1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//    http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::fmt;
use std::fmt::{Debug};
use crate::util::{ToHexString};
use super::opcode;

/// Instructions correspond (roughly speaking) to EVM bytecodes.
/// There are a few points to make about this:
///
/// 1. A single instruction can represent an entire _class_ of related
/// bytecodes.  For example, the `PUSH(bytes)` instruction corresponds
/// to the various push bytecodes (e.g. `PUSH1`, `PUSH2`, etc).
///
/// 2. Instructions do not necessarily represent actual EVM bytecodes.
/// For example, the `LABEL` instruction has no concrete bytecode
/// representation.[^label_note] Such instructions are typically
/// relevant only at a higher level (e.g. for assembly language).
///
/// 3. Instructions are parameterised over the type of _control flow_
/// they support (i.e. their `Operand`s).  This allows
/// `Instruction<T>` to be reused for representing actual bytecodes as
/// well as assembly language instructions.
///
/// 4. All concrete bytecodes (past and present) are represented by an
/// instruction.  Thus, depending on the fork, some instructions may
/// not be considered valid in a given context.
///
/// The intention is that all known instructions are represented here
/// in one place, rather than e.g. being separated (somehow) by fork.
///
/// [^label_note]: **NOTE:** One might consider `JUMPDEST` as the
/// appropriate representation.  However, since this is a no-operation
/// under the EVM Object Format, it is represented by its own
/// instruction.
#[derive(Clone, Debug, PartialEq)]
pub enum Instruction {
    // ===============================================================
    // 0s: Stop and Arithmetic Operations
    // ===============================================================    
    /// Halt execution successfully with empty return data.
    STOP,
    /// Arithmetic addition modulo 2<sup>256</sup>.
    ADD,
    /// Arithmetic multiplication modulo 2<sup>256</sup>.    
    MUL,
    /// Arithmetic subtraction modulo 2<sup>256</sup>.
    SUB,
    /// Arithmetic division which rounds towards zero and where
    /// _division by zero_ returns zero.  For example, `3 / 2` gives
    /// `1`.
    DIV,
    /// Signed arithmetic division which rounds towards zero (i.e. it
    /// is
    /// [non-Euclidian](https://en.wikipedia.org/wiki/Euclidean_division))
    /// and where _division by zero_ returns zero.  For example, `-1 /
    /// 2` gives `0`.
    SDIV,
    /// Unsigned arithmetic _modulus_ operator.  Thus, for example, `3
    /// % 2` gives `1`.
    MOD,
    /// Signed arithmetic _remainder_ operator.  Thus, for example,
    /// `-1 % 2` gives `-1`.
    SMOD,
    /// Arithmetic addition modulo a given value `n`.  This is
    /// typically used as a cryptographic primitive, where `n` is the
    /// order of a given [prime
    /// field](https://en.wikipedia.org/wiki/Finite_field).
    ADDMOD,
    /// Arithmetic multiplication modulo a given value `n`.  This is
    /// typically used as a cryptographic primitive, where `n` is the
    /// order of a given [prime
    /// field](https://en.wikipedia.org/wiki/Finite_field).
    MULMOD,
    /// Arithmetic exponentiation modulo 2<sup>256</sup>.
    EXP,
    /// Sign extend a value using the _most significant bit (msb)_ of
    /// its _kth_ byte.  Consider this example for v:
    ///
    /// ```text
    ///      23    16 15     8 7      0
    ///     +--------+--------+--------+
    /// ... |10111010|10010101|01000101|
    ///     +--------+--------+--------+
    /// ```
    ///
    /// Then, perfoming a sign extend with `k=0` gives:
    ///
    /// ```text
    ///      23    16 15     8 7      0
    ///     +--------+--------+--------+
    /// ... |00000000|00000000|01000101|
    ///     +--------+--------+--------+
    /// ```
    ///
    /// Since the msb of byte 0 is 0, everything above that is set to
    /// zero.  In contrast, performing a sign extend of our original
    /// input with `k=1` gives:
    ///
    /// ```text
    ///      23    16 15     8 7      0
    ///     +--------+--------+--------+
    /// ... |11111111|10010101|01000101|
    ///     +--------+--------+--------+
    /// ```
    ///
    /// Since, in this case, the msb of byte 1 is 1.
    SIGNEXTEND,
    // 10s: Comparison & Bitwise Logic Operations
    LT,
    GT,
    SLT,
    SGT,
    EQ,
    ISZERO,
    AND,
    OR,
    XOR,
    NOT,
    BYTE,
    SHL,
    SHR,
    SAR,
    // 20s: Keccak256
    KECCAK256,
    // 30s: Environmental Information
    ADDRESS,
    BALANCE,
    ORIGIN,
    CALLER,
    CALLVALUE,
    CALLDATALOAD,
    CALLDATASIZE,
    CALLDATACOPY,
    CODESIZE,
    CODECOPY,
    GASPRICE,
    EXTCODESIZE,
    EXTCODECOPY,
    RETURNDATASIZE,
    RETURNDATACOPY,
    EXTCODEHASH,
    // 40s: Block Information
    BLOCKHASH,
    COINBASE,
    TIMESTAMP,
    NUMBER,
    DIFFICULTY,
    GASLIMIT,
    CHAINID,
    SELFBALANCE,
    // 50s: Stack, Memory, Storage and Flow Operations
    POP,
    MLOAD,
    MSTORE,
    MSTORE8,
    SLOAD,
    SSTORE,
    JUMP,
    JUMPI,
    PC,
    MSIZE,
    GAS,
    JUMPDEST,
    RJUMP(usize),  // EIP4200
    RJUMPI(usize), // EIP4200
    PUSH0, // EIP3855
    // 60 & 70s: Push Operations
    PUSH(Vec<u8>),
    // 80s: Duplicate Operations
    DUP(u8),
    // 90s: Exchange Operations
    SWAP(u8),
    // a0s: Logging Operations
    LOG(u8),
    // f0s: System Operations
    CREATE,
    CALL,
    CALLCODE,
    RETURN,
    DELEGATECALL,
    CREATE2,
    STATICCALL,
    REVERT,
    INVALID,
    SELFDESTRUCT,
    // Signals arbitrary data in the contract, rather than bytecode
    // instructions.
    DATA(Vec<u8>),
    // (Virtual) Indicates a specific location on the stack should be
    // sent to *havoc*.  Here, `0` represents the top of the stack.
    HAVOC(usize)
}

