite = if raw_agent.is_elite == 0 {
            None
        } else {
            Some(
                EliteSpec::from_u32(raw_agent.is_elite)
                    .ok_or(EvtcError::InvalidEliteSpec(raw_agent.is_elite))?,
            )
        };
        Ok(Player {
            profession: Profession::from_u32(raw_agent.prof)
                .ok_or(EvtcError::InvalidProfession(raw_agent.prof))?,
            elite,
            character_name: character_name.to_owned(),
            account_name: account_name.to_owned(),
            subgroup,
        })
    }

    /// Accesses the inner [`Player`][Player] struct, if available.
    pub fn as_player(&self) -> Option<&Player> {
        if let AgentKind::Player(ref player) = *self {
            Some(player)
        } else {
            None
        }
    }

    /// Determines whether this `AgentKind` contains a player.
    pub fn is_player(&self) -> bool {
        self.as_player().is_some()
    }

    /// Accesses the inner [`Gadget`][Gadget] struct, if available.
    pub fn as_gadget(&self) -> Option<&Gadget> {
        if let AgentKind::Gadget(ref gadget) = *self {
            Some(gadget)
        } else {
            None
        }
    }

    /// Determines whether this `AgentKind` contains a gadget.
    pub fn is_gadget(&self) -> bool {
        self.as_gadget().is_some()
    }

    /// Accesses the inner [`Character`][Character] struct, if available.
    pub fn as_character(&self) -> Option<&Character> {
        if let AgentKind::Character(ref character) = *self {
            Some(character)
        } else {
            None
        }
    }

    /// Determines whether this `AgentKind` contains a character.
    pub fn is_character(&self) -> bool {
        self.as_character().is_some()
    }
}

impl TryFrom<raw::Agent> for AgentKind {
    type Error = EvtcError;
    /// Convenience method to avoid manual borrowing.
    ///
    /// Note that this conversion will consume the agent, so if you plan on re-using it, use the
    /// `TryFrom<&raw::Agent>` implementation that works with a reference.
    fn try_from(raw_agent: raw::Agent) -> Result<Self, Self::Error> {
        Self::try_from(&raw_agent)
    }
}

impl TryFrom<&raw::Agent> for AgentKind {
    type Error = EvtcError;

    /// Extract the correct `AgentKind` from the given [raw agent][raw::Agent].
    ///
    /// This automatically discerns between player, gadget and characters.
    ///
    /// Note that in most cases, you probably want to use `Agent::try_from` or even
    /// [`process`][process] instead of this function.
    fn try_from(raw_agent: &raw::Agent) -> Result<Self, Self::Error> {
        if raw_agent.is_character() {
            Ok(AgentKind::Character(AgentKind::from_raw_character(
                raw_agent,
            )?))
        } else if raw_agent.is_gadget() {
            Ok(AgentKind::Gadget(AgentKind::from_raw_gadget(raw_agent)?))
        } else if raw_agent.is_player() {
            Ok(AgentKind::Player(AgentKind::from_raw_player(raw_agent)?))
        } else {
            Err(EvtcError::InvalidData)
        }
    }
}

