erg_compiler 0.6.3

Centimetre: the Erg compiler
Documentation
use std::mem;

use erg_common::dict::Dict;
use erg_common::error::Location;
#[allow(unused)]
use erg_common::log;
use erg_common::set::Set;
use erg_common::shared::Shared;
use erg_common::traits::{Locational, Stream};
use erg_common::vis::Field;
use erg_common::{dict, fn_name, option_enum_unwrap, set};
use erg_common::{enum_unwrap, fmt_vec};
use erg_common::{RcArray, Str};
use OpKind::*;

use erg_parser::ast::Dict as AstDict;
use erg_parser::ast::Set as AstSet;
use erg_parser::ast::*;
use erg_parser::token::{Token, TokenKind};

use crate::ty::constructors::{
    array_t, dict_t, mono, poly, proj, proj_call, ref_, ref_mut, refinement, subr_t, tuple_t,
    v_enum,
};
use crate::ty::free::{Constraint, HasLevel};
use crate::ty::typaram::{OpKind, TyParam};
use crate::ty::value::{GenTypeObj, TypeObj, ValueObj};
use crate::ty::{ConstSubr, HasType, Predicate, SubrKind, Type, UserConstSubr, ValueArgs};

use crate::context::{ClassDefType, Context, ContextKind, RegistrationMode};
use crate::error::{EvalError, EvalErrors, EvalResult, SingleEvalResult};

use super::instantiate::TyVarCache;
use super::Variance;

macro_rules! feature_error {
    ($ctx: expr, $loc: expr, $name: expr) => {
        $crate::feature_error!(EvalErrors, EvalError, $ctx, $loc, $name)
    };
}
macro_rules! unreachable_error {
    ($ctx: expr) => {
        $crate::unreachable_error!(EvalErrors, EvalError, $ctx)
    };
}

#[inline]
pub fn type_from_token_kind(kind: TokenKind) -> Type {
    use TokenKind::*;

    match kind {
        NatLit => Type::Nat,
        IntLit => Type::Int,
        RatioLit => Type::Ratio,
        StrLit | DocComment => Type::Str,
        BoolLit => Type::Bool,
        NoneLit => Type::NoneType,
        NoImplLit => Type::NotImplementedType,
        EllipsisLit => Type::Ellipsis,
        InfLit => Type::Inf,
        other => panic!("this has no type: {other}"),
    }
}

fn op_to_name(op: OpKind) -> &'static str {
    match op {
        OpKind::Add => "__add__",
        OpKind::Sub => "__sub__",
        OpKind::Mul => "__mul__",
        OpKind::Div => "__div__",
        OpKind::FloorDiv => "__floordiv__",
        OpKind::Mod => "__mod__",
        OpKind::Pow => "__pow__",
        OpKind::Pos => "__pos__",
        OpKind::Neg => "__neg__",
        OpKind::Eq => "__eq__",
        OpKind::Ne => "__ne__",
        OpKind::Lt => "__lt__",
        OpKind::Le => "__le__",
        OpKind::Gt => "__gt__",
        OpKind::Ge => "__ge__",
        OpKind::And => "__and__",
        OpKind::Or => "__or__",
        OpKind::Not => "__not__",
        OpKind::Invert => "__invert__",
        OpKind::BitAnd => "__bitand__",
        OpKind::BitOr => "__bitor__",
        OpKind::BitXor => "__bitxor__",
        OpKind::Shl => "__shl__",
        OpKind::Shr => "__shr__",
        OpKind::Mutate => "__mutate__",
    }
}

impl Context {
    fn try_get_op_kind_from_token(&self, token: &Token) -> EvalResult<OpKind> {
        match token.kind {
            TokenKind::Plus => Ok(OpKind::Add),
            TokenKind::Minus => Ok(OpKind::Sub),
            TokenKind::Star => Ok(OpKind::Mul),
            TokenKind::Slash => Ok(OpKind::Div),
            TokenKind::FloorDiv => Ok(OpKind::FloorDiv),
            TokenKind::Pow => Ok(OpKind::Pow),
            TokenKind::Mod => Ok(OpKind::Mod),
            TokenKind::DblEq => Ok(OpKind::Eq),
            TokenKind::NotEq => Ok(OpKind::Ne),
            TokenKind::Less => Ok(OpKind::Lt),
            TokenKind::Gre => Ok(OpKind::Gt),
            TokenKind::LessEq => Ok(OpKind::Le),
            TokenKind::GreEq => Ok(OpKind::Ge),
            TokenKind::AndOp => Ok(OpKind::And),
            TokenKind::OrOp => Ok(OpKind::Or),
            TokenKind::BitAnd => Ok(OpKind::BitAnd),
            TokenKind::BitXor => Ok(OpKind::BitXor),
            TokenKind::BitOr => Ok(OpKind::BitOr),
            TokenKind::Shl => Ok(OpKind::Shl),
            TokenKind::Shr => Ok(OpKind::Shr),
            TokenKind::Mutate => Ok(OpKind::Mutate),
            TokenKind::PrePlus => Ok(OpKind::Pos),
            TokenKind::PreMinus => Ok(OpKind::Neg),
            TokenKind::PreBitNot => Ok(OpKind::Invert),
            _other => Err(EvalErrors::from(EvalError::not_const_expr(
                self.cfg.input.clone(),
                line!() as usize,
                token.loc(),
                self.caused_by(),
            ))),
        }
    }

    fn eval_const_acc(&self, acc: &Accessor) -> EvalResult<ValueObj> {
        match acc {
            Accessor::Ident(ident) => {
                if let Some(val) = self.rec_get_const_obj(ident.inspect()) {
                    Ok(val.clone())
                } else if ident.is_const() {
                    Err(EvalErrors::from(EvalError::no_var_error(
                        self.cfg.input.clone(),
                        line!() as usize,
                        ident.loc(),
                        self.caused_by(),
                        ident.inspect(),
                        self.get_similar_name(ident.inspect()),
                    )))
                } else {
                    Err(EvalErrors::from(EvalError::not_const_expr(
                        self.cfg.input.clone(),
                        line!() as usize,
                        acc.loc(),
                        self.caused_by(),
                    )))
                }
            }
            Accessor::Attr(attr) => {
                let obj = self.eval_const_expr(&attr.obj)?;
                Ok(self.eval_attr(obj, &attr.ident)?)
            }
            other => {
                feature_error!(self, other.loc(), &format!("eval {other}")).map_err(Into::into)
            }
        }
    }

    fn eval_attr(&self, obj: ValueObj, ident: &Identifier) -> SingleEvalResult<ValueObj> {
        if let Some(val) = obj.try_get_attr(&Field::from(ident)) {
            return Ok(val);
        }
        if let ValueObj::Type(t) = &obj {
            if let Some(sups) = self.get_nominal_super_type_ctxs(t.typ()) {
                for ctx in sups {
                    if let Some(val) = ctx.consts.get(ident.inspect()) {
                        return Ok(val.clone());
                    }
                    for (_, methods) in ctx.methods_list.iter() {
                        if let Some(v) = methods.consts.get(ident.inspect()) {
                            return Ok(v.clone());
                        }
                    }
                }
            }
        }
        Err(EvalError::no_attr_error(
            self.cfg.input.clone(),
            line!() as usize,
            ident.loc(),
            self.caused_by(),
            &obj.t(),
            ident.inspect(),
            None,
        ))
    }