use Instruction::*;

impl Instruction {
    /// Determine whether or not control can continue to the next
    /// instruction.
    pub fn fallthru(&self) -> bool {
        match self {
            DATA(_) => false,
            INVALID => false,
            JUMP => false,
            RJUMP(_) => false,
            STOP => false,
            RETURN => false,
            REVERT => false,
            SELFDESTRUCT => false,
            _ => true,
        }
    }

    /// Determine whether or not this instruction can branch.  That
    /// is, whether or not it is a `JUMP` or `JUMPI` instruction.
    pub fn can_branch(&self) -> bool {
       matches!(self, JUMP|JUMPI|RJUMP(_)|RJUMPI(_))
    }
    
    /// Encode an instruction into a byte sequence, assuming a given
    /// set of label offsets.
    pub fn encode(&self, pc: usize, bytes: &mut Vec<u8>) {
        // Push operands (if applicable)
        match self {
            DATA(args) => {
                // Push operands
                bytes.extend(args);
            }
            RJUMP(byte_offset)|RJUMPI(byte_offset) => {
                // Convert absolute byte offset into relative offset.
                let rel_offset = to_rel_offset(pc,*byte_offset);
                // Push opcode
                bytes.push(self.opcode());
                // Push operands
                bytes.extend(&rel_offset.to_be_bytes());
            }
            PUSH(args) => {
                // Push opcode
                bytes.push(self.opcode());
                // Push operands
                bytes.extend(args);
            }
            HAVOC(_) => {
                // Virtial instruction, so ignore
            }
            _ => {
                // All other instructions have no operands.
                bytes.push(self.opcode());
            }
        }
    }