/// An agent.
///
/// Agents in arcdps are very versatile, as a lot of things end up being an "agent". This includes:
/// * Players
/// * Bosses
/// * Any additional mobs that spawn
/// * Mesmer illusions
/// * Ranger spirits, pets
/// * Guardian spirit weapons
/// * ...
///
/// Generally, you can divide them into three kinds ([`AgentKind`][AgentKind]):
/// * [`Player`][Player]: All players themselves.
/// * [`Character`][Character]: Non-player mobs, including most bosses, "adds" and player-generated
///   characters.
/// * [`Gadget`][Gadget]: Some additional gadgets, such as ley rifts, continuum split, ...
///
/// All of these agents share some common fields, which are the ones accessible in `Agent<Kind>`.
/// The kind can be retrieved using [`.kind()`][Agent::kind], which can be matched on.
///
/// # Obtaining an agent
///
/// The normal way to obtain the agents is to use the [`.agents()`](Log::agents) method on a
/// [`Log`][Log], or one of the other accessor methods (like [`.players()`][Log::players] or
/// [`.agent_by_addr()`][Log::agent_by_addr]).
///
/// In the cases where you already have a [`raw::Agent`][raw::Agent] available, you can also
/// convert it to an [`Agent`][Agent] by using the standard
/// [`TryFrom`][TryFrom]/[`TryInto`][std::convert::TryInto] traits:
///
/// ```no_run
/// # use evtclib::{Agent, raw};
/// use std::convert::TryInto;
/// let raw_agent: raw::Agent = panic!();
/// let agent: Agent = raw_agent.try_into().unwrap();
/// ```
///
/// Note that you can convert references as well, so if you plan on re-using the raw agent
/// afterwards, you should opt for `Agent::try_from(&raw_agent)` instead.
///
/// # The `Kind` parameter
///
/// The type parameter is not actually used and only exists at the type level. It can be used to
/// tag `Agent`s containing a known kind. For example, `Agent<Player>` implements
/// [`.player()`][Agent::player], which returns a `&Player` directly (instead of a
/// `Option<&Player>`). This works because such tagged `Agent`s can only be constructed (safely)
/// using [`.as_player()`][Agent::as_player], [`.as_gadget()`][Agent::as_gadget] or
/// [`.as_character()`][Agent::as_character]. This is useful since functions like
/// [`Log::players`][Log::players], which already filter only players, don't require the consumer
/// to do another check/pattern match for the right agent kind.
///
/// The unit type `()` is used to tag `Agent`s which contain an undetermined type, and it is the
/// default if you write `Agent` without any parameters.
///
/// The downside is that methods which work on `Agent`s theoretically should be generic over
/// `Kind`. An escape hatch is the method [`.erase()`][Agent::erase], which erases the kind
/// information and produces the default `Agent<()>`. Functions/methods that only take `Agent<()>`
/// can therefore be used by any other agent as well.
#[derive(Debug, Clone, Hash, PartialEq, Eq, Getters, CopyGetters)]
// For the reasoning of #[repr(C)] see Agent::transmute.
#[repr(C)]
pub struct Agent<Kind = ()> {
    /// The address of this agent.
    ///
    /// This is not actually the address of the in-memory Rust object, but rather a serialization
    /// detail of arcdps. You should consider this as an opaque number and only compare it to other
    /// agent addresses.
    #[get_copy = "pub"]
    addr: u64,

    /// The kind of this agent.
    #[get = "pub"]
    kind: AgentKind,

    /// The toughness of this agent.
    ///
    /// This is not an absolute number, but a relative indicator that indicates this agent's
    /// toughness relative to the other people in the squad.
    ///
    /// 0 means lowest toughness, 10 means highest toughness.
    #[get_copy = "pub"]
    toughness: i16,

    /// The concentration of this agent.
    ///
    /// This is not an absolute number, but a relative indicator that indicates this agent's
    /// concentration relative to the other people in the squad.
    ///
    /// 0 means lowest concentration, 10 means highest concentration.
    #[get_copy = "pub"]
    concentration: i16,

    /// The healing power of this agent.
    ///
    /// This is not an absolute number, but a relative indicator that indicates this agent's
    /// healing power relative to the other people in the squad.
    ///
    /// 0 means lowest healing power, 10 means highest healing power.
    #[get_copy = "pub"]
    healing: i16,

    /// The condition damage of this agent.
    ///
    /// This is not an absolute number, but a relative indicator that indicates this agent's
    /// condition damage relative to the other people in the squad.
    ///
    /// 0 means lowest condition damage, 10 means highest condition damage.
    #[get_copy = "pub"]
    condition: i16,

    /// The instance ID of this agent.
    #[get_copy = "pub"]
    instance_id: u16,

    /// The timestamp of the first event entry with this agent.
    #[get_copy = "pub"]
    first_aware: u64,

    /// The timestamp of the last event entry with this agent.
    #[get_copy = "pub"]
    last_aware: u64,

    /// The master agent's address.
    #[get_copy = "pub"]
    master_agent: Option<u64>,

    phantom_data: PhantomData<Kind>,
}

impl TryFrom<&raw::Agent> for Agent {
    type Error = EvtcError;