    fn eval_const_bin(&self, bin: &BinOp) -> EvalResult<ValueObj> {
        let lhs = self.eval_const_expr(&bin.args[0])?;
        let rhs = self.eval_const_expr(&bin.args[1])?;
        let op = self.try_get_op_kind_from_token(&bin.op)?;
        self.eval_bin(op, lhs, rhs)
    }

    fn eval_const_unary(&self, unary: &UnaryOp) -> EvalResult<ValueObj> {
        let val = self.eval_const_expr(&unary.args[0])?;
        let op = self.try_get_op_kind_from_token(&unary.op)?;
        self.eval_unary_val(op, val)
    }

    fn eval_args(&self, args: &Args) -> EvalResult<ValueArgs> {
        let mut evaluated_pos_args = vec![];
        for arg in args.pos_args().iter() {
            let val = self.eval_const_expr(&arg.expr)?;
            evaluated_pos_args.push(val);
        }
        let mut evaluated_kw_args = dict! {};
        for arg in args.kw_args().iter() {
            let val = self.eval_const_expr(&arg.expr)?;
            evaluated_kw_args.insert(arg.keyword.inspect().clone(), val);
        }
        Ok(ValueArgs::new(evaluated_pos_args, evaluated_kw_args))
    }

    fn eval_const_call(&self, call: &Call) -> EvalResult<ValueObj> {
        if let Expr::Accessor(acc) = call.obj.as_ref() {
            match acc {
                Accessor::Ident(ident) => {
                    let obj = self.rec_get_const_obj(ident.inspect()).ok_or_else(|| {
                        EvalError::no_var_error(
                            self.cfg.input.clone(),
                            line!() as usize,
                            ident.loc(),
                            self.caused_by(),
                            ident.inspect(),
                            self.get_similar_name(ident.inspect()),
                        )
                    })?;
                    let subr = option_enum_unwrap!(obj, ValueObj::Subr)
                        .ok_or_else(|| {
                            EvalError::type_mismatch_error(
                                self.cfg.input.clone(),
                                line!() as usize,
                                ident.loc(),
                                self.caused_by(),
                                ident.inspect(),
                                None,
                                &mono("Subroutine"),
                                &obj.t(),
                                self.get_candidates(&obj.t()),
                                None,
                            )
                        })?
                        .clone();
                    let args = self.eval_args(&call.args)?;
                    self.call(subr, args, call.loc())
                }
                // TODO: eval attr
                Accessor::Attr(_attr) => Err(EvalErrors::from(EvalError::not_const_expr(
                    self.cfg.input.clone(),
                    line!() as usize,
                    call.loc(),
                    self.caused_by(),
                ))),
                // TODO: eval type app
                Accessor::TypeApp(_type_app) => Err(EvalErrors::from(EvalError::not_const_expr(
                    self.cfg.input.clone(),
                    line!() as usize,
                    call.loc(),
                    self.caused_by(),
                ))),
                _ => unreachable!(),
            }
        } else {
            Err(EvalErrors::from(EvalError::not_const_expr(
                self.cfg.input.clone(),
                line!() as usize,
                call.loc(),
                self.caused_by(),
            )))
        }
    }

    fn call(&self, subr: ConstSubr, args: ValueArgs, loc: Location) -> EvalResult<ValueObj> {
        match subr {
            ConstSubr::User(_user) => {
                feature_error!(self, loc, "calling user-defined subroutines").map_err(Into::into)
            }
            ConstSubr::Builtin(builtin) => builtin.call(args, self).map_err(|mut e| {
                if e.0.loc.is_unknown() {
                    e.0.loc = loc;
                }
                EvalErrors::from(EvalError::new(
                    *e.0,
                    self.cfg.input.clone(),
                    self.caused_by(),
                ))
            }),
        }
    }

    fn eval_const_def(&mut self, def: &Def) -> EvalResult<ValueObj> {
        if def.is_const() {
            let __name__ = def.sig.ident().unwrap().inspect();
            let vis = def.sig.vis();
            let tv_cache = match &def.sig {
                Signature::Subr(subr) => {
                    let ty_cache =
                        self.instantiate_ty_bounds(&subr.bounds, RegistrationMode::Normal)?;
                    Some(ty_cache)
                }
                Signature::Var(_) => None,
            };
            // TODO: set params
            let kind = ContextKind::from(def.def_kind());
            self.grow(__name__, kind, vis, tv_cache);
            let obj = self.eval_const_block(&def.body.block).map_err(|errs| {
                self.pop();
                errs
            })?;
            match self.check_decls_and_pop() {
                Ok(_) => {
                    self.register_gen_const(def.sig.ident().unwrap(), obj)?;
                    Ok(ValueObj::None)
                }
                Err(errs) => {
                    self.register_gen_const(def.sig.ident().unwrap(), obj)?;
                    Err(errs)
                }
            }
        } else {
            Err(EvalErrors::from(EvalError::not_const_expr(
                self.cfg.input.clone(),
                line!() as usize,
                def.body.block.loc(),
                self.caused_by(),
            )))
        }
    }

    fn eval_const_array(&self, arr: &Array) -> EvalResult<ValueObj> {
        let mut elems = vec![];
        match arr {
            Array::Normal(arr) => {
                for elem in arr.elems.pos_args().iter() {
                    let elem = self.eval_const_expr(&elem.expr)?;
                    elems.push(elem);
                }
                Ok(ValueObj::Array(RcArray::from(elems)))
            }
            _ => Err(EvalErrors::from(EvalError::not_const_expr(
                self.cfg.input.clone(),
                line!() as usize,
                arr.loc(),
                self.caused_by(),
            ))),
        }
    }

    fn eval_const_set(&self, set: &AstSet) -> EvalResult<ValueObj> {
        let mut elems = vec![];
        match set {
            AstSet::Normal(arr) => {
                for elem in arr.elems.pos_args().iter() {
                    let elem = self.eval_const_expr(&elem.expr)?;
                    elems.push(elem);
                }
                Ok(ValueObj::Set(Set::from(elems)))
            }
            _ => Err(EvalErrors::from(EvalError::not_const_expr(
                self.cfg.input.clone(),
                line!() as usize,
                set.loc(),
                self.caused_by(),
            ))),
        }
    }

    fn eval_const_dict(&self, dict: &AstDict) -> EvalResult<ValueObj> {
        let mut elems = dict! {};
        match dict {
            AstDict::Normal(dic) => {
                for elem in dic.kvs.iter() {
                    let key = self.eval_const_expr(&elem.key)?;
                    let value = self.eval_const_expr(&elem.value)?;
                    elems.insert(key, value);
                }
                Ok(ValueObj::Dict(elems))
            }
            _ => Err(EvalErrors::from(EvalError::not_const_expr(
                self.cfg.input.clone(),
                line!() as usize,
                dict.loc(),
                self.caused_by(),
            ))),
        }
    }

    fn eval_const_tuple(&self, tuple: &Tuple) -> EvalResult<ValueObj> {
        let mut elems = vec![];
        match tuple {
            Tuple::Normal(arr) => {
                for elem in arr.elems.pos_args().iter() {
                    let elem = self.eval_const_expr(&elem.expr)?;
                    elems.push(elem);
                }
            }
        }
        Ok(ValueObj::Tuple(RcArray::from(elems)))
    }

    fn eval_const_record(&self, record: &Record) -> EvalResult<ValueObj> {
        match record {
            Record::Normal(rec) => self.eval_const_normal_record(rec),
            Record::Mixed(_rec) => unreachable_error!(self), // should be desugared
        }
    }

    fn eval_const_normal_record(&self, record: &NormalRecord) -> EvalResult<ValueObj> {
        let mut attrs = vec![];
        // HACK: should avoid cloning
        let mut record_ctx = Context::instant(
            Str::ever("<unnamed record>"),
            self.cfg.clone(),
            2,
            self.shared.clone(),
            self.clone(),
        );
        for attr in record.attrs.iter() {
            // let name = attr.sig.ident().map(|i| i.inspect());
            let elem = record_ctx.eval_const_block(&attr.body.block)?;
            let ident = match &attr.sig {
                Signature::Var(var) => match &var.pat {
                    VarPattern::Ident(ident) => Field::new(ident.vis(), ident.inspect().clone()),
                    other => {
                        return feature_error!(self, other.loc(), &format!("record field: {other}"))
                    }
                },
                other => {
                    return feature_error!(self, other.loc(), &format!("record field: {other}"))
                }
            };
            attrs.push((ident, elem));
        }
        Ok(ValueObj::Record(attrs.into_iter().collect()))
    }