    /// Determine the length of this instruction (in bytes).
    pub fn length(&self) -> usize {
        match self {
            DATA(bytes) => bytes.len(),
            // Static jumps
            RJUMP(_) => 3,
            RJUMPI(_) => 3,
            // Push instructions
            PUSH(bs) => 1 + bs.len(),
            // Virtual instructions
            HAVOC(_) => 0,
            // Default case
            _ => 1,
        }
    }    

    /// Determine how many stack operands this instruction consumes.
    pub fn operands(&self) -> usize {
        match self {
            STOP => 0,
            ADD|MUL|SUB|DIV|SDIV|MOD|SMOD|EXP|SIGNEXTEND => 2,
            ADDMOD|MULMOD => 3,        
            LT|GT|SLT|SGT|EQ|AND|OR|XOR => 2,
            ISZERO|NOT => 1,
            BYTE|SHL|SHR|SAR|KECCAK256 => 2,
            // 30s: Environmental Information
            ADDRESS|ORIGIN|CALLER|CALLVALUE|CALLDATASIZE|CODESIZE|RETURNDATASIZE|GASPRICE => 0,
            BALANCE|CALLDATALOAD|EXTCODESIZE|EXTCODEHASH => 1,
            CALLDATACOPY|CODECOPY|RETURNDATACOPY => 3,
            EXTCODECOPY => 4,
            // 40s: Block Information
            BLOCKHASH => 1,
            COINBASE|TIMESTAMP|NUMBER|DIFFICULTY|GASLIMIT|CHAINID|SELFBALANCE => 0,
            // 50s: Stack, Memory, Storage and Flow Operations
            MSIZE|PC|GAS|JUMPDEST|RJUMP(_) => 0,
            MLOAD|SLOAD|JUMP|POP|RJUMPI(_) => 1,            
            MSTORE|MSTORE8|SSTORE|JUMPI => 2,
            // 60s & 70s: Push Operations            
            PUSH0|PUSH(_) => 0,
            // 80s: Duplication Operations
            DUP(_) => 0,
            // 90s: Swap Operations
            SWAP(_) => 0,
            // a0s: Log Operations
            LOG(n) => (2+n) as usize,
            // f0s: System Operations
            INVALID => 0,
            SELFDESTRUCT => 1,
            RETURN|REVERT => 2,            
            CREATE => 3,
            CREATE2 => 4,            
            DELEGATECALL|STATICCALL => 6,            
            CALL|CALLCODE => 7,
            // Virtual instructions
            HAVOC(_) => 0,
            DATA(_) => 0,
            _ => { unreachable!("{:?}",self); }
        }
    }
    
