Struct evmil::Parser

source ·
pub struct Parser { /* private fields */ }

Implementations§

Parse a line of text into a term.

Examples found in repository?
src/parser.rs (line 121)
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
    fn parse_stmt(&mut self) -> Result<Term> {
        // Skip any leading whitespace
        self.skip_whitespace();
    	// Dispatch on lookahead
    	match self.lexer.peek().kind {
    	    Token::Assert => self.parse_stmt_assert(),
    	    Token::Fail => self.parse_stmt_fail(),
    	    Token::Stop => self.parse_stmt_stop(),
    	    Token::Goto => self.parse_stmt_goto(),
    	    Token::If => self.parse_stmt_if(),
            Token::Dot => self.parse_stmt_label(),
    	    Token::Revert => self.parse_stmt_revert(),
            Token::Succeed => self.parse_stmt_succeed(),
            _ => self.parse_stmt_assign()
        }
    }
Examples found in repository?
src/parser.rs (line 129)
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
    fn parse_stmt(&mut self) -> Result<Term> {
        // Skip any leading whitespace
        self.skip_whitespace();
    	// Dispatch on lookahead
    	match self.lexer.peek().kind {
    	    Token::Assert => self.parse_stmt_assert(),
    	    Token::Fail => self.parse_stmt_fail(),
    	    Token::Stop => self.parse_stmt_stop(),
    	    Token::Goto => self.parse_stmt_goto(),
    	    Token::If => self.parse_stmt_if(),
            Token::Dot => self.parse_stmt_label(),
    	    Token::Revert => self.parse_stmt_revert(),
            Token::Succeed => self.parse_stmt_succeed(),
            _ => self.parse_stmt_assign()
        }
    }
Examples found in repository?
src/parser.rs (line 122)
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
    fn parse_stmt(&mut self) -> Result<Term> {
        // Skip any leading whitespace
        self.skip_whitespace();
    	// Dispatch on lookahead
    	match self.lexer.peek().kind {
    	    Token::Assert => self.parse_stmt_assert(),
    	    Token::Fail => self.parse_stmt_fail(),
    	    Token::Stop => self.parse_stmt_stop(),
    	    Token::Goto => self.parse_stmt_goto(),
    	    Token::If => self.parse_stmt_if(),
            Token::Dot => self.parse_stmt_label(),
    	    Token::Revert => self.parse_stmt_revert(),
            Token::Succeed => self.parse_stmt_succeed(),
            _ => self.parse_stmt_assign()
        }
    }
Examples found in repository?
src/parser.rs (line 123)
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
    fn parse_stmt(&mut self) -> Result<Term> {
        // Skip any leading whitespace
        self.skip_whitespace();
    	// Dispatch on lookahead
    	match self.lexer.peek().kind {
    	    Token::Assert => self.parse_stmt_assert(),
    	    Token::Fail => self.parse_stmt_fail(),
    	    Token::Stop => self.parse_stmt_stop(),
    	    Token::Goto => self.parse_stmt_goto(),
    	    Token::If => self.parse_stmt_if(),
            Token::Dot => self.parse_stmt_label(),
    	    Token::Revert => self.parse_stmt_revert(),
            Token::Succeed => self.parse_stmt_succeed(),
            _ => self.parse_stmt_assign()
        }
    }
Examples found in repository?
src/parser.rs (line 124)
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
    fn parse_stmt(&mut self) -> Result<Term> {
        // Skip any leading whitespace
        self.skip_whitespace();
    	// Dispatch on lookahead
    	match self.lexer.peek().kind {
    	    Token::Assert => self.parse_stmt_assert(),
    	    Token::Fail => self.parse_stmt_fail(),
    	    Token::Stop => self.parse_stmt_stop(),
    	    Token::Goto => self.parse_stmt_goto(),