    /// Parse a raw agent.
    fn try_from(raw_agent: &raw::Agent) -> Result<Self, Self::Error> {
        let kind = AgentKind::try_from(raw_agent)?;
        Ok(Agent {
            addr: raw_agent.addr,
            kind,
            toughness: raw_agent.toughness,
            concentration: raw_agent.concentration,
            healing: raw_agent.healing,
            condition: raw_agent.condition,
            instance_id: 0,
            first_aware: 0,
            last_aware: u64::max_value(),
            master_agent: None,
            phantom_data: PhantomData,
        })
    }
}

impl TryFrom<raw::Agent> for Agent {
    type Error = EvtcError;

    /// Convenience method to avoid manual borrowing.
    ///
    /// Note that this conversion will consume the agent, so if you plan on re-using it, use the
    /// `TryFrom<&raw::Agent>` implementation that works with a reference.
    fn try_from(raw_agent: raw::Agent) -> Result<Self, Self::Error> {
        Agent::try_from(&raw_agent)
    }
}

impl<Kind> Agent<Kind> {
    /// Unconditionally change the tagged type.
    #[inline]
    fn transmute<T>(&self) -> &Agent<T> {
        // Beware, unsafe code ahead!
        //
        // What are we doing here?
        // In Agent<T>, T is a marker type that only exists at the type level. There is no actual
        // value of type T being held, instead, we use PhantomData under the hood. This is so we
        // can implement special methods on Agent<Player>, Agent<Gadget> and Agent<Character>,
        // which allows us in some cases to avoid the "second check" (e.g. Log::players() can
        // return Agent<Player>, as the function already makes sure all returned agents are
        // players). This makes the interface more ergonomical, as we can prove to the type checker
        // at compile time that a given Agent has a certain AgentKind.
        //
        // Why is this safe?
        // PhantomData<T> (which is what Agent<T> boils down to) is a zero-sized type, which means
        // it does not actually change the layout of the struct. There is some discussion in [1],
        // which suggests that this is true for #[repr(C)] structs (which Agent is). We can
        // therefore safely transmute from Agent<U> to Agent<T>, for any U and T.
        //
        // Can this lead to unsafety?
        // No, the actual data access is still done through safe rust and a if-let. In the worst
        // case it can lead to an unexpected panic, but the "guarantee" made by T is rather weak in
        // that regard.
        //
        // What are the alternatives?
        // None, as far as I'm aware. Going from Agent<U> to Agent<T> is possible in safe Rust by
        // destructuring the struct, or alternatively by [2] (if it would be implemented). However,
        // when dealing with references, there seems to be no way to safely go from Agent<U> to
        // Agent<T>, even if they share the same layout.
        //
        // [1]: https://www.reddit.com/r/rust/comments/avrbvc/is_it_safe_to_transmute_foox_to_fooy_if_the/
        // [2]: https://github.com/rust-lang/rfcs/pull/2528
        unsafe { &*(self as *const Agent<Kind> as *const Agent<T>) }
    }

    /// Erase any extra information about the contained agent kind.
    #[inline]
    pub fn erase(&self) -> &Agent {
        self.transmute()
    }

    /// Try to convert this `Agent` to an `Agent` representing a `Player`.
    #[inline]
    pub fn as_player(&self) -> Option<&Agent<Player>> {
        if self.kind.is_player() {
            Some(self.transmute())
        } else {
            None
        }
    }

    /// Try to convert this `Agent` to an `Agent` representing a `Gadget`.
    #[inline]
    pub fn as_gadget(&self) -> Option<&Agent<Gadget>> {
        if self.kind.is_gadget() {
            Some(self.transmute())
        } else {
            None
        }
    }

    /// Try to convert this `Agent` to an `Agent` representing a `Character`.
    #[inline]
    pub fn as_character(&self) -> Option<&Agent<Character>> {
        if self.kind.is_character() {
            Some(self.transmute())
        } else {
            None
        }
    }
}

impl Agent<Player> {
    /// Directly access the underlying player data.
    #[inline]
    pub fn player(&self) -> &Player {
        self.kind.as_player().expect("Agent<Player> had no player!")
    }

    /// Shorthand to get the player's account name.
    #[inline]
    pub fn account_name(&self) -> &str {
        self.player().account_name()
    }

    /// Shorthand to get the player's character name.
    #[inline]
    pub fn character_name(&self) -> &str {
        self.player().character_name()
    }

    /// Shorthand to get the player's elite specialization.
    #[inline]
    pub fn elite(&self) -> Option<EliteSpec> {
        self.player().elite()
    }