    /// Determine the opcode for a given instruction.  In many cases,
    /// this is a straightforward mapping.  However, in other cases,
    /// its slightly more involved as a calculation involving the
    /// operands is required.
    pub fn opcode(&self) -> u8 {
        match self {
            // 0s: Stop and Arithmetic Operations
            STOP => opcode::STOP,
            ADD => opcode::ADD,
            MUL => opcode::MUL,
            SUB => opcode::SUB,
            DIV => opcode::DIV,
            SDIV => opcode::SDIV,
            MOD => opcode::MOD,
            SMOD => opcode::SMOD,
            ADDMOD => opcode::ADDMOD,
            MULMOD => opcode::MULMOD,
            EXP => opcode::EXP,
            SIGNEXTEND => opcode::SIGNEXTEND,
            // 10s: Comparison & Bitwise Logic Operations
            LT => opcode::LT,
            GT => opcode::GT,
            SLT => opcode::SLT,
            SGT => opcode::SGT,
            EQ => opcode::EQ,
            ISZERO => opcode::ISZERO,
            AND => opcode::AND,
            OR => opcode::OR,
            XOR => opcode::XOR,
            NOT => opcode::NOT,
            BYTE => opcode::BYTE,
            SHL => opcode::SHL,
            SHR => opcode::SHR,
            SAR => opcode::SAR,
            // 20s: Keccak256
            KECCAK256 => opcode::KECCAK256,
            // 30s: Environmental Information
            ADDRESS => opcode::ADDRESS,
            BALANCE => opcode::BALANCE,
            ORIGIN => opcode::ORIGIN,
            CALLER => opcode::CALLER,
            CALLVALUE => opcode::CALLVALUE,
            CALLDATALOAD => opcode::CALLDATALOAD,
            CALLDATASIZE => opcode::CALLDATASIZE,
            CALLDATACOPY => opcode::CALLDATACOPY,
            CODESIZE => opcode::CODESIZE,
            CODECOPY => opcode::CODECOPY,
            GASPRICE => opcode::GASPRICE,
            EXTCODESIZE => opcode::EXTCODESIZE,
            EXTCODECOPY => opcode::EXTCODECOPY,
            RETURNDATASIZE => opcode::RETURNDATASIZE,
            RETURNDATACOPY => opcode::RETURNDATACOPY,
            EXTCODEHASH => opcode::EXTCODEHASH,
            // 40s: Block Information
            BLOCKHASH => opcode::BLOCKHASH,
            COINBASE => opcode::COINBASE,
            TIMESTAMP => opcode::TIMESTAMP,
            NUMBER => opcode::NUMBER,
            DIFFICULTY => opcode::DIFFICULTY,
            GASLIMIT => opcode::GASLIMIT,
            CHAINID => opcode::CHAINID,
            SELFBALANCE => opcode::SELFBALANCE,
            // 50s: Stack, Memory, Storage and Flow Operations
            POP => opcode::POP,
            MLOAD => opcode::MLOAD,
            MSTORE => opcode::MSTORE,
            MSTORE8 => opcode::MSTORE8,
            SLOAD => opcode::SLOAD,
            SSTORE => opcode::SSTORE,
            JUMP => opcode::JUMP,
            JUMPI => opcode::JUMPI,
            PC => opcode::PC,
            MSIZE => opcode::MSIZE,
            GAS => opcode::GAS,
            JUMPDEST => opcode::JUMPDEST,
            RJUMP(_) => opcode::RJUMP,
            RJUMPI(_) => opcode::RJUMPI,
            PUSH0 => opcode::PUSH0,
            // 60s & 70s: Push Operations            
            PUSH(bs) => {
                if bs.is_empty() || bs.len() > 32 {
                    panic!("invalid push");
                } else {
                    let n = (bs.len() as u8) - 1;
                    opcode::PUSH1 + n
                }
            }
            // 80s: Duplication Operations
            DUP(n) => {
                if *n == 0 || *n > 32 { panic!("invalid dup"); }
                opcode::DUP1 + (n-1)
            }
            // 90s: Swap Operations
            SWAP(n) => {
                if *n == 0 || *n > 32 { panic!("invalid swap"); }
                opcode::SWAP1 + (n-1)
            }
            // a0s: Log Operations
            LOG(n) => {
                if *n > 4 { panic!("invalid log"); }
                opcode::LOG0 + n
            }
            // f0s: System Operations
            CREATE => opcode::CREATE,
            CALL => opcode::CALL,
            CALLCODE => opcode::CALLCODE,
            RETURN => opcode::RETURN,
            DELEGATECALL => opcode::DELEGATECALL,
            CREATE2 => opcode::CREATE2,
            STATICCALL => opcode::STATICCALL,
            REVERT => opcode::REVERT,
            INVALID => opcode::INVALID,
            SELFDESTRUCT => opcode::SELFDESTRUCT,
            //
            _ => {
                panic!("Invalid instruction ({:?})", self);
            }
        }
    }