    	    Token::If => self.parse_stmt_if(),
            Token::Dot => self.parse_stmt_label(),
    	    Token::Revert => self.parse_stmt_revert(),
            Token::Succeed => self.parse_stmt_succeed(),
            _ => self.parse_stmt_assign()
        }
    }
Examples found in repository?
src/parser.rs (line 125)
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
    fn parse_stmt(&mut self) -> Result<Term> {
        // Skip any leading whitespace
        self.skip_whitespace();
    	// Dispatch on lookahead
    	match self.lexer.peek().kind {
    	    Token::Assert => self.parse_stmt_assert(),
    	    Token::Fail => self.parse_stmt_fail(),
    	    Token::Stop => self.parse_stmt_stop(),
    	    Token::Goto => self.parse_stmt_goto(),
    	    Token::If => self.parse_stmt_if(),
            Token::Dot => self.parse_stmt_label(),
    	    Token::Revert => self.parse_stmt_revert(),
            Token::Succeed => self.parse_stmt_succeed(),
            _ => self.parse_stmt_assign()
        }
    }
Examples found in repository?
src/parser.rs (line 126)
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
    fn parse_stmt(&mut self) -> Result<Term> {
        // Skip any leading whitespace
        self.skip_whitespace();
    	// Dispatch on lookahead
    	match self.lexer.peek().kind {
    	    Token::Assert => self.parse_stmt_assert(),
    	    Token::Fail => self.parse_stmt_fail(),
    	    Token::Stop => self.parse_stmt_stop(),
    	    Token::Goto => self.parse_stmt_goto(),
    	    Token::If => self.parse_stmt_if(),
            Token::Dot => self.parse_stmt_label(),
    	    Token::Revert => self.parse_stmt_revert(),
            Token::Succeed => self.parse_stmt_succeed(),
            _ => self.parse_stmt_assign()
        }
    }
Examples found in repository?
src/parser.rs (line 127)
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
    fn parse_stmt(&mut self) -> Result<Term> {
        // Skip any leading whitespace
        self.skip_whitespace();
    	// Dispatch on lookahead
    	match self.lexer.peek().kind {
    	    Token::Assert => self.parse_stmt_assert(),
    	    Token::Fail => self.parse_stmt_fail(),
    	    Token::Stop => self.parse_stmt_stop(),
    	    Token::Goto => self.parse_stmt_goto(),
    	    Token::If => self.parse_stmt_if(),
            Token::Dot => self.parse_stmt_label(),
    	    Token::Revert => self.parse_stmt_revert(),
            Token::Succeed => self.parse_stmt_succeed(),
            _ => self.parse_stmt_assign()
        }
    }
Examples found in repository?
src/parser.rs (line 128)
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
    fn parse_stmt(&mut self) -> Result<Term> {
        // Skip any leading whitespace
        self.skip_whitespace();
    	// Dispatch on lookahead
    	match self.lexer.peek().kind {
    	    Token::Assert => self.parse_stmt_assert(),
    	    Token::Fail => self.parse_stmt_fail(),
    	    Token::Stop => self.parse_stmt_stop(),
    	    Token::Goto => self.parse_stmt_goto(),
    	    Token::If => self.parse_stmt_if(),
            Token::Dot => self.parse_stmt_label(),
    	    Token::Revert => self.parse_stmt_revert(),
            Token::Succeed => self.parse_stmt_succeed(),
            _ => self.parse_stmt_assign()
        }
    }
Examples found in repository?
src/parser.rs (line 135)
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
    pub fn parse_stmt_assert(&mut self) -> Result<Term> {
    	self.lexer.snap(Token::Assert)?;
    	let expr = self.parse_expr()?;
        self.lexer.snap(Token::SemiColon)?;
        Ok(Term::Assert(Box::new(expr)))
    }