    /// FIXME: grow
    fn eval_const_lambda(&self, lambda: &Lambda) -> EvalResult<ValueObj> {
        let mut tmp_tv_cache =
            self.instantiate_ty_bounds(&lambda.sig.bounds, RegistrationMode::Normal)?;
        let mut non_default_params = Vec::with_capacity(lambda.sig.params.non_defaults.len());
        for sig in lambda.sig.params.non_defaults.iter() {
            let pt = self.instantiate_param_ty(
                sig,
                None,
                None,
                &mut tmp_tv_cache,
                RegistrationMode::Normal,
            )?;
            non_default_params.push(pt);
        }
        let var_params = if let Some(p) = lambda.sig.params.var_args.as_ref() {
            let pt = self.instantiate_param_ty(
                p,
                None,
                None,
                &mut tmp_tv_cache,
                RegistrationMode::Normal,
            )?;
            Some(pt)
        } else {
            None
        };
        let mut default_params = Vec::with_capacity(lambda.sig.params.defaults.len());
        for sig in lambda.sig.params.defaults.iter() {
            let expr = self.eval_const_expr(&sig.default_val)?;
            let pt = self.instantiate_param_ty(
                &sig.sig,
                Some(expr.t()),
                None,
                &mut tmp_tv_cache,
                RegistrationMode::Normal,
            )?;
            default_params.push(pt);
        }
        // HACK: should avoid cloning
        let mut lambda_ctx = Context::instant(
            Str::ever("<lambda>"),
            self.cfg.clone(),
            0,
            self.shared.clone(),
            self.clone(),
        );
        let return_t = v_enum(set! {lambda_ctx.eval_const_block(&lambda.body)?});
        let sig_t = subr_t(
            SubrKind::from(lambda.op.kind),
            non_default_params.clone(),
            var_params,
            default_params.clone(),
            return_t,
        );
        let sig_t = self.generalize_t(sig_t);
        let subr = ConstSubr::User(UserConstSubr::new(
            Str::ever("<lambda>"),
            lambda.sig.params.clone(),
            lambda.body.clone(),
            sig_t,
        ));
        Ok(ValueObj::Subr(subr))
    }

    pub(crate) fn eval_lit(&self, lit: &Literal) -> EvalResult<ValueObj> {
        let t = type_from_token_kind(lit.token.kind);
        ValueObj::from_str(t, lit.token.content.clone()).ok_or_else(|| {
            EvalError::invalid_literal(
                self.cfg.input.clone(),
                line!() as usize,
                lit.token.loc(),
                self.caused_by(),
            )
            .into()
        })
    }

    pub(crate) fn eval_const_expr(&self, expr: &Expr) -> EvalResult<ValueObj> {
        match expr {
            Expr::Lit(lit) => self.eval_lit(lit),
            Expr::Accessor(acc) => self.eval_const_acc(acc),
            Expr::BinOp(bin) => self.eval_const_bin(bin),
            Expr::UnaryOp(unary) => self.eval_const_unary(unary),
            Expr::Call(call) => self.eval_const_call(call),
            Expr::Array(arr) => self.eval_const_array(arr),
            Expr::Set(set) => self.eval_const_set(set),
            Expr::Dict(dict) => self.eval_const_dict(dict),
            Expr::Tuple(tuple) => self.eval_const_tuple(tuple),
            Expr::Record(rec) => self.eval_const_record(rec),
            Expr::Lambda(lambda) => self.eval_const_lambda(lambda),
            // FIXME: type check
            Expr::TypeAsc(tasc) => self.eval_const_expr(&tasc.expr),
            other => Err(EvalErrors::from(EvalError::not_const_expr(
                self.cfg.input.clone(),
                line!() as usize,
                other.loc(),
                self.caused_by(),
            ))),
        }
    }

    // Evaluate compile-time expression (just Expr on AST) instead of evaluating ConstExpr
    // Return Err if it cannot be evaluated at compile time
    // ConstExprを評価するのではなく、コンパイル時関数の式(AST上ではただのExpr)を評価する
    // コンパイル時評価できないならNoneを返す
    pub(crate) fn eval_const_chunk(&mut self, expr: &Expr) -> EvalResult<ValueObj> {
        match expr {
            // TODO: ClassDef, PatchDef
            Expr::Def(def) => self.eval_const_def(def),
            Expr::Lit(lit) => self.eval_lit(lit),
            Expr::Accessor(acc) => self.eval_const_acc(acc),
            Expr::BinOp(bin) => self.eval_const_bin(bin),
            Expr::UnaryOp(unary) => self.eval_const_unary(unary),
            Expr::Call(call) => self.eval_const_call(call),
            Expr::Array(arr) => self.eval_const_array(arr),
            Expr::Set(set) => self.eval_const_set(set),
            Expr::Dict(dict) => self.eval_const_dict(dict),
            Expr::Tuple(tuple) => self.eval_const_tuple(tuple),
            Expr::Record(rec) => self.eval_const_record(rec),
            Expr::Lambda(lambda) => self.eval_const_lambda(lambda),
            Expr::TypeAsc(tasc) => self.eval_const_expr(&tasc.expr),
            other => Err(EvalErrors::from(EvalError::not_const_expr(
                self.cfg.input.clone(),
                line!() as usize,
                other.loc(),
                self.caused_by(),
            ))),
        }
    }

    pub(crate) fn eval_const_block(&mut self, block: &Block) -> EvalResult<ValueObj> {
        for chunk in block.iter().rev().skip(1).rev() {
            self.eval_const_chunk(chunk)?;
        }
        self.eval_const_chunk(block.last().unwrap())
    }