    /// Decode the next instruction in a given sequence of bytes.
    pub fn decode(pc: usize, bytes: &[u8]) -> Instruction {
        let opcode = if pc < bytes.len() { bytes[pc] } else { 0x00 };
        //
        match opcode {
            // 0s: Stop and Arithmetic Operations
            opcode::STOP => STOP,
            opcode::ADD => ADD,
            opcode::MUL => MUL,
            opcode::SUB => SUB,
            opcode::DIV => DIV,
            opcode::SDIV => SDIV,
            opcode::MOD => MOD,
            opcode::SMOD => SMOD,
            opcode::ADDMOD => ADDMOD,
            opcode::MULMOD => MULMOD,
            opcode::EXP => EXP,
            opcode::SIGNEXTEND => SIGNEXTEND,
            // 10s: Comparison & Bitwise Logic Operations
            opcode::LT => LT,
            opcode::GT => GT,
            opcode::SLT => SLT,
            opcode::SGT => SGT,
            opcode::EQ => EQ,
            opcode::ISZERO => ISZERO,
            opcode::AND => AND,
            opcode::OR => OR,
            opcode::XOR => XOR,
            opcode::NOT => NOT,
            opcode::BYTE => BYTE,
            opcode::SHL => SHL,
            opcode::SHR => SHR,
            opcode::SAR => SAR,
            // 20s: SHA3
            opcode::KECCAK256 => KECCAK256,
            // 30s: Environmental Information
            opcode::ADDRESS => ADDRESS,
            opcode::BALANCE => BALANCE,
            opcode::ORIGIN => ORIGIN,
            opcode::CALLER => CALLER,
            opcode::CALLVALUE => CALLVALUE,
            opcode::CALLDATALOAD => CALLDATALOAD,
            opcode::CALLDATASIZE => CALLDATASIZE,
            opcode::CALLDATACOPY => CALLDATACOPY,
            opcode::CODESIZE => CODESIZE,
            opcode::CODECOPY => CODECOPY,
            opcode::GASPRICE => GASPRICE,
            opcode::EXTCODESIZE => EXTCODESIZE,
            opcode::EXTCODECOPY => EXTCODECOPY,
            opcode::RETURNDATASIZE => RETURNDATASIZE,
            opcode::RETURNDATACOPY => RETURNDATACOPY,
            opcode::EXTCODEHASH => EXTCODEHASH,
            // 40s: Block Information
            opcode::BLOCKHASH => BLOCKHASH,
            opcode::COINBASE => COINBASE,
            opcode::TIMESTAMP => TIMESTAMP,
            opcode::NUMBER => NUMBER,
            opcode::DIFFICULTY => DIFFICULTY,
            opcode::GASLIMIT => GASLIMIT,
            opcode::CHAINID => CHAINID,
            opcode::SELFBALANCE => SELFBALANCE,
            // 50s: Stack, Memory, Storage and Flow Operations
            opcode::POP => POP,
            opcode::MLOAD => MLOAD,
            opcode::MSTORE => MSTORE,
            opcode::MSTORE8 => MSTORE8,
            opcode::SLOAD => SLOAD,
            opcode::SSTORE => SSTORE,
            opcode::JUMP => JUMP,
            opcode::JUMPI => JUMPI,
            opcode::PC => PC,
            opcode::MSIZE => MSIZE,
            opcode::GAS => GAS,
            opcode::JUMPDEST => JUMPDEST,
            // opcode::RJUMP => {
            //     // NOTE: these instructions are not permitted to
            //     // overflow, and therefore don't require padding.
            //     let arg = [bytes[pc+1],bytes[pc+2]];
            //     RJUMP(i16::from_be_bytes(arg))
            // }
            // opcode::RJUMPI => {
            //     // NOTE: these instructions are not permitted to
            //     // overflow, and therefore don't require padding.
            //     let arg = [bytes[pc+1],bytes[pc+2]];
            //     RJUMPI(i16::from_be_bytes(arg))
            // }
            opcode::PUSH0 => PUSH0,
            // 60s & 70s: Push Operations
            opcode::PUSH1..=opcode::PUSH32 => {
                let m = pc + 1;
                let n = pc + 2 + ((opcode - opcode::PUSH1) as usize);
                if n <= bytes.len() {
                    // Simple case: does not overflow
                    PUSH(bytes[m..n].to_vec())
                } else {
                    // Harder case: does overflow code.
                    let mut bs = bytes[m..].to_vec();
                    // Pad out with zeros
                    for _i in 0..(n - bytes.len()) {
                        bs.push(0);
                    }
                    // Done
                    PUSH(bs)
                }
            }
            // 80s: Duplicate Operations
            opcode::DUP1..=opcode::DUP16 => DUP(opcode - 0x7f),
            // 90s: Swap Operations
            opcode::SWAP1..=opcode::SWAP16 => SWAP(opcode - 0x8f),
            // a0s: Log Operations
            opcode::LOG0..=opcode::LOG4 => LOG(opcode - 0xa0),
            // f0s: System Operations
            opcode::CREATE => CREATE,
            opcode::CALL => CALL,
            opcode::CALLCODE => CALLCODE,
            opcode::RETURN => RETURN,
            opcode::DELEGATECALL => DELEGATECALL,
            opcode::CREATE2 => CREATE2,
            opcode::STATICCALL => STATICCALL,
            opcode::REVERT => REVERT,
            opcode::INVALID => INVALID,
            opcode::SELFDESTRUCT => SELFDESTRUCT,
            // Unknown
            _ => DATA(vec![opcode]),
        }
    }    
}