    pub fn parse_stmt_assign(&mut self) -> Result<Term> {
    	let lhs = self.parse_expr()?;
        self.skip_whitespace();
        self.lexer.snap(Token::Equals)?;
    	let rhs = self.parse_expr()?;
        self.lexer.snap(Token::SemiColon)?;
        Ok(Term::Assignment(Box::new(lhs),Box::new(rhs)))
    }

    pub fn parse_stmt_fail(&mut self) -> Result<Term> {
    	self.lexer.snap(Token::Fail)?;
    	self.lexer.snap(Token::SemiColon)?;
        Ok(Term::Fail)
    }

    pub fn parse_stmt_stop(&mut self) -> Result<Term> {
    	self.lexer.snap(Token::Stop)?;
    	self.lexer.snap(Token::SemiColon)?;
        Ok(Term::Stop)
    }

    pub fn parse_stmt_goto(&mut self) -> Result<Term> {
    	self.lexer.snap(Token::Goto)?;
        self.skip_whitespace();
    	let target = self.lexer.snap(Token::Identifier)?;
        self.lexer.snap(Token::SemiColon)?;
        Ok(Term::Goto(self.lexer.get_str(target)))
    }

    pub fn parse_stmt_if(&mut self) -> Result<Term> {
    	self.lexer.snap(Token::If)?;
    	let expr = self.parse_expr()?;
        self.skip_whitespace();
    	self.lexer.snap(Token::Goto)?;
        self.skip_whitespace();
    	let target = self.lexer.snap(Token::Identifier)?;
        self.lexer.snap(Token::SemiColon)?;
        Ok(Term::IfGoto(Box::new(expr),self.lexer.get_str(target)))
    }

    pub fn parse_stmt_label(&mut self) -> Result<Term> {
        self.lexer.snap(Token::Dot)?;
    	let target = self.lexer.snap(Token::Identifier)?;
        Ok(Term::Label(self.lexer.get_str(target)))
    }

    pub fn parse_stmt_revert(&mut self) -> Result<Term> {
    	self.lexer.snap(Token::Revert)?;
        let exprs = self.parse_expr_list(Token::SemiColon)?;
    	self.lexer.snap(Token::SemiColon)?;
        Ok(Term::Revert(exprs))
    }

    pub fn parse_stmt_succeed(&mut self) -> Result<Term> {
    	self.lexer.snap(Token::Succeed)?;
        let exprs = self.parse_expr_list(Token::SemiColon)?;
    	self.lexer.snap(Token::SemiColon)?;
        Ok(Term::Succeed(exprs))
    }

    // =========================================================================
    // Expressions
    // =========================================================================

    pub fn parse_expr(&mut self) -> Result<Term> {
        self.parse_expr_binary(3)
    }

    /// Parse a binary expression at a given _level_.  Higher levels
    /// indicate expressions which bind _less tightly_.  Furthermore,
    /// level `0` corresponds simply to parsing a unary expression.
    pub fn parse_expr_binary(&mut self, level: usize) -> Result<Term> {
        if level == 0 {
            self.parse_expr_postfix()
        } else {
            let tokens = BINARY_CONNECTIVES[level-1];
            // Parse level below
    	    let lhs = self.parse_expr_binary(level-1)?;
            // Skip remaining whitespace (on this line)
            self.skip_whitespace();
	    // Check whether logical connective follows
    	    let lookahead = self.lexer.snap_any(tokens);
            //
            match lookahead {
                Ok(s) => {
                    // FIXME: turn this into a loop?
	            let rhs = self.parse_expr_binary(level)?;
                    let bop = Self::binop_from_token(s.kind).unwrap();
	            Ok(Term::Binary(bop,Box::new(lhs),Box::new(rhs)))
                }
                Err(_) => {
                    Ok(lhs)
                }
            }
        }
    }

    pub fn parse_expr_postfix(&mut self) -> Result<Term> {
        let mut expr = self.parse_expr_term()?;
        // Check for postfix unary operator.
    	let lookahead = self.lexer.peek();
    	// FIXME: managed nested operators
        expr = match lookahead.kind {
            Token::LeftSquare => self.parse_expr_arrayaccess(expr)?,
            //TokenType::LeftBrace => self.parse_expr_invoke(expr)?,
            _ => expr
        };
        // Done
        Ok(expr)
    }

    pub fn parse_expr_arrayaccess(&mut self, src: Term) -> Result<Term> {
        self.lexer.snap(Token::LeftSquare)?;
        let index = self.parse_expr()?;
        self.lexer.snap(Token::RightSquare)?;
        let expr = Term::ArrayAccess(Box::new(src),Box::new(index));
        // Done
        Ok(expr)
    }

    pub fn parse_expr_term(&mut self) -> Result<Term> {
        // Skip whitespace
        self.skip_whitespace();
        //
    	let lookahead = self.lexer.peek();
    	//
    	let expr = match lookahead.kind {
    	    Token::Integer => self.parse_literal_int()?,
    	    Token::Hex => self.parse_literal_hex()?,
            Token::Identifier => self.parse_variable_access()?,
    	    Token::LeftBrace => self.parse_expr_bracketed()?,
    	    _ => {
    		return Err(Error::new(lookahead,ErrorCode::UnexpectedToken));
    	    }
    	};
        // Done
        Ok(expr)
    }

    pub fn parse_literal_int(&mut self) -> Result<Term> {
        let tok = self.lexer.snap(Token::Integer)?;
        // Extract characters making up literal
        let chars = self.lexer.get_str(tok);
        // Convert characters into digits
        let digits = chars.chars().map(|c| c.to_digit(10).unwrap() as u8).collect();
        // All good!
        Ok(Term::Int(digits))
    }