    fn eval_bin(&self, op: OpKind, lhs: ValueObj, rhs: ValueObj) -> EvalResult<ValueObj> {
        match op {
            Add => lhs.try_add(rhs).ok_or_else(|| {
                EvalErrors::from(EvalError::unreachable(
                    self.cfg.input.clone(),
                    fn_name!(),
                    line!(),
                ))
            }),
            Sub => lhs.try_sub(rhs).ok_or_else(|| {
                EvalErrors::from(EvalError::unreachable(
                    self.cfg.input.clone(),
                    fn_name!(),
                    line!(),
                ))
            }),
            Mul => lhs.try_mul(rhs).ok_or_else(|| {
                EvalErrors::from(EvalError::unreachable(
                    self.cfg.input.clone(),
                    fn_name!(),
                    line!(),
                ))
            }),
            Div => lhs.try_div(rhs).ok_or_else(|| {
                EvalErrors::from(EvalError::unreachable(
                    self.cfg.input.clone(),
                    fn_name!(),
                    line!(),
                ))
            }),
            FloorDiv => lhs.try_floordiv(rhs).ok_or_else(|| {
                EvalErrors::from(EvalError::unreachable(
                    self.cfg.input.clone(),
                    fn_name!(),
                    line!(),
                ))
            }),
            Gt => lhs.try_gt(rhs).ok_or_else(|| {
                EvalErrors::from(EvalError::unreachable(
                    self.cfg.input.clone(),
                    fn_name!(),
                    line!(),
                ))
            }),
            Ge => lhs.try_ge(rhs).ok_or_else(|| {
                EvalErrors::from(EvalError::unreachable(
                    self.cfg.input.clone(),
                    fn_name!(),
                    line!(),
                ))
            }),
            Lt => lhs.try_lt(rhs).ok_or_else(|| {
                EvalErrors::from(EvalError::unreachable(
                    self.cfg.input.clone(),
                    fn_name!(),
                    line!(),
                ))
            }),
            Le => lhs.try_le(rhs).ok_or_else(|| {
                EvalErrors::from(EvalError::unreachable(
                    self.cfg.input.clone(),
                    fn_name!(),
                    line!(),
                ))
            }),
            Eq => lhs.try_eq(rhs).ok_or_else(|| {
                EvalErrors::from(EvalError::unreachable(
                    self.cfg.input.clone(),
                    fn_name!(),
                    line!(),
                ))
            }),
            Ne => lhs.try_ne(rhs).ok_or_else(|| {
                EvalErrors::from(EvalError::unreachable(
                    self.cfg.input.clone(),
                    fn_name!(),
                    line!(),
                ))
            }),
            Or => match (lhs, rhs) {
                (ValueObj::Bool(l), ValueObj::Bool(r)) => Ok(ValueObj::Bool(l || r)),
                (ValueObj::Type(lhs), ValueObj::Type(rhs)) => Ok(self.eval_or_type(lhs, rhs)),
                _ => Err(EvalErrors::from(EvalError::unreachable(
                    self.cfg.input.clone(),
                    fn_name!(),
                    line!(),
                ))),
            },
            And => match (lhs, rhs) {
                (ValueObj::Bool(l), ValueObj::Bool(r)) => Ok(ValueObj::Bool(l && r)),
                (ValueObj::Type(lhs), ValueObj::Type(rhs)) => Ok(self.eval_and_type(lhs, rhs)),
                _ => Err(EvalErrors::from(EvalError::unreachable(
                    self.cfg.input.clone(),
                    fn_name!(),
                    line!(),
                ))),
            },
            _other => Err(EvalErrors::from(EvalError::unreachable(
                self.cfg.input.clone(),
                fn_name!(),
                line!(),
            ))),
        }
    }

    fn eval_or_type(&self, lhs: TypeObj, rhs: TypeObj) -> ValueObj {
        match (lhs, rhs) {
            (TypeObj::Builtin(l), TypeObj::Builtin(r)) => ValueObj::builtin_t(self.union(&l, &r)),
            (lhs, rhs) => ValueObj::gen_t(GenTypeObj::union(
                self.union(lhs.typ(), rhs.typ()),
                lhs,
                rhs,
            )),
        }
    }

    fn eval_and_type(&self, lhs: TypeObj, rhs: TypeObj) -> ValueObj {
        match (lhs, rhs) {
            (TypeObj::Builtin(l), TypeObj::Builtin(r)) => {
                ValueObj::builtin_t(self.intersection(&l, &r))
            }
            (lhs, rhs) => ValueObj::gen_t(GenTypeObj::intersection(
                self.intersection(lhs.typ(), rhs.typ()),
                lhs,
                rhs,
            )),
        }
    }

    fn eval_not_type(&self, ty: TypeObj) -> ValueObj {
        match ty {
            TypeObj::Builtin(l) => ValueObj::builtin_t(self.complement(&l)),
            // FIXME:
            _ => ValueObj::Illegal,
        }
    }

    pub(crate) fn eval_bin_tp(
        &self,
        op: OpKind,
        lhs: TyParam,
        rhs: TyParam,
    ) -> EvalResult<TyParam> {
        match (lhs, rhs) {
            (TyParam::Value(ValueObj::Mut(lhs)), TyParam::Value(rhs)) => self
                .eval_bin(op, lhs.borrow().clone(), rhs)
                .map(|v| TyParam::Value(ValueObj::Mut(Shared::new(v)))),
            (TyParam::Value(lhs), TyParam::Value(rhs)) => {
                self.eval_bin(op, lhs, rhs).map(TyParam::value)
            }
            (TyParam::FreeVar(fv), r) if fv.is_linked() => {
                self.eval_bin_tp(op, fv.crack().clone(), r)
            }
            (TyParam::FreeVar(_), _) if op.is_comparison() => Ok(TyParam::value(true)),
            // _: Nat <= 10 => true
            // TODO: maybe this is wrong, we should do the type-checking of `<=`
            (TyParam::Erased(t), rhs)
                if op.is_comparison() && self.supertype_of(&t, &self.get_tp_t(&rhs).unwrap()) =>
            {
                Ok(TyParam::value(true))
            }
            (l, TyParam::FreeVar(fv)) if fv.is_linked() => {
                self.eval_bin_tp(op, l, fv.crack().clone())
            }
            (_, TyParam::FreeVar(_)) if op.is_comparison() => Ok(TyParam::value(true)),
            // 10 <= _: Nat => true
            (lhs, TyParam::Erased(t))
                if op.is_comparison() && self.supertype_of(&self.get_tp_t(&lhs).unwrap(), &t) =>
            {
                Ok(TyParam::value(true))
            }
            (lhs @ TyParam::FreeVar(_), rhs) => Ok(TyParam::bin(op, lhs, rhs)),
            (lhs, rhs @ TyParam::FreeVar(_)) => Ok(TyParam::bin(op, lhs, rhs)),
            (e @ TyParam::Erased(_), _) | (_, e @ TyParam::Erased(_)) => Ok(e),
            (l, r) => feature_error!(self, Location::Unknown, &format!("{l:?} {op} {r:?}"))
                .map_err(Into::into),
        }
    }

    fn eval_unary_val(&self, op: OpKind, val: ValueObj) -> EvalResult<ValueObj> {
        match op {
            Pos => Err(EvalErrors::from(EvalError::unreachable(
                self.cfg.input.clone(),
                fn_name!(),
                line!(),
            ))),
            Neg => Err(EvalErrors::from(EvalError::unreachable(
                self.cfg.input.clone(),
                fn_name!(),
                line!(),
            ))),
            Invert => Err(EvalErrors::from(EvalError::unreachable(
                self.cfg.input.clone(),
                fn_name!(),
                line!(),
            ))),
            Not => match val {
                ValueObj::Bool(b) => Ok(ValueObj::Bool(!b)),
                ValueObj::Type(lhs) => Ok(self.eval_not_type(lhs)),
                _ => Err(EvalErrors::from(EvalError::unreachable(
                    self.cfg.input.clone(),
                    fn_name!(),
                    line!(),
                ))),
            },
            Mutate => Ok(ValueObj::Mut(Shared::new(val))),
            _other => unreachable_error!(self),
        }
    }

    fn eval_unary_tp(&self, op: OpKind, val: TyParam) -> EvalResult<TyParam> {
        match val {
            TyParam::Value(c) => self.eval_unary_val(op, c).map(TyParam::Value),
            TyParam::FreeVar(fv) if fv.is_linked() => self.eval_unary_tp(op, fv.crack().clone()),
            e @ TyParam::Erased(_) => Ok(e),
            TyParam::FreeVar(fv) if fv.is_unbound() => {
                let t = fv.get_type().unwrap();
                if op == OpKind::Mutate {
                    let constr = Constraint::new_type_of(t.mutate());
                    fv.update_constraint(constr, false);
                    let tp = TyParam::FreeVar(fv);
                    Ok(tp)
                } else {
                    feature_error!(self, Location::Unknown, &format!("{op} {fv}"))
                }
            }
            other => feature_error!(self, Location::Unknown, &format!("{op} {other}")),
        }
    }

    fn eval_app(&self, name: Str, args: Vec<TyParam>) -> EvalResult<TyParam> {
        feature_error!(
            self,
            Location::Unknown,
            &format!("{name}({})", fmt_vec(&args))
        )
    }