impl fmt::Display for Instruction {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        // Use the default (debug) formatter.  Its only for certain
        // instructions that we need to do anything different.
        match self {
            DATA(bytes) => {
                // Print bytes as hex string
                write!(f, "db {}", bytes.to_hex_string())
            }
            DUP(n) => {
                write!(f, "dup{}",n)
            }
            LOG(n) => {
                write!(f, "log{n}")
            }
            JUMPDEST => {
                write!(f, "jumpdest")
            }
            PUSH(bytes) => {
                // Convert bytes into hex string
                let hex = bytes.to_hex_string();
                // Print!
                write!(f, "push {}", hex)
            }
            RJUMP(offset) => {
                write!(f, "rjump {offset}")
            }
            RJUMPI(offset) => {
                write!(f, "rjumpi {offset}")
            }
            SWAP(n) => {
                write!(f, "swap{n}")
            }
            HAVOC(n) => {
                write!(f, "havoc {n}")
            }            
            _ => {
                let s = format!("{:?}",self).to_lowercase();
                write!(f, "{s}")
            }
        }
    }
}


// ============================================================================
// Disassemble
// ============================================================================

/// A trait for converting something (e.g. a byte sequence) into a
/// vector of instructions.
pub trait Disassemble {
    fn disassemble(&self) -> Vec<Instruction>;
}

impl Disassemble for [u8] {
    fn disassemble(&self) -> Vec<Instruction> {
        // Initialise instruction offsets
        let mut insns = Vec::new();        
        let mut byte_offset = 0;
        //
        while byte_offset < self.len() {
            let insn = Instruction::decode(byte_offset,self);
            byte_offset += insn.length();            
            insns.push(insn);
        }
        // Done
        insns
    }
}

// ============================================================================
// Assemble
// ============================================================================

/// A trait for converting zero or more instructions into vector of
/// bytes.
pub trait Assemble {
    fn assemble(&self) -> Vec<u8>;
}

impl Assemble for [Instruction] {
    fn assemble(&self) -> Vec<u8> {
        // Encode instructions
        let mut bytes : Vec<u8> = Vec::new();
        let mut pc = 0;
        //        
        for i in self {
            i.encode(pc, &mut bytes);
            pc += i.length();
        }
        // Done
        bytes
    }
}

// ============================================================================
// Utilities
// ============================================================================

/// Calculate the relative offset for a given branch target expressed
/// as an _abstolute byte offset_ from the program counter position
/// where the instruction in question is being instantiated.
fn to_rel_offset(pc: usize, target: usize) -> i16 {
    let mut n = target as isize;
    n -= pc as isize;
    // Following should always be true!
    n as i16
}

/// Calculate the variable bytes for an absolute branch target.
fn to_abs_bytes(large: bool, target: usize) -> Vec<u8> {
    if large || target > 255 {
        vec![(target / 256) as u8, (target % 256) as u8]
    } else {
        vec![target as u8]
    }
}