    pub fn parse_literal_hex(&mut self) -> Result<Term> {
        let tok = self.lexer.snap(Token::Hex)?;
        // Extract characters making up literal
        let chars = &self.lexer.get_str(tok)[2..];
        // Convert characters into digits
        let digits = chars.chars().map(|c| c.to_digit(16).unwrap() as u8).collect();
        // All good!
        Ok(Term::Hex(digits))
    }

    pub fn parse_variable_access(&mut self) -> Result<Term> {
    	let tok = self.lexer.snap(Token::Identifier)?;
        // Extract characters making up literal
        let chars = self.lexer.get_str(tok);
        // Match built-ins
        let expr = match chars.as_str() {
            "memory" => Term::MemoryAccess(Region::Memory),
            "storage" => Term::MemoryAccess(Region::Storage),
            "calldata" => Term::MemoryAccess(Region::CallData),
    	    _ => {
    		return Err(Error::new(tok,ErrorCode::UnexpectedToken));
    	    }
        };
        //
        Ok(expr)
    }

    pub fn parse_expr_bracketed(&mut self) -> Result<Term> {
    	self.lexer.snap(Token::LeftBrace)?;
    	let expr = self.parse_expr();
    	self.lexer.snap(Token::RightBrace)?;
        expr
    }

    /// Parse a sequence of expression separated by a comma.
    pub fn parse_expr_list(&mut self, terminator: Token) -> Result<Vec<Term>> {
        let mut exprs = Vec::new();
        while !self.lexer.is_eof() && self.lexer.peek().kind != terminator {
            if exprs.len() > 0 {
                self.skip_whitespace();
                self.lexer.snap(Token::Comma)?;
            }
            exprs.push(self.parse_expr()?);
        }
        // Done
        Ok(exprs)
    }

Parse a binary expression at a given level. Higher levels indicate expressions which bind less tightly. Furthermore, level 0 corresponds simply to parsing a unary expression.

Examples found in repository?
src/parser.rs (line 205)
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
    pub fn parse_expr(&mut self) -> Result<Term> {
        self.parse_expr_binary(3)
    }