    /// Quantified variables, etc. are returned as is.
    /// 量化変数などはそのまま返す
    pub(crate) fn eval_tp(&self, p: TyParam) -> EvalResult<TyParam> {
        match p {
            TyParam::FreeVar(fv) if fv.is_linked() => self.eval_tp(fv.crack().clone()),
            TyParam::FreeVar(_) => Ok(p),
            TyParam::Mono(name) => self
                .rec_get_const_obj(&name)
                .map(|v| TyParam::value(v.clone()))
                .ok_or_else(|| {
                    EvalErrors::from(EvalError::unreachable(
                        self.cfg.input.clone(),
                        fn_name!(),
                        line!(),
                    ))
                }),
            TyParam::BinOp { op, lhs, rhs } => self.eval_bin_tp(op, *lhs, *rhs),
            TyParam::UnaryOp { op, val } => self.eval_unary_tp(op, *val),
            TyParam::App { name, args } => self.eval_app(name, args),
            TyParam::Array(tps) => {
                let mut new_tps = Vec::with_capacity(tps.len());
                for tp in tps {
                    new_tps.push(self.eval_tp(tp)?);
                }
                Ok(TyParam::Array(new_tps))
            }
            TyParam::Tuple(tps) => {
                let mut new_tps = Vec::with_capacity(tps.len());
                for tp in tps {
                    new_tps.push(self.eval_tp(tp)?);
                }
                Ok(TyParam::Tuple(new_tps))
            }
            TyParam::Dict(dic) => {
                let mut new_dic = dict! {};
                for (k, v) in dic.into_iter() {
                    new_dic.insert(self.eval_tp(k)?, self.eval_tp(v)?);
                }
                Ok(TyParam::Dict(new_dic))
            }
            TyParam::Type(_) | TyParam::Erased(_) | TyParam::Value(_) => Ok(p.clone()),
            _other => feature_error!(self, Location::Unknown, "???"),
        }
    }

    pub(crate) fn eval_t_params(
        &self,
        substituted: Type,
        level: usize,
        t_loc: Location,
    ) -> EvalResult<Type> {
        match substituted {
            Type::FreeVar(fv) if fv.is_linked() => {
                self.eval_t_params(fv.crack().clone(), level, t_loc)
            }
            Type::Subr(mut subr) => {
                for pt in subr.non_default_params.iter_mut() {
                    *pt.typ_mut() = self.eval_t_params(mem::take(pt.typ_mut()), level, t_loc)?;
                }
                if let Some(var_args) = subr.var_params.as_mut() {
                    *var_args.typ_mut() =
                        self.eval_t_params(mem::take(var_args.typ_mut()), level, t_loc)?;
                }
                for pt in subr.default_params.iter_mut() {
                    *pt.typ_mut() = self.eval_t_params(mem::take(pt.typ_mut()), level, t_loc)?;
                }
                let return_t = self.eval_t_params(*subr.return_t, level, t_loc)?;
                Ok(subr_t(
                    subr.kind,
                    subr.non_default_params,
                    subr.var_params.map(|v| *v),
                    subr.default_params,
                    return_t,
                ))
            }
            Type::Refinement(refine) => {
                let mut preds = Set::with_capacity(refine.preds.len());
                for pred in refine.preds.into_iter() {
                    preds.insert(self.eval_pred(pred)?);
                }
                Ok(refinement(refine.var, *refine.t, preds))
            }
            // [?T; 0].MutType! == [?T; !0]
            // ?T(<: Add(?R(:> Int))).Output == ?T(<: Add(?R)).Output
            // ?T(:> Int, <: Add(?R(:> Int))).Output == Int
            Type::Proj { lhs, rhs } => self.eval_proj(*lhs, rhs, level, t_loc),
            Type::ProjCall {
                lhs,
                attr_name,
                args,
            } => self.eval_proj_call(*lhs, attr_name, args, level, t_loc),
            Type::Ref(l) => Ok(ref_(self.eval_t_params(*l, level, t_loc)?)),
            Type::RefMut { before, after } => {
                let before = self.eval_t_params(*before, level, t_loc)?;
                let after = if let Some(after) = after {
                    Some(self.eval_t_params(*after, level, t_loc)?)
                } else {
                    None
                };
                Ok(ref_mut(before, after))
            }
            Type::Poly { name, mut params } => {
                for p in params.iter_mut() {
                    *p = self.eval_tp(mem::take(p))?;
                }
                Ok(poly(name, params))
            }
            Type::And(l, r) => {
                let l = self.eval_t_params(*l, level, t_loc)?;
                let r = self.eval_t_params(*r, level, t_loc)?;
                Ok(self.intersection(&l, &r))
            }
            Type::Or(l, r) => {
                let l = self.eval_t_params(*l, level, t_loc)?;
                let r = self.eval_t_params(*r, level, t_loc)?;
                Ok(self.union(&l, &r))
            }
            Type::Not(ty) => {
                let ty = self.eval_t_params(*ty, level, t_loc)?;
                Ok(self.complement(&ty))
            }
            other if other.is_monomorphic() => Ok(other),
            _other => feature_error!(self, t_loc, "???"),
        }
    }