    /// Shorthand to get the player's profession.
    #[inline]
    pub fn profession(&self) -> Profession {
        self.player().profession()
    }

    /// Shorthand to get the player's subgroup.
    #[inline]
    pub fn subgroup(&self) -> u8 {
        self.player().subgroup()
    }
}

impl Agent<Gadget> {
    /// Directly access the underlying gadget data.
    #[inline]
    pub fn gadget(&self) -> &Gadget {
        self.kind.as_gadget().expect("Agent<Gadget> had no gadget!")
    }

    /// Shorthand to get the gadget's id.
    #[inline]
    pub fn id(&self) -> u16 {
        self.gadget().id()
    }

    /// Shorthand to get the gadget's name.
    #[inline]
    pub fn name(&self) -> &str {
        self.gadget().name()
    }
}

impl Agent<Character> {
    /// Directly access the underlying character data.
    #[inline]
    pub fn character(&self) -> &Character {
        self.kind
            .as_character()
            .expect("Agent<Character> had no character!")
    }

    /// Shorthand to get the character's id.
    #[inline]
    pub fn id(&self) -> u16 {
        self.character().id()
    }

    /// Shorthand to get the character's name.
    #[inline]
    pub fn name(&self) -> &str {
        self.character().name()
    }
}

/// A fully processed log file.
#[derive(Debug, Clone)]
pub struct Log {
    agents: Vec<Agent>,
    events: Vec<Event>,
    boss_id: u16,
}

impl Log {
    /// Return all agents present in this log.
    #[inline]
    pub fn agents(&self) -> &[Agent] {
        &self.agents
    }

    /// Return an agent based on its address.
    pub fn agent_by_addr(&self, addr: u64) -> Option<&Agent> {
        self.agents.iter().find(|a| a.addr == addr)
    }

    /// Return an agent based on the instance ID.
    pub fn agent_by_instance_id(&self, instance_id: u16) -> Option<&Agent> {
        self.agents.iter().find(|a| a.instance_id == instance_id)
    }

    /// Return the master agent of the given agent.
    ///
    /// * `addr` - The address of the agent which to get the master for.
    pub fn master_agent(&self, addr: u64) -> Option<&Agent> {
        self.agent_by_addr(addr)
            .and_then(|a| a.master_agent)
            .and_then(|a| self.agent_by_addr(a))
    }

    /// Return an iterator over all agents that represent player characters.
    pub fn players(&self) -> impl Iterator<Item = &Agent<Player>> {
        self.agents.iter().filter_map(|a| a.as_player())
    }

    /// Return an iterator over all agents that are NPCs.
    pub fn npcs(&self) -> impl Iterator<Item = &Agent<Character>> {
        self.agents.iter().filter_map(|a| a.as_character())
    }

    /// Return the boss agent.
    ///
    /// Be careful with encounters that have multiple boss agents, such as Trio
    /// and Xera.
    pub fn boss(&self) -> &Agent {
        self.npcs()
            .find(|c| c.character().id == self.boss_id)
            .map(Agent::erase)
            .expect("Boss has no agent!")
    }

    /// Return all boss agents.
    ///
    /// This correctly returns multiple agents on encounters where multiple
    /// agents are needed.
    pub fn boss_agents(&self) -> Vec<&Agent> {
        let boss_ids = if self.boss_id == Boss::Xera as u16 {
            vec![self.boss_id, gamedata::XERA_PHASE2_ID]
        } else {
            vec![self.boss_id]
        };
        self.npcs()
            .filter(|c| boss_ids.contains(&c.character().id))
            .map(Agent::erase)
            .collect()
    }

    /// Check whether the given address is a boss agent.
    pub fn is_boss(&self, addr: u64) -> bool {
        self.boss_agents().into_iter().any(|a| a.addr() == addr)
    }

    /// Returns the encounter id.
    #[inline]
    pub fn encounter_id(&self) -> u16 {
        self.boss_id
    }

    /// Returns the encounter, if present.
    ///
    /// Some logs don't have an encounter set or have an ID that is unknown to us (for example, if
    /// people set up arcdps with custom IDs). Therefore, this method can only return the encounter
    /// if we know about it in [`Boss`][Boss].
    #[inline]
    pub fn encounter(&self) -> Option<Boss> {
        Boss::from_u16(self.boss_id)
    }