    /// Parse a binary expression at a given _level_.  Higher levels
    /// indicate expressions which bind _less tightly_.  Furthermore,
    /// level `0` corresponds simply to parsing a unary expression.
    pub fn parse_expr_binary(&mut self, level: usize) -> Result<Term> {
        if level == 0 {
            self.parse_expr_postfix()
        } else {
            let tokens = BINARY_CONNECTIVES[level-1];
            // Parse level below
    	    let lhs = self.parse_expr_binary(level-1)?;
            // Skip remaining whitespace (on this line)
            self.skip_whitespace();
	    // Check whether logical connective follows
    	    let lookahead = self.lexer.snap_any(tokens);
            //
            match lookahead {
                Ok(s) => {
                    // FIXME: turn this into a loop?
	            let rhs = self.parse_expr_binary(level)?;
                    let bop = Self::binop_from_token(s.kind).unwrap();
	            Ok(Term::Binary(bop,Box::new(lhs),Box::new(rhs)))
                }
                Err(_) => {
                    Ok(lhs)
                }
            }
        }
    }
Examples found in repository?
src/parser.rs (line 213)
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
    pub fn parse_expr_binary(&mut self, level: usize) -> Result<Term> {
        if level == 0 {
            self.parse_expr_postfix()
        } else {
            let tokens = BINARY_CONNECTIVES[level-1];
            // Parse level below
    	    let lhs = self.parse_expr_binary(level-1)?;
            // Skip remaining whitespace (on this line)
            self.skip_whitespace();
	    // Check whether logical connective follows
    	    let lookahead = self.lexer.snap_any(tokens);
            //
            match lookahead {
                Ok(s) => {
                    // FIXME: turn this into a loop?
	            let rhs = self.parse_expr_binary(level)?;
                    let bop = Self::binop_from_token(s.kind).unwrap();
	            Ok(Term::Binary(bop,Box::new(lhs),Box::new(rhs)))
                }
                Err(_) => {
                    Ok(lhs)
                }
            }
        }
    }
Examples found in repository?
src/parser.rs (line 243)
237
238
239
240
241
242
243
244
245
246
247
248
249
    pub fn parse_expr_postfix(&mut self) -> Result<Term> {
        let mut expr = self.parse_expr_term()?;
        // Check for postfix unary operator.
    	let lookahead = self.lexer.peek();
    	// FIXME: managed nested operators
        expr = match lookahead.kind {
            Token::LeftSquare => self.parse_expr_arrayaccess(expr)?,
            //TokenType::LeftBrace => self.parse_expr_invoke(expr)?,
            _ => expr
        };
        // Done
        Ok(expr)
    }
Examples found in repository?
src/parser.rs (line 238)
237
238
239
240
241
242
243
244
245
246
247
248
249
    pub fn parse_expr_postfix(&mut self) -> Result<Term> {
        let mut expr = self.parse_expr_term()?;
        // Check for postfix unary operator.
    	let lookahead = self.lexer.peek();
    	// FIXME: managed nested operators
        expr = match lookahead.kind {
            Token::LeftSquare => self.parse_expr_arrayaccess(expr)?,
            //TokenType::LeftBrace => self.parse_expr_invoke(expr)?,
            _ => expr
        };
        // Done
        Ok(expr)
    }
Examples found in repository?
src/parser.rs (line 267)
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
    pub fn parse_expr_term(&mut self) -> Result<Term> {
        // Skip whitespace
        self.skip_whitespace();
        //
    	let lookahead = self.lexer.peek();
    	//
    	let expr = match lookahead.kind {
    	    Token::Integer => self.parse_literal_int()?,
    	    Token::Hex => self.parse_literal_hex()?,
            Token::Identifier => self.parse_variable_access()?,
    	    Token::LeftBrace => self.parse_expr_bracketed()?,
    	    _ => {
    		return Err(Error::new(lookahead,ErrorCode::UnexpectedToken));
    	    }
    	};
        // Done
        Ok(expr)
    }
Examples found in repository?
src/parser.rs (line 268)
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
    pub fn parse_expr_term(&mut self) -> Result<Term> {
        // Skip whitespace
        self.skip_whitespace();
        //
    	let lookahead = self.lexer.peek();
    	//
    	let expr = match lookahead.kind {
    	    Token::Integer => self.parse_literal_int()?,
    	    Token::Hex => self.parse_literal_hex()?,
            Token::Identifier => self.parse_variable_access()?,
    	    Token::LeftBrace => self.parse_expr_bracketed()?,
    	    _ => {
    		return Err(Error::new(lookahead,ErrorCode::UnexpectedToken));
    	    }
    	};
        // Done
        Ok(expr)
    }
Examples found in repository?
src/parser.rs (line 269)
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
    pub fn parse_expr_term(&mut self) -> Result<Term> {
        // Skip whitespace
        self.skip_whitespace();
        //
    	let lookahead = self.lexer.peek();
    	//
    	let expr = match lookahead.kind {
    	    Token::Integer => self.parse_literal_int()?,
    	    Token::Hex => self.parse_literal_hex()?,
            Token::Identifier => self.parse_variable_access()?,
    	    Token::LeftBrace => self.parse_expr_bracketed()?,
    	    _ => {
    		return Err(Error::new(lookahead,ErrorCode::UnexpectedToken));
    	    }
    	};
        // Done
        Ok(expr)
    }
Examples found in repository?
src/parser.rs (line 270)
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
    pub fn parse_expr_term(&mut self) -> Result<Term> {
        // Skip whitespace
        self.skip_whitespace();
        //
    	let lookahead = self.lexer.peek();
    	//
    	let expr = match lookahead.kind {
    	    Token::Integer => self.parse_literal_int()?,
    	    Token::Hex => self.parse_literal_hex()?,
            Token::Identifier => self.parse_variable_access()?,
    	    Token::LeftBrace => self.parse_expr_bracketed()?,
    	    _ => {
    		return Err(Error::new(lookahead,ErrorCode::UnexpectedToken));
    	    }
    	};
        // Done
        Ok(expr)
    }

Parse a sequence of expression separated by a comma.

Examples found in repository?
src/parser.rs (line 188)
186
187
188
189
190
191
192
193
194
195
196
197
198
    pub fn parse_stmt_revert(&mut self) -> Result<Term> {
    	self.lexer.snap(Token::Revert)?;
        let exprs = self.parse_expr_list(Token::SemiColon)?;
    	self.lexer.snap(Token::SemiColon)?;
        Ok(Term::Revert(exprs))
    }

    pub fn parse_stmt_succeed(&mut self) -> Result<Term> {
    	self.lexer.snap(Token::Succeed)?;
        let exprs = self.parse_expr_list(Token::SemiColon)?;
    	self.lexer.snap(Token::SemiColon)?;
        Ok(Term::Succeed(exprs))
    }

Auto Trait Implementations§

Blanket Implementations§

Gets the TypeId of self. Read more
Immutably borrows from an owned value. Read more
Mutably borrows from an owned value. Read more

Returns the argument unchanged.

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.