    pub(crate) fn eval_proj(
        &self,
        lhs: Type,
        rhs: Str,
        level: usize,
        t_loc: Location,
    ) -> EvalResult<Type> {
        // Currently Erg does not allow projection-types to be evaluated with type variables included.
        // All type variables will be dereferenced or fail.
        let (sub, opt_sup) = match lhs.clone() {
            Type::FreeVar(fv) if fv.is_linked() => {
                return self.eval_t_params(proj(fv.crack().clone(), rhs), level, t_loc)
            }
            Type::FreeVar(fv) if fv.is_unbound() => {
                let (sub, sup) = fv.get_subsup().unwrap();
                (sub, Some(sup))
            }
            other => (other, None),
        };
        // cannot determine at this point
        if sub == Type::Never {
            return Ok(proj(lhs, rhs));
        }
        // in Methods
        if let Some(ctx) = self.get_same_name_context(&sub.qual_name()) {
            if let Some(t) =
                ctx.validate_and_project(&sub, opt_sup.as_ref(), &rhs, self, level, t_loc)
            {
                return Ok(t);
            }
        }
        for ty_ctx in self.get_nominal_super_type_ctxs(&sub).ok_or_else(|| {
            EvalError::type_not_found(
                self.cfg.input.clone(),
                line!() as usize,
                t_loc,
                self.caused_by(),
                &sub,
            )
        })? {
            if let Some(t) =
                self.validate_and_project(&sub, opt_sup.as_ref(), &rhs, ty_ctx, level, t_loc)
            {
                return Ok(t);
            }
            for (class, methods) in ty_ctx.methods_list.iter() {
                match (&class, &opt_sup) {
                    (ClassDefType::ImplTrait { impl_trait, .. }, Some(sup)) => {
                        if !self.supertype_of(impl_trait, sup) {
                            continue;
                        }
                    }
                    (ClassDefType::ImplTrait { impl_trait, .. }, None) => {
                        if !self.supertype_of(impl_trait, &sub) {
                            continue;
                        }
                    }
                    _ => {}
                }
                if let Some(t) =
                    self.validate_and_project(&sub, opt_sup.as_ref(), &rhs, methods, level, t_loc)
                {
                    return Ok(t);
                }
            }
        }
        if lhs.is_unbound_var() {
            let (sub, sup) = enum_unwrap!(&lhs, Type::FreeVar).get_subsup().unwrap();
            if self.is_trait(&sup) && !self.trait_impl_exists(&sub, &sup) {
                let sub = if cfg!(feature = "debug") {
                    sub
                } else {
                    self.deref_tyvar(sub, Variance::Covariant, t_loc)?
                };
                let sup = if cfg!(feature = "debug") {
                    sup
                } else {
                    self.deref_tyvar(sup, Variance::Covariant, t_loc)?
                };
                return Err(EvalErrors::from(EvalError::no_trait_impl_error(
                    self.cfg.input.clone(),
                    line!() as usize,
                    &sub,
                    &sup,
                    t_loc,
                    self.caused_by(),
                    self.get_simple_type_mismatch_hint(&sup, &sub),
                )));
            }
        }
        // if the target can't be found in the supertype, the type will be dereferenced.
        // In many cases, it is still better to determine the type variable than if the target is not found.
        let coerced = self.deref_tyvar(lhs.clone(), Variance::Covariant, t_loc)?;
        if lhs != coerced {
            let proj = proj(coerced, rhs);
            self.eval_t_params(proj, level, t_loc).map(|t| {
                lhs.coerce();
                t
            })
        } else {
            let proj = proj(lhs, rhs);
            Err(EvalErrors::from(EvalError::no_candidate_error(
                self.cfg.input.clone(),
                line!() as usize,
                &proj,
                t_loc,
                self.caused_by(),
                self.get_no_candidate_hint(&proj),
            )))
        }
    }

    pub(crate) fn convert_tp_into_ty(&self, tp: TyParam) -> Result<Type, ()> {
        match tp {
            TyParam::Array(tps) => {
                let len = tps.len();
                let mut t = Type::Never;
                for elem_tp in tps {
                    let elem_t = self.convert_tp_into_ty(elem_tp)?;
                    // not union
                    t = self.union(&t, &elem_t);
                }
                Ok(array_t(t, TyParam::value(len)))
            }
            TyParam::FreeVar(fv) if fv.is_linked() => self.convert_tp_into_ty(fv.crack().clone()),
            TyParam::Type(t) => Ok(t.as_ref().clone()),
            TyParam::Value(v) => Type::try_from(v),
            // TODO: Array, Dict, Set
            _ => Err(()),
        }
    }

    fn _convert_type_to_dict_type(&self, ty: Type) -> Result<Dict<Type, Type>, ()> {
        match ty {
            Type::Poly { name, params } if &name[..] == "Dict" => {
                let dict = Dict::try_from(params[0].clone())?;
                let mut new_dict = dict! {};
                for (k, v) in dict.into_iter() {
                    let k = self.convert_tp_into_ty(k)?;
                    let v = self.convert_tp_into_ty(v)?;
                    new_dict.insert(k, v);
                }
                Ok(new_dict)
            }
            _ => Err(()),
        }
    }

    fn convert_type_to_array(&self, ty: Type) -> Result<Vec<ValueObj>, ()> {
        match ty {
            Type::Poly { name, params } if &name[..] == "Array" || &name[..] == "Array!" => {
                let t = self.convert_tp_into_ty(params[0].clone())?;
                let len = enum_unwrap!(params[1], TyParam::Value:(ValueObj::Nat:(_)));
                Ok(vec![ValueObj::builtin_t(t); len as usize])
            }
            _ => Err(()),
        }
    }

    pub(crate) fn convert_value_into_array(&self, val: ValueObj) -> Result<Vec<ValueObj>, ()> {
        match val {
            ValueObj::Array(arr) => Ok(arr.to_vec()),
            ValueObj::Type(t) => self.convert_type_to_array(t.into_typ()),
            _ => Err(()),
        }
    }

    fn validate_and_project(
        &self,
        sub: &Type,
        opt_sup: Option<&Type>,
        rhs: &str,
        methods: &Context,
        level: usize,
        t_loc: Location,
    ) -> Option<Type> {
        // e.g. sub: Int, opt_sup: Add(?T), rhs: Output, methods: Int.methods
        //      sub: [Int; 4], opt_sup: Add([Int; 2]), rhs: Output, methods: [T; N].methods
        if let Ok(obj) = methods.get_const_local(&Token::symbol(rhs), &self.name) {
            #[allow(clippy::single_match)]
            // opt_sup: Add(?T), methods.impl_of(): Add(Int)
            // opt_sup: Add([Int; 2]), methods.impl_of(): Add([T; M])
            match (&opt_sup, methods.impl_of()) {
                (Some(sup), Some(trait_)) => {
                    if !self.supertype_of(&trait_, sup) {
                        return None;
                    }
                }
                _ => {}
            }
            // obj: Int|<: Add(Int)|.Output == ValueObj::Type(<type Int>)
            // obj: [T; N]|<: Add([T; M])|.Output == ValueObj::Type(<type [T; M+N]>)
            if let ValueObj::Type(quant_projected_t) = obj {
                let projected_t = quant_projected_t.into_typ();
                let (quant_sub, _) = self.rec_get_type(&sub.local_name()).unwrap();
                if let Some(sup) = opt_sup {
                    if let Some(quant_sup) = methods.impl_of() {
                        // T -> Int, M -> 2
                        self.substitute_typarams(&quant_sup, sup)
                            .map_err(|errs| {
                                Self::undo_substitute_typarams(&quant_sup);
                                errs
                            })
                            .ok()?;
                    }
                }
                // T -> Int, N -> 4
                self.substitute_typarams(quant_sub, sub)
                    .map_err(|errs| {
                        Self::undo_substitute_typarams(quant_sub);
                        errs
                    })
                    .ok()?;
                // [T; M+N] -> [Int; 4+2] -> [Int; 6]
                let res = self.eval_t_params(projected_t, level, t_loc).ok();
                if let Some(t) = res {
                    let mut tv_cache = TyVarCache::new(self.level, self);
                    let t = self.detach(t, &mut tv_cache);
                    // Int -> T, 2 -> M, 4 -> N
                    Self::undo_substitute_typarams(quant_sub);
                    if let Some(quant_sup) = methods.impl_of() {
                        Self::undo_substitute_typarams(&quant_sup);
                    }
                    return Some(t);
                }
                Self::undo_substitute_typarams(quant_sub);
                if let Some(quant_sup) = methods.impl_of() {
                    Self::undo_substitute_typarams(&quant_sup);
                }
            } else {
                todo!()
            }
        }
        None
    }