    /// Return all events present in this log.
    #[inline]
    pub fn events(&self) -> &[Event] {
        &self.events
    }
}

/// Convenience data accessing funtions for [`Log`][Log]s.
///
/// The information that is gathered by those functions is "expensive" to compute, as we have to
/// loop through every event. They are not saved in the header, and instead are implemented using
/// special [`EventKind`][EventKind]s. This is not a limitation of `evtclib`, but rather a result
/// of how arcdps stores the data.
///
/// This also means that those functions are fallible because we cannot guarantee that the special
/// events that we're looking for is actually present in every log file.
///
/// Use those functions only if necessary, and prefer to cache the result if it will be reused!
impl Log {
    /// Check whether the fight was done with challenge mote activated.
    ///
    /// This function always returns `false` if
    /// * The fight was done without CM
    /// * The fight does not have a CM
    /// * We cannot determine whether the CM was active
    /// * The boss is not known
    pub fn is_cm(&self) -> bool {
        let trigger = self
            .encounter()
            .map(Boss::cm_trigger)
            .unwrap_or(CmTrigger::Unknown);
        match trigger {
            CmTrigger::HpThreshold(hp_threshold) => {
                for event in self.events() {
                    if let EventKind::MaxHealthUpdate {
                        agent_addr,
                        max_health,
                    } = *event.kind()
                    {
                        if self.is_boss(agent_addr) && max_health >= hp_threshold as u64 {
                            return true;
                        }
                    }
                }
                false
            }

            CmTrigger::BuffPresent(wanted_buff_id) => {
                for event in self.events() {
                    if let EventKind::BuffApplication { buff_id, .. } = *event.kind() {
                        if buff_id == wanted_buff_id {
                            return true;
                        }
                    }
                }
                false
            }

            CmTrigger::TimeBetweenBuffs(buff_id, threshold) => {
                let tbb = time_between_buffs(&self.events, buff_id);
                tbb != 0 && tbb <= threshold
            }

            CmTrigger::Always => true,

            CmTrigger::None | CmTrigger::Unknown => false,
        }
    }

    /// Get the timestamp of when the log was started.
    ///
    /// The returned value is a unix timestamp in the local time zone.
    ///
    /// If the [`LogStart`][EventKind::LogStart] event cannot be found, this function returns
    /// `None`.
    pub fn local_start_timestamp(&self) -> Option<u32> {
        self.events().iter().find_map(|e| {
            if let EventKind::LogStart {
                local_timestamp, ..
            } = e.kind()
            {
                Some(*local_timestamp)
            } else {
                None
            }
        })
    }

    /// Get the timestamp of when the log was ended.
    ///
    /// The returned value is a unix timestamp in the local time zone.
    ///
    /// If the [`LogEnd`][EventKind::LogEnd] event cannot be found, this function returns `None`.
    pub fn local_end_timestamp(&self) -> Option<u32> {
        self.events().iter().find_map(|e| {
            if let EventKind::LogEnd {
                local_timestamp, ..
            } = e.kind()
            {
                Some(*local_timestamp)
            } else {
                None
            }
        })
    }

    /// Check if rewards for this fight have been given out.
    ///
    /// This can be used as an indication whether the fight was successful (`true`) or not
    /// (`false`).
    pub fn was_rewarded(&self) -> bool {
        self.events().iter().any(|e| {
            if let EventKind::Reward { .. } = e.kind() {
                true
            } else {
                false
            }
        })
    }
}

fn time_between_buffs(events: &[Event], wanted_buff_id: u32) -> u64 {
    let mut time_maps: HashMap<u64, Vec<u64>> = HashMap::new();
    for event in events {
        if let EventKind::BuffApplication {
            destination_agent_addr,
            buff_id,
            ..
        } = event.kind()
        {
            if *buff_id == wanted_buff_id {
                time_maps
                    .entry(*destination_agent_addr)
                    .or_default()
                    .push(event.time());
            }
        }
    }
    let timestamps = if let Some(ts) = time_maps.values().max_by_key(|v| v.len()) {
        ts
    } else {
        return 0;
    };
    timestamps
        .iter()
        .zip(timestamps.iter().skip(1))
        .map(|(a, b)| b - a)
        // Arbitrary limit to filter out duplicated buff application events
        .filter(|x| *x > 50)
        .min()
        .unwrap_or(0)
}