Struct evmil::Disassembly

source ·
pub struct Disassembly<'a, T = ()> { /* private fields */ }
Expand description

Identifies all contiguous code blocks within the bytecode program. Here, a block is a sequence of bytecodes terminated by either STOP, REVERT, RETURN or JUMP. Observe that a JUMPDEST can only appear as the first instruction of a block. In fact, every reachable block (except the root block) begins with a JUMPDEST.

Implementations§

Examples found in repository?
src/disassembler.rs (line 351)
350
351
352
    fn disassemble<'a>(&'a self) -> Disassembly<'a,()> {
        Disassembly::new(self.as_ref())
    }

Get the state at a given program location.

Get the enclosing block for a given bytecode location.

Determine whether a given block is currently considered reachable or not. Observe the root block (id=0) is always considered reachable.

Examples found in repository?
src/disassembler.rs (line 297)
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
    pub fn build(mut self) -> Self {
        let mut changed = true;
        //
        while changed {
            // Reset indicator
            changed = false;
            // Iterate blocks in order
            for i in 0..self.blocks.len() {
                // Sanity check whether block unreachable.
                if !self.is_block_reachable(i) { continue; }
                // Yes, is reachable so continue.
                let blk = &self.blocks[i];
                let mut ctx = self.contexts[i].clone();
                let mut pc = blk.start;
                // println!("BLOCK (start={}, end={}): {:?}", pc, blk.end, i);
                // println!("CONTEXT (pc={}): {}", pc, ctx);
                // Parse the block
                while pc < blk.end {
                    // Decode instruction at the current position
                    let insn = Instruction::decode(pc,&self.bytes);
                    // Check whether a branch is possible
                    if insn.can_branch() {
                        // Determine branch target
                        let target = ctx.top();
                        // Determine branch context
                        let branch_ctx = ctx.branch(target,&insn);
                        // Convert target into block ID.
                        let block_id = self.get_enclosing_block_id(target);
                        // println!("Branch: target={} (block {})",target,block_id);
                        // println!("Before merge (pc={}): {}", pc, self.contexts[block_id]);
                        // Merge in updated state
                        changed |= self.contexts[block_id].merge(branch_ctx);
                        // println!("After merge (pc={}): {}", pc, self.contexts[block_id]);
                    }
                    // Apply the transfer function!
                    // print!("{:#08x}: {}",pc,ctx);
                    ctx = ctx.transfer(&insn);
                    // println!(" ==>\t{:?}\t==> {}",insn,ctx);
                    // Next instruction
                    pc = pc + insn.length(&[]);
                }
                // Merge state into following block.
                if (i+1) < self.blocks.len() {
                    changed |= self.contexts[i+1].merge(ctx);
                }
            }
        }
        self
    }

Read a slice of bytes from the bytecode program, padding with zeros as necessary.

Examples found in repository?
src/disassembler.rs (line 200)
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
    pub fn to_vec(&self) -> Vec<Instruction> {
        let mut insns = Vec::new();
        let mut last = 0;
        // Iterate blocks in order
        for i in 0..self.blocks.len() {
            let blk = &self.blocks[i];
            let ctx = &self.contexts[i];
            // Check for reachability
            if i == 0 || ctx.is_reachable() {
                // Disassemble block
                self.disassemble_into(blk,&mut insns);
            } else {
                // Not reachable, so must be data.
                let data = self.read_bytes(blk.start,blk.end);
                //
                insns.push(DATA(data));
            }
            // Update gap information
            last = blk.end;
        }
        //
        insns
    }

Refine this disassembly to something (ideally) more precise use a fixed point dataflow analysis. This destroys the original disassembly.

Flattern the disassembly into a sequence of instructions.

Apply flow analysis to refine the results of this disassembly.

Auto Trait Implementations§

Blanket Implementations§

Gets the TypeId of self. Read more
Immutably borrows from an owned value. Read more
Mutably borrows from an owned value. Read more

Returns the argument unchanged.

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.