    /// e.g.
    /// F((Int), 3) => F(Int, 3)
    /// F(?T, ?T) => F(?1, ?1)
    fn detach(&self, ty: Type, tv_cache: &mut TyVarCache) -> Type {
        match ty {
            Type::FreeVar(fv) if fv.is_linked() => self.detach(fv.crack().clone(), tv_cache),
            Type::FreeVar(fv) => {
                let new_fv = fv.detach();
                let name = new_fv.unbound_name().unwrap();
                if let Some(t) = tv_cache.get_tyvar(&name) {
                    t.clone()
                } else {
                    let tv = Type::FreeVar(new_fv);
                    tv_cache.push_or_init_tyvar(&name, &tv);
                    tv
                }
            }
            Type::Poly { name, params } => {
                let mut new_params = vec![];
                for param in params {
                    new_params.push(self.detach_tp(param, tv_cache));
                }
                poly(name, new_params)
            }
            _ => ty,
        }
    }

    fn detach_tp(&self, tp: TyParam, tv_cache: &mut TyVarCache) -> TyParam {
        match tp {
            TyParam::FreeVar(fv) if fv.is_linked() => self.detach_tp(fv.crack().clone(), tv_cache),
            TyParam::FreeVar(fv) => {
                let new_fv = fv.detach();
                let name = new_fv.unbound_name().unwrap();
                if let Some(tp) = tv_cache.get_typaram(&name) {
                    tp.clone()
                } else {
                    let tp = TyParam::FreeVar(new_fv);
                    tv_cache.push_or_init_typaram(&name, &tp);
                    tp
                }
            }
            TyParam::Type(t) => TyParam::t(self.detach(*t, tv_cache)),
            _ => tp,
        }
    }

    /// e.g. qt: Array(T, N), st: Array(Int, 3)
    ///
    /// use `undo_substitute_typarams` after executing this method
    pub(crate) fn substitute_typarams(&self, qt: &Type, st: &Type) -> EvalResult<()> {
        let qtps = qt.typarams();
        let stps = st.typarams();
        if qtps.len() != stps.len() {
            log!(err "{} {}", erg_common::fmt_vec(&qtps), erg_common::fmt_vec(&stps));
            return Ok(()); // TODO: e.g. Sub(Int) / Eq and Sub(?T)
        }
        for (qtp, stp) in qtps.into_iter().zip(stps.into_iter()) {
            self.substitute_typaram(qtp, stp)?;
        }
        Ok(())
    }

    fn substitute_typaram(&self, qtp: TyParam, stp: TyParam) -> EvalResult<()> {
        match qtp {
            TyParam::FreeVar(fv) if fv.is_generalized() => {
                if !stp.is_generalized() {
                    fv.undoable_link(&stp);
                }
                // REVIEW: need to sub_unify_tp?
                Ok(())
            }
            TyParam::Type(gt) if gt.is_generalized() => {
                let qt = enum_unwrap!(gt.as_ref(), Type::FreeVar);
                let Ok(st) = Type::try_from(stp) else { todo!(); };
                if !st.is_generalized() {
                    qt.undoable_link(&st);
                }
                self.sub_unify(&st, &gt, Location::Unknown, None)
            }
            TyParam::Type(qt) => {
                let Ok(st) = Type::try_from(stp) else { todo!(); };
                let st = if st.typarams_len() != qt.typarams_len() {
                    let st = enum_unwrap!(st, Type::FreeVar);
                    st.get_sub().unwrap()
                } else {
                    st
                };
                if !st.is_generalized() {
                    self.substitute_typarams(&qt, &st)?;
                }
                self.sub_unify(&st, &qt, Location::Unknown, None)
            }
            _ => Ok(()),
        }
    }

    pub(crate) fn undo_substitute_typarams(substituted_q: &Type) {
        for tp in substituted_q.typarams().into_iter() {
            match tp {
                TyParam::FreeVar(fv) if fv.is_undoable_linked() => fv.undo(),
                TyParam::Type(t) if t.is_free_var() => {
                    let subst = enum_unwrap!(t.as_ref(), Type::FreeVar);
                    if subst.is_undoable_linked() {
                        subst.undo();
                    }
                }
                TyParam::Type(t) => {
                    Self::undo_substitute_typarams(&t);
                }
                _ => {}
            }
        }
    }

    pub(crate) fn eval_proj_call(
        &self,
        lhs: TyParam,
        attr_name: Str,
        args: Vec<TyParam>,
        level: usize,
        t_loc: Location,
    ) -> EvalResult<Type> {
        let t = self.get_tp_t(&lhs)?;
        for ty_ctx in self.get_nominal_super_type_ctxs(&t).ok_or_else(|| {
            EvalError::type_not_found(
                self.cfg.input.clone(),
                line!() as usize,
                t_loc,
                self.caused_by(),
                &t,
            )
        })? {
            if let Ok(obj) = ty_ctx.get_const_local(&Token::symbol(&attr_name), &self.name) {
                if let ValueObj::Subr(subr) = obj {
                    let is_method = subr.sig_t().self_t().is_some();
                    let mut pos_args = vec![];
                    if is_method {
                        match ValueObj::try_from(lhs) {
                            Ok(value) => {
                                pos_args.push(value);
                            }
                            Err(_) => {
                                return feature_error!(self, t_loc, "??");
                            }
                        }
                    }
                    for pos_arg in args.into_iter() {
                        match ValueObj::try_from(pos_arg) {
                            Ok(value) => {
                                pos_args.push(value);
                            }
                            Err(_) => {
                                return feature_error!(self, t_loc, "??");
                            }
                        }
                    }
                    let args = ValueArgs::new(pos_args, dict! {});
                    let t = self.call(subr, args, t_loc)?;
                    let t = enum_unwrap!(t, ValueObj::Type); // TODO: error handling
                    return Ok(t.into_typ());
                } else {
                    return feature_error!(self, t_loc, "??");
                }
            }
            for (_class, methods) in ty_ctx.methods_list.iter() {
                if let Ok(obj) = methods.get_const_local(&Token::symbol(&attr_name), &self.name) {
                    if let ValueObj::Subr(subr) = obj {
                        let mut pos_args = vec![];
                        for pos_arg in args.into_iter() {
                            match ValueObj::try_from(pos_arg) {
                                Ok(value) => {
                                    pos_args.push(value);
                                }
                                Err(_) => {
                                    return feature_error!(self, t_loc, "??");
                                }
                            }
                        }
                        let args = ValueArgs::new(pos_args, dict! {});
                        let t = self.call(subr, args, t_loc)?;
                        let t = enum_unwrap!(t, ValueObj::Type); // TODO: error handling
                        return Ok(t.into_typ());
                    } else {
                        return feature_error!(self, t_loc, "??");
                    }
                }
            }
        }
        if lhs.is_unbound_var() {
            let (sub, sup) = enum_unwrap!(&lhs, TyParam::FreeVar).get_subsup().unwrap();
            if self.is_trait(&sup) && !self.trait_impl_exists(&sub, &sup) {
                let sub = if cfg!(feature = "debug") {
                    sub
                } else {
                    self.deref_tyvar(sub, Variance::Covariant, t_loc)?
                };
                let sup = if cfg!(feature = "debug") {
                    sup
                } else {
                    self.deref_tyvar(sup, Variance::Covariant, t_loc)?
                };
                return Err(EvalErrors::from(EvalError::no_trait_impl_error(
                    self.cfg.input.clone(),
                    line!() as usize,
                    &sub,
                    &sup,
                    t_loc,
                    self.caused_by(),
                    self.get_simple_type_mismatch_hint(&sup, &sub),
                )));
            }
        }
        // if the target can't be found in the supertype, the type will be dereferenced.
        // In many cases, it is still better to determine the type variable than if the target is not found.
        let coerced = self.deref_tp(lhs.clone(), Variance::Covariant, t_loc)?;
        if lhs != coerced {
            let proj = proj_call(coerced, attr_name, args);
            self.eval_t_params(proj, level, t_loc).map(|t| {
                lhs.coerce();
                t
            })
        } else {
            let proj = proj_call(lhs, attr_name, args);
            Err(EvalErrors::from(EvalError::no_candidate_error(
                self.cfg.input.clone(),
                line!() as usize,
                &proj,
                t_loc,
                self.caused_by(),
                self.get_no_candidate_hint(&proj),
            )))
        }
    }

    pub(crate) fn eval_pred(&self, p: Predicate) -> EvalResult<Predicate> {
        match p {
            Predicate::Value(_) | Predicate::Const(_) => Ok(p),
            Predicate::Equal { lhs, rhs } => Ok(Predicate::eq(lhs, self.eval_tp(rhs)?)),
            Predicate::NotEqual { lhs, rhs } => Ok(Predicate::ne(lhs, self.eval_tp(rhs)?)),
            Predicate::LessEqual { lhs, rhs } => Ok(Predicate::le(lhs, self.eval_tp(rhs)?)),
            Predicate::GreaterEqual { lhs, rhs } => Ok(Predicate::ge(lhs, self.eval_tp(rhs)?)),
            Predicate::And(l, r) => Ok(Predicate::and(self.eval_pred(*l)?, self.eval_pred(*r)?)),
            Predicate::Or(l, r) => Ok(Predicate::or(self.eval_pred(*l)?, self.eval_pred(*r)?)),
            Predicate::Not(pred) => Ok(Predicate::not(self.eval_pred(*pred)?)),
        }
    }

    pub(crate) fn get_tp_t(&self, p: &TyParam) -> EvalResult<Type> {
        let p = self.eval_tp(p.clone())?;
        match p {
            TyParam::Value(ValueObj::Mut(v)) => Ok(v.borrow().class().mutate()),
            TyParam::Value(v) => Ok(v_enum(set![v])),
            TyParam::Erased(t) => Ok((*t).clone()),
            TyParam::FreeVar(fv) if fv.is_linked() => self.get_tp_t(&fv.crack()),
            TyParam::FreeVar(fv) => {
                if let Some(t) = fv.get_type() {
                    Ok(t)
                } else {
                    feature_error!(self, Location::Unknown, "??")
                }
            }
            TyParam::Type(typ) => Ok(self.meta_type(&typ)),
            TyParam::Mono(name) => self
                .rec_get_const_obj(&name)
                .map(|v| v_enum(set![v.clone()]))
                .ok_or_else(|| {
                    EvalErrors::from(EvalError::unreachable(
                        self.cfg.input.clone(),
                        fn_name!(),
                        line!(),
                    ))
                }),
            TyParam::Array(tps) => {
                let tp_t = self.get_tp_t(&tps[0])?;
                let t = array_t(tp_t, TyParam::value(tps.len()));
                Ok(t)
            }
            TyParam::Tuple(tps) => {
                let mut tps_t = vec![];
                for tp in tps {
                    tps_t.push(self.get_tp_t(&tp)?);
                }
                Ok(tuple_t(tps_t))
            }
            dict @ TyParam::Dict(_) => Ok(dict_t(dict)),
            TyParam::UnaryOp { op, val } => match op {
                OpKind::Mutate => Ok(self.get_tp_t(&val)?.mutate()),
                _ => feature_error!(self, Location::Unknown, "??"),
            },
            TyParam::BinOp { op, lhs, rhs } => {
                let op_name = op_to_name(op);
                feature_error!(
                    self,
                    Location::Unknown,
                    &format!("get type: {op_name}({lhs}, {rhs})")
                )
            }
            other => feature_error!(
                self,
                Location::Unknown,
                &format!("getting the type of {other}")
            ),
        }
    }

    pub(crate) fn _get_tp_class(&self, p: &TyParam) -> EvalResult<Type> {
        let p = self.eval_tp(p.clone())?;
        match p {
            TyParam::Value(v) => Ok(v.class()),
            TyParam::Erased(t) => Ok((*t).clone()),
            TyParam::FreeVar(fv) => {
                if let Some(t) = fv.get_type() {
                    Ok(t)
                } else {
                    feature_error!(self, Location::Unknown, "??")
                }
            }
            TyParam::Type(_) => Ok(Type::Type),
            TyParam::Mono(name) => {
                self.rec_get_const_obj(&name)
                    .map(|v| v.class())
                    .ok_or_else(|| {
                        EvalErrors::from(EvalError::unreachable(
                            self.cfg.input.clone(),
                            fn_name!(),
                            line!(),
                        ))
                    })
            }
            other => feature_error!(
                self,
                Location::Unknown,
                &format!("getting the class of {other}")
            ),
        }
    }

    /// NOTE: If l and r are types, the Context is used to determine the type.
    /// NOTE: lとrが型の場合はContextの方で判定する
    pub(crate) fn shallow_eq_tp(&self, lhs: &TyParam, rhs: &TyParam) -> bool {
        match (lhs, rhs) {
            (TyParam::Type(l), _) if l.is_unbound_var() => {
                self.subtype_of(&self.get_tp_t(rhs).unwrap(), &Type::Type)
            }
            (_, TyParam::Type(r)) if r.is_unbound_var() => {
                let lhs = self.get_tp_t(lhs).unwrap();
                self.subtype_of(&lhs, &Type::Type)
            }
            (TyParam::Type(l), TyParam::Type(r)) => l == r,
            (TyParam::Value(l), TyParam::Value(r)) => l == r,
            (TyParam::Erased(l), TyParam::Erased(r)) => l == r,
            (TyParam::Array(l), TyParam::Array(r)) => l == r,
            (TyParam::Tuple(l), TyParam::Tuple(r)) => l == r,
            (TyParam::Set(l), TyParam::Set(r)) => l == r, // FIXME:
            (TyParam::Dict(l), TyParam::Dict(r)) => l == r,
            (TyParam::FreeVar { .. }, TyParam::FreeVar { .. }) => true,
            (TyParam::Mono(l), TyParam::Mono(r)) => {
                if l == r {
                    true
                } else if let (Some(l), Some(r)) =
                    (self.rec_get_const_obj(l), self.rec_get_const_obj(r))
                {
                    l == r
                } else {
                    // lとrが型の場合は...
                    false
                }
            }
            (TyParam::BinOp { .. }, TyParam::BinOp { .. }) => todo!(),
            (TyParam::UnaryOp { .. }, TyParam::UnaryOp { .. }) => todo!(),
            (TyParam::App { .. }, TyParam::App { .. }) => todo!(),
            (TyParam::Mono(m), TyParam::Value(l)) | (TyParam::Value(l), TyParam::Mono(m)) => {
                if let Some(o) = self.rec_get_const_obj(m) {
                    o == l
                } else {
                    true
                }
            }
            (TyParam::Erased(t), _) => t.as_ref() == &self.get_tp_t(rhs).unwrap(),
            (_, TyParam::Erased(t)) => t.as_ref() == &self.get_tp_t(lhs).unwrap(),
            (l, r) => {
                log!(err "l: {l}, r: {r}");
                false
            }
        }
    